
THE

ANATOMY

OF THE

1541

\

f f f finw * * \
\ \ \

VCMJ I AN n I Tin

THE ANATOMY OF THE

1541 DISK DRIVE

A Complete Guide to Using

The Commodore Disk Drive

Authors:

Edited by:

Lothar Englisch

Norbert Szczepanowski

Greg Dykema

Arnie Lee

ABACUS SOFTWARE

P.O. BOX 7211

GRAND RAPIDS, MI 49510

Second English Printing, June 1984

Printed in U.S.A

Copyright (O1983

Copyright (O1984

Data Becker GmgH

Merowingerstr. 30

4000 Dusseldorf W. Germany

Abacus Software

P.O. Box 7211

Grand Fapids, MI 49510

This book is copyrighted. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted in

any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior

written permission of ABACUS Software, Inc.

ISBN 0-916439-01-1

PREFACE

The VIC-1541 disk drive represents a very efficient external
storage medium for the Commodore user. It is an affordable
peripheral. In order to get the most from your 1541, you
need the appropriate information. In months of long,
detailed work, Lothar Englisch and Norbert Szczepanowski
have discovered many secrets of the 1541.

This book progresses from simple storage techniques, to
direct access commands , to program chaining techniques.
Beginners will welcome the numerous sample programs that are
fully explained in clear text. Machine language programmers
will particularly like the detailed documentation listing of
the Disk Operating System (DOS).

This book contains many useful and ready-to-run programs
that need only be typed in. Some of these programs
are: routines for extending BASIC, helpful routines such as
spooling, efficient address management, a complete household
budget planner and an easy-to-use DOS monitor to manipulate
individual sectors. Have fun with this book and your VIC-
1541 disk drive.

TABLE OF CONTENTS

Chapter 1: Programming the VIC-1541 1

1.1 Getting Started 1

1.1.1 The Disk Operating System 1

1.1.2 The TEST/DEMO Diskette 2

1.1.3 Formatting New Diskettes 2

1.1.4 Some Facts about a 1541 Diskette 3

1.2 Storing Programs on Diskette 4

1.2.1 SAVE - Storing BASIC Programs 4

1.2.2 LOAD - Loading BASIC Programs 4

1.2.3 VERIFY - Checking Stored programs. 5

1.2.4 SAVE "§:..." Replacing Programs 5

1.2.5 Loading Machine Language Programs 6
1.2.6 Storing Machine Language Programs 7

1.3 Disk System Commands 10

1.3.1 Transmitting Commands to the Disk Drive 10

1.3.2 NEW - Formatting Diskettes 11
1.3.3 Reading the Error Channel 12

1.3.4 LOAD "$",8 Loading the Directory 13
1.3.5 SCRATCH - Deleting Files 14

1.3.6 RENAME r- Renaming Files 15

1.3.7 COPY - Copying Files 16

1.3.8 INITIALIZE - Initializing the Diskette 16
1.3.9 VALIDATE - "Cleaning up11 the Diskette17
1.3.10 ? * - The Wildcards 18

1.4 Sequential Data Storage.. 20
1.4.1 The Principle..... 20

1.4.2 OPENing a Sequential File 21

1.4.3 Transferring Data between Disk and Computer....24
1.4.4 Adding Data to Sequential Files 27
1.4.5 CLOSEing a Sequential File 28

1.4.6 Redirecting the Screen Output ...29

1.4.7 Sequential Files as Tables in the Computer 30
1.4.8 Searching Tables 32

1.4.9 Simple Sorting of Tables 35

1.4.10 Mailing List Management with Sequential
Data Storage 38

1.4.11 Uses for Sequential Storage 45

1.5 Relative Data Storage 46

1.5.1 The Principle ..46

1.5.2 The Advantage over Sequential Storage 47
1.5.3 OPENing a Relative File 47

1.5.4 Preparing the Data for Relative Storage 50
1.5.5 Transferring Data 52

1.5.6 CLOSEing a Relative File 55

1.5.7 Searching Records with the Binary Method 55
1.5.8 Searching Records with a Separate Index File...58
1.5.9 Changing Records , 61

1.5.10 Expanding a Relative File 62

1,5.11 Home Accounting with Relative Data Storage 64

1.6 Disk Error Messages and their Causes 72

1.7 Overview of Commands with a Comparison of

BASIC 2.0 - BASIC 4.0 - DOS 5.1 77

Chapter 2: Advanced Programming 82

2.1 The Direct Access of any Block of the Diskette 82

2.2 The Direct Access Commands 86

2.2.1 The Block-Read Command 86

2.2.2 The Block-Pointer Command 87

2.2.3 The Block-Write Command 88

2.2.4 The Block-Allocate Command 89

2.2.5 The Block-Free Command 90

2.2.6 The Block-Execute Command 91

2.3 Uses of Direct Access 92

2.4 Accessing the DOS - The Memory Commands 94

2.4.1 The Memory-Read Command 94

2.4.2 The Memory-Write Command 95

2.4.3 The Memory-Execute Command..., 96

2.4.4 The User Commands 97

Chapter 3: Technical Information 99

3.1 The Construction the VIC-1541 99

3.1.1 Block Diagram of the Disk Drive 99

3.1.2 DOS Memory Map - ROM, RAMr I/O 100

3.2 Operation of the DOS - An Overview 104

3.3 The Structure of the Diskette 106

3.3.1 The BAM of the VIC 1541 106

3.3.2 The Directory 107

3.3.3 The Directory Format 109

3.4 The Organization of Relative Files 114

3.5 DOS 2.6 Rom Listings. 118

Chapter 4: Programs and Tips For Utilization

of the VIC-1541 269

4.1 Utility Programs 269
4.1.1 Displaying all File Parameters 269

4.1.2 Scratch-protect Files - File Protect. 273

4.1.3 Backup Program - Copying a Diskette 278

4.1.4 Copying Individual Files to another Diskette..280

4.1.5 Reading the Directory from within a Program...281

4.2 The Utility Programs on the TEST/DEMO Disk.. 283
4.2.1 DOS 5.1 283

4.2.2 COPY/ALL !!! ! 284
4.2.3 DISK ADDR CHANGE 284
4.2.4 DIR \2*5
4.2.5 VIEW BAM] 285
4.2.6 CHECK DISK *] 285
4.2.7 DISPLAY T&S ..." .286
4.2.8 PERFORMANCE TEST 286

4.3 BASIC-Expansion and Programs for

Easy Use of the 1541 287

4.3.1 Input Strings of desired Length from the Disk.287
4.3.2 Easy Preparation of Data Records290
4.3.3 Spooling - Printing Directly from the Disk....295

4.4 Overlay Technique and Chaining

Machine Language Programs 299

4.5 Merge - Appending BASIC Programs 302

4.6 Disk-Monitor for Commodore 64 and VIC 20 304

Chapter 5: The Larger CBM Disks 317

5.1 IEEE-Bus and Serial Bus 317

5.2 Comparison of all CBM Disk Drives 319

Anatomy of the 1541 Disk Drive

Chapter Is Programming the VIC-1541

1.1 Getting Started

There it sits, your new Commodore VIC-1541 disk drive. It's
fast and efficient but also intimidating. But have no fear.
We will instruct you in the ways of disk programming. The
first part of this book gives the beginner an intensive look
at the VIC-1541. At least one example follows each command,
thereby explaining its functions and capabilities. You will
be surprised how easy the operation of your disk drive can
be, when you understand the "basics".

The beginner probably uses the disk drive mainly to store
programs. Perhaps he has not realized that there are many

other ways to use the disk drive. This book attempts to
uncover these other ways.

Experienced programmers should not ignore the first chapter.
There may be some sections that may shed light on disk
usage. This is especially true concerning relative files and
data management.

1.1.1 The Disk Operating System

The disk drive is a rather complicated device which
coordinates mechanical hardware, and electronic circuitry to
allow the storage of data on the diskette. When the
Commodore 64 or VIC-20 needs to read from or write to the

disk drive, it sends commands to the disk drive along the
heavy black cable that connects the drive to the computer.
The commands sent by the Commodore 64 or VIC-20 are under
stood at the disk drive by a by a built in program called
the Disk Operating System (DOS).

The DOS is a lengthy program contained on ROM in the disk
drive and carries out the activities of the disk drive as
commanded by the Commodore 64 or VIC-20. The version of DOS
contained in the VIC-1541 carries the designation CBM DOS

The Commodore 64 and VIC-20 contain a version of BASIC
called COMMODORE BASIC 2.0. Other versions of BASIC (e.g.
BASIC 4.0 found of the Commodore 8032) have more advanced
disk commands which the VIC-1541 can also understand. In
order to use these advanced disk commands, you have to
simulate them using BASIC 2.0.

At the end of the chapter is a listing of the BASIC 2.0

Anatomy of the 1541 Disk Drive

commands with corresponding commands of the easier BASIC

4.0, as found on the larger Commodore computers.

1.1.2 The TEST/DEMO Diskette

The VIC-1541 disk drive is packaged with a diskette called

TEST/DEMO. Some of the programs contained on it cannot be

used without adequate knowledge of the way the disk drive

works. For now, lay this diskette aside.

The TEST/DEMO diskette is described in detail later.

1.1.3 Formatting New Diskettes

Brand new diskettes must be prepared before using them to

store data. Preparing them is called formatting.

What does formatting mean? Each disk drive mechanism has its

own special characteristics. A diskette is divided into

tracks and information is written along each track (similar

to the grooves of a phonographic record). The number of

tracks per diskette is varies from one manufacturer to

another. Each track is divided into sectors, whose number

can also vary.

During formatting empty sectors are written to the diskette.

A sector is written to each track and sector location and

each sector receives its own "address". This allows the DOS

to identify its position on the diskette. A sector is also

given a code so that the DOS can recognize if this diskette

was formatted by this type of disk drive. The code for the

VIC-1541 disk drive is 2A. The remainder of the sector

(called a block) is used to store data and accommodates

exactly 256 characters.

The final purpose of formatting is to construct the

directory for the diskette. The directory is a "table of

contents" of the files stored on the diskette. There is also

a special data block (called the bit availability map or

BAM) which indicates if a given block on the diskette is

already in use or available for use. The directory and BAM

are kept on track 18 of the diskette.

Anatomy of the 1541 Disk Drive

1.1.4 Some Facts about a 1541 Diskette

Diskette:

Number of Tracks: 35

Sectors per Track: 17 to 21 (depending on track)
Bytes per block: 256

Total number of blocks: 683

Number of free blocks 644 (the directory occupies
the remainder)

Entries in the directory: 144 per diskette

Mechanism:

- intelligent peripheral with its own processor and control
system

- connection to serial bus from CBM 64 or VIC-20, device
number 4-15 (8 standard)

Anatomy of the 1541 Disk Drive

1.2 Storing Programs on Diskette

The most common use of the disk drive is for storage of

programs. Storing programs with a disk drive is considerably

easier than with a cassette recorder. The greatest advantage

of the disk drive is the speed of data transfer to and from

the computer. Here's a comparison:

Saving a 3 Kbyte program takes:

- 75 seconds with the VIC-1530 Datasette

- 12 seconds with the VIC-1541 disk drive

An additional advantage is that a diskette can store more

programs than the cassette. To load a program, you can

consult the directory to view the selection of programs.

Even though the cassette drive allows you to store more than

one program on a tape, searching for that program is very

time consuming.

Before trying any of the following examples in this chapter,

you should remember that the diskette must be previously

formatted as explained in section 1.3.2 in order to be able

to save programs onto it.

1.2.1 SAVE - Storing BASIC Programs

Perhaps you previously owned a datasette on which you stored

programs. In this case the commands to save programs onto

diskette should be familiar to you. The SAVE command for the

disk drive is essentially the same as for the cassette

drive. You need only tell the computer that the program is

to be saved onto the disk drive and not on cassette. This

is done by adding the device number (usually 8) to the

command SAVE. Normally the drive is preset to respond to

this device number. Now write a small BASIC program and save

it with the command:

SAVE"TEST"#8

type in a the NEW command so the program in the computer's

memory is erased. In the following section you will learn

how the program can be retrieved.

1.2.2 LOAD - Loading BASIC Programs

As with the SAVE command, this command is similar to the

LOAD command for the datasette with the addition of the

device number. Now load in the previously saved program

with:

Anatomy of the 1541 Disk Drive

LOAD "TEST",8

You can check the program by using the LIST command. Any

previous program in memory has now been replaced by the
program "TEST". It is possible to load a program into the
memory without replacing the previous program in memory.
Combining two program in memory is called "merging" An
example of merging is presented in a later section.

1.2.3 VERIFY - Checking Stored Programs

When you have saved a program on disk with the SAVE command,
it is often desirable to make sure that the program was
written error-free. You can do this by using the VERIFY
command. It has the following format:

VERIFY"filename",8

Earlier you saved a program with SAVE "TEST",8. This pro
gram should still be in memory. Using VERIFY, the program in
memory is checked against the program stored on diskette. If

both programs are identical, the computer responds with OK.

To try this out, type a few BASIC lines and then give the
following commands:

SAVE "TEST2"f8

VERIFY "TEST2",8

Your computer will respond with OK if it is performing
correctly.

1.2.4 SAVE"@s..." - Replacing Programs

If you try to save your small TEST program on the disk
again, the computer will respond with a FILE EXISTS error
and will not complete the SAVE. The operating system of the
VIC-1541 disk drive does not allow two programs to be saved
under the same name. This is logical because the computer
would not be able to distinguish between two programs with
the same name.

However you may want to update a program on diskette that was
previously saved. There are three ways to accomplish this:

1. Save the program under a different name
2. First erase the old program from the disk and save the

new one under the old name

Anatomy of the 1541 Disk Drive

3. Use the addition @s in front of the file name in the SAVE

command

This is used as follows:

SAVE"0sTEST"r8

If you forget to use the characters @s in front of the

filename, and try to save a program whose name is already

contained on the diskette, you get the FILE EXISTS error.

If you are replacing a program on a diskette then the DOS

carries this out as follows:

1. A free block is designated as the first block of the

program and its location is stored in the directory entry

of the old copy.

2. The new copy of the program is stored in a free area of

the diskette.

3. All of the blocks of the old copy are marked as free.

1.2.5 Loading Machine Language Programs

Machine language programs are handled a little differently

from BASIC programs. A machine language program is trans

ferred to the computer by using a secondary address of 1.

When secondary address 1 is used, the program is loaded

"absolutely", that is, loaded into memory beginning at the

address specified in the first two bytes of the disk file.

An example:

LOAD "MACHPGRM",8,1

loads the machine language program at an absolute address.

For example, the program may be set up to load at the

decimal address 49152, and is started by the command : SYS

49152. Should you load a machine language program without

the secondary address, you will roost likely see the message

"SYNTAX EPPOP IN" if you type PUN.

Likewise, trying to LIST the machine language program wi]l

display nonsense. Unfortunately, machine language programs

are not differentiated from BASIC programs in the directory.

Both have the file type PRG.

Usually, if typing RUN results in SYNTAX ERROR IN, you

know that the program is not written in BASIC and should be

treated as a machine language program. In this case it must

be loaded with the command LOAD "program",8rl. It cannot be

Anatomy of the 1541 Disk Drive

started with RUN however! You must first find the execution
address of this program.

In a later section is a program that lists all the file
parameters of a program. One of the parameters is a load
address. This load address is usually the initial execution
address of the program and can be called with the command

SYS load address. You can find the load address of a program
with the following program:

10 OPEN l^^/programname^R
20 GET#lfX$:IF X$="" THEN X$=CHR$(0)
30 LB=ASC(X$)

40 GET#1,X$:IF X$=un THEN X$=CHR$(0)
50 HB=ASC(X$)

60 CLOSE 1

70 AD=HB*256+LB

80 PRINTMLOAD ADDRESS:";AD

The program shows the load address of "programname". Here
the program file is opened as a sequential data file. The
starting address is stored as the first two bytes of the
file and read using the GET command and appropriately con
structed. The first byte is the low byte and the second byte
the high byte of the two-byte address. If the function of
this program is unclear, handling sequential files clarified
in the next sections.

1.2.6 Storing Machine Language Programs

Machine language programs are usually written with an assem

bler or a machine language monitor and saved using this
program. Machine language programs can also be written from
BASIC with the individual bytes of the program written in
decimal values in DATA statements. A machine language pro
gram written in BASIC with the help of DATA statements
follows:

10 SA=starting address

20 EA=ending address

30 FOR I=SA TO EA

40 READ X

50 POKE I,PEEK(X)

60 NEXT I

80 DATA

90 DATA

In this example, the decimal value of the starting address
is placed in line 10 and the ending address in line 20. The
decimal values of the individual bytes of the machine
language program are typed into the DATA statements of the

Anatomy of the 1541 Disk Drive

program, separated by commas.

Naturally, you can save any machine language program that

you find in this book in the form of a BASIC program. This

is, however, a tedious and complicated process. A more

elegant and time-saving method is to store the machine
language program in true form. This way, you can immediately

execute the program after LOADing without requiring any

complicated conversion.

The following program will save such a program that is

already in memory:

10 SA=starting address

20 EA=ending address

30 OPEN l,8,l,"programname"

40 HB=INT(SA/256):LB=SA-HB*256

50 PRINT#1,CHR$(LB);CHR$(HB)?

60 FOR I=SA TO EA

70 PRINT#1,CHR$(PEEK(I));

80 NEXT I

90 CLOSE 1

This routine assumes that the machine language program is

already in the memory of the computer. If a program is

already encoded into DATA statements, the following routine

can be used to produced a pure machine language program:

10 SA=starting address

20 EA=ending address

30 OPEN l,8,l,Mprogramname"

40 HB=INT(SA/256):LB=SA-HB*256

50 PRINT#1,CHR$(LB);CHR$(HB);

60 FOR I=SA TO EA

70 READ X

80 PRINT#1,CHR$(X);

90 NEXT I

100 CLOSE 1

110 DATA

120 DATA

Here the addresses and DATA statements are filled in also.

The above program writes a machine language program to

diskette which can later be loaded with the command LOAD

"programname",8rl. Then the program can be executed with

the command: SYS (starting address). Machine language pro

grams can also be loaded and executed from a BASIC program.

Such a program might have this form:

10 IF A=0 THEN A=l:LOAD"programname",8,1

20 SYS (starting address)

The IF command in line 10 is puzzling at first. It must be

present because after performing a LOAD from within a pro

gram, the BASIC interpreter begins executing again at the

8

Anatomy of the 1541 Disk Drive

first line of the new BASIC program. Because the machine

language program doesn't usually overlay the BASIC program

in memory, the original BASIC program remains intact and is

therefore is re-executed. If you use the routine:

10 LOAD"programname",8,1

20 SYS (starting address)

the program continues to LOAD "programname" again, and the

SYS command is never executed. If the variable A is present,

the program branches to line 20 at the end of the first

command on line 10. This loader can be placed on the

diskette together with the machine language program. To

execute the machine language program, you need only give the

commands:

LOAD"loader",8

RUN

This has the advantage that the starting address of the

machine language program need not be known, because it is

included in the SYS of the loader.

Anatomy of the 1541 Disk Drive

1.3 Disk System Commands

As already mentioned, the VIC-1541 disk drive is similar to

the the earlier, larger disk drives of the Commodore family

- the CBM 4040, 8050, 8250. They are all intelligent peri

pheral device with their own processor and control system.

The Disk Operating System (DOS) occupies no space in the

memory of the Commodore 64 or VIC-20 and yet offers a flex

ible set of efficient commands. These commands effectively
expand the built in commands of your Commodore computer.

Because the disk drive is an intelligent peripheral, the

commands of the DOS can be executed independently of the

computer. But because the commands are not found in the

version of BASIC supplied in the Commodore 64 or VIC-20,

you will have to communicate to the disk using a special

method. When the commands are sent to the disk drive, the

DOS interprets and carries out the desired task.

1.3.1 Transmitting commands to the Disk Drive

Commands intended for the disk drive, are sent over a

channel. You can communicate with the disk drive over any of

the 15 available channels. But channel 15 is reserved as the

command channel. Data transfer over this channel takes place

as follows:

- opening the channel' (OPEN)

- data transfer (PRINT)

- close the channel (CLOSE)

In the OPEN command you specify a logical file number

(arbitrary between 1 and 127), a device number of the disk

drive (usually 8) and the secondary address (15 for the

command channel). You can also send a command to the device

as illustrated below:

OPEN lfn,8,15,"command"
or

OPEN lfn,8,15:PRINT#lfn,"command"

The number 8 is the device number of the disk drive and the

number 15 is the secondary address or channel number. The

parameter lfn is the logical file number which is used in
subsequent commands (PRINT#, INPUT#, GET#). It can be a

number in the range 1-127. The "command" can either follow

the OPEN statement directly, or can be transferred with a

PRINT# command following the opening. Any number of system
commands can be transmitted until the channel is closed, but

must be referenced by the logical file number used in the

OPEN command.

10

Anatomy of the 1541 Disk Drive

1.3.2 NEW * Formatting Diskettes

The command to format a diskette is called NEW and can, as

every other command, be abbreviated to its first letter (N).

As already mentioned, the command can follow an OPEN command
or be given in a PRINT# command. The NEW command has the
following format:

NEW:diskname,id

The parameter diskname may contain up to 16 characters and
is stored in the header of the diskette directory. The
parameter ID (identification) consists of two arbitrary

characters, so that the DOS can recognize if a different

diskette has been used. Since you can freely choose the id,
this allows you to uniquely identify each diskette. Here is
an example for formatting a disk:

OPEN l,8,15r"NEW:ABCDISKfKL"

The command can be abbreviated to:

OPEN l,8r15,"NsABCDISK,KL"

You need only use the command once - when you first use a

brand new diskette. Formatting takes about 80 seconds. For
matting uses the processor of the 1541 drive while the

processor of the computer is not needed; you can continue to
work with the computer.

To use the command with a PRINT# statement, the following
commands must be given:

OPEN 1,8,15 to open the channel

PRINT#lr"N:ABCDISKrKL*

The number 1 in the PRINT* command is the logical file

number corresponding to the OPEN command. Other commands may
also be transmitted over this channel after the PRINT#
statement. When no more commands are to be transmitted, the

channel must be closed. This is accomplished through the use
of the CLOSE statement. Give the following command after
formatting:

CLOSE 1

Now the command channel is closed. The number 1 is again the

logical file number of the corresponding OPEN command.

11

Anatomy of the 1541 Disk Drive

1.3.3 Reading the Error Channel

When the Commodore 64 or VIC-20 is incorrectly programmed,

it responds with an error message. Disk commands are carried

out and verified by the processor of the disk drive.
Therefore the computer cannot directly display error

messages that are detected by the disk drive. Errors are

indicated by the flashing red LED on the disk drive. In
order to determine which error has occurred, the computer

must read the error from channel 15. Therefore channel 15

must be OPENed, if this has not already been done. Then the

error can be read with the INPUT# command. An error is sent

back to the computer in four fields -

Field 1: Error number

Field 2: Description of the error (string)

Field 3: Track number

Field 4: Sector number

The track and sector information may indicate where the

error occurred (if these fields are relevant to the

command). These four fields of the error message must be

read into four variables. You can use an INPUT# statement

followed by four variables. An example of reading the error

channel:

OPEN 1,8,15 (if not already done)

INPUT#1,EN,DE$,TR,SE

CLOSE 1

The INPUT# statement must be entered from within a program.

It is not proper to issue an INPUT# statement from command

mode.

10 OPEN 1,8,15

20 INPUT#1,EN,DE$,TR,SE

30 PPINT EN?DE$;TR;SE (to display the error)

40 CLOSE 1

To understand the operation of this program, first create

the following error:

OPEN 1,8,15,"NEW ABCDISK,T1"

CLOSE 1

When you have given these commands, the red LED on the disk

drive begins to blink. Did you spot the error? A colon is

missing from the command NEW. Now type the program to read

the error channel and type RUN. The error will appear on the

screen:

34 SYNTAX ERROR 0 0

The 34 is the number of the error, which is explained later.

The track and sector fields are 0 because this information

12

Anatomy of the 1541 Disk Drive

is not relevant to this error.

If you read the error channel when an error had not

occurred, the message:

0 OK 0 0

is returned. In any case, if the red LED on the drive

blinks, check the syntax of the command, since most errors

can be easily recognized. Otherwise, you can simply read the

error channel to find the error which the DOS has detected.

A detailed description of the error message and their causes
follows in section 1.6.

1.3.4 L0AD"$",8 - Loading the Directory

The directory is a "table of contents" of the diskette. All

the files on the diskette are cataloged here. Be sure to

note that loading the directory has a disadvantage: any

program previously in memory is overlayed by the directory

information. The directory is loaded by typing:

LOAD "$",8

and can be viewed with the LIST command. Try LOADing the

directory of the TEST/DEMO diskette that accompanies your
disk drive. Insert this diskette into the disk drive and
enter: LOAD "$"r8 to load the directory. Then display the

directory by using the LIST command. What follows should be
shown on the screen

0 "1541test/demo " zx 2a

13 "how to use" prg

5 "how part two" prg

4 "vic-20 wedge" prg

1 "c-64 wedge" prg

4 "dos 5.1" prg

11 "copy/all" prg

4 "disk addr change" prg

4 "dir" prg

6 "view bam" prg

4 "check disk" prg

14 "display t&s" prg

9 "performance test" prg

5 "sequential file" prg
13 "random file" prg

A lot of information is kept in the directory. Let's look at
the first line, the header of the directory. The number 0 in
this line means that the directory is of the diskette in
drive 0. Other disk drives such as the 4040, contain two
disk drives - drive 0 or drive 1. On the 1541 the drive

13

Anatomy of the 1541 Disk Drive

number is always 0. Next follows the name and ID of the

diskette as set up by formatting. The characters 2A sym
bolize the disk format. If this format is not 2A then this
diskette was not formatted with a 1541 drive.

Next are the individual file names, their lengths in blocks

in the first column and the file type in the last column.

This diskette contains three different file types:

PRG These are PROGRAM files, written in either

BASIC or machine language

SEQ Sequential data files, explained later

REL This is another form of data storage, also

explained later

The length of the files is given in blocks. Each block

contains 256 bytes. You can find the approximate size a

program, by subtracting 2 bytes from each 256-byte block

that the file occupies. Finally at the end of the directory

is the number of free blocks remaining on the disk. When you

add the lengths of the files and the number of free blocks,

the result is the total number of available blocks on a

diskette (664).

If you own a printer, this directory can be printed as you

would print a program listing. Use the following commands:

OPEN 1,4 open the printer

CMD 1 the printer is now linked to the

screen

LIST the directory will be printed

PRINT#1 send a RETURN to the printer

CLOSE 1 close the printer again

It is assumed that the directory is already loaded with the

LOAD"S",8 command before these commands are executed. By

inserting a wildcard when loading the directory, you can

cause only part of the directory to be loaded, such as only

the programs. This is explained in section 1.3.10

1.3.5 SCRATCH - Deleting Files

Sometimes an unneeded file must be removed from the

diskette. The SCRATCH command is provided for doing so.

Before using this command, you must be sure that the name

given in the SCRATCH command corresponds with the file to be

deleted. An unintentionally deleted file can ruin many hours

or even days of work, so be careful before using the SCRATCH

command.

14

Anatomy of the 1541 Disk Drive

To delete a file, the following format should be used:

PRINT#lfn,"SCRATCH: filenaroel, filename2,..."

More than one file can be deleted by using a single command.
But remember that only 40 characters at a time can be sent
over the transmission channel to the disk drive.

For example, to erase a file with the name TEST, the
following commands are used:

OPEN 1,8,15,"S:TEST"

CLOSE 1

If channel 15 is already open, only the PRINT# command is
required:

PRINT#1,"S:TEST"

It is possible to delete the entire contents of a diskette.
This is discussed in section 1.3.10, the wildcard character
(*) :

PRINT#1,"S:*"

But be very carefull Make sure that you do not need any of
the files on the diskette before using this command. After
completing the operation the error channel transfers the
message:

01 FILES SCRATCHED nn 00

where nn is the number of deleted files. This message can be
read with the routine given in section 1.3.3.

1.3.6 RENAME - Renaming Files

You can also change the name of a file on the diskette. The

command RENAME is provided for this purpose. It has the
following format:

RENAME:newname=oldname

For example, if you want to change the name of the file from

TEST to PEST you would use the following commands:

OPEN lr8,15r"R:PEST=TEST"
CLOSE 1

or

15

Anatomy of the 1541 Disk Drive

OPEN 1,8,15

PRINT#1,"R:PEST=TEST"

CLOSE 1

Note that you cannot rename a file until it is CLOSEd.

1.3.7 COPY - Copying Files

Using this command, a file can by copied on a diskette.

Several different sequential files can be used to create a

new file. If, for example, you have a data record for each

month of your household expenses and they have the names

EXP.01, EXP.02, etc. you can combine them into quarters

(EXP.Q1 for example) with this command. The COPY command has

the format:

COPYsnewfile=oldfilelfOldfile2,...

So, the named data records can be combined as follows:

OPEN 1,8,15,"C:EXP.Q1=EXP.01,EXP.02,EXP.03"

CLOSE 1

This method of combining data records cannot be used for

programs. Only a single program can be copied on the

diskette. Also the name of the new file must not already

exist on the diskette.

The COPY command is seldom used. This is because copying

files onto the same diskette usually makes no sense. The

only sensible use of the command is to combine several

sequential or user files into a single file.

Copying files from one diskette to another diskette is much

more sensible. This is indispensible for data security. If

you own two disk drives, you can assign the device number 9

to one of them and use the program COPY/ALL to copy files

from one to the other. This program is found on the

TEST/DEMO diskette.

We have also thought of you who have only one disk drive. A

utility program is included in section 4.1 to allow you to

copy individual files and even the entire diskette.

1.3.8 INITIALIZE - Initializing the Diskette

The DOS requires a BAM (Block Allocation Map) to be present

on each disk. The BAM is a layout of the usage of the

blocks on each diskette. It marks each block on the diskette

16

Anatomy of the 1541 Disk Drive

as free for use or allocated (already in use). If you change

diskettes in the drive and the new diskette has the same id

as the old diskette, the DOS will not recognize the fact
that you have changed diskettes. The BAM of the new diskette

will be different, but the DOS will still be working with
the old BAM.

Therefore, each diskette should be given a unique id when

you format it. It is a good practice to give each diskette a

different id. You can force the disk drive to read the BAM
of a new diskette by issuing the INITIALIZE command. This
command has the following format:

PRINTtlfn,"INITIALIZE"

or shortened to

PRINTtlfn,"I"

Example:

OPEN 1,8,15,"I"

CLOSE 1

If you change diskettes and also change data records, then

we strongly recommend that you use the INITIALIZE command
after changing the diskettes, to be safe.

1.3.9 VALIDATE - "Cleaning Up" the Diskette

The command VALIDATE frees all allocated blocks that are not
assigned to normally CLOSEd files. For example, if you OPEN

a file, and transfer data to that file, but forget to CLOSE
the file, the VALIDATE command can be used to free the data
blocks that were written to. If you use the direct access
commands, be sure to allocate them (using the BLOCK-ALLOCATE
command) or the VALIDATE command will free them again.

The command has an additional function: If a file is deleted
using the SCRATCH command, the file type in the first byte
of the file entry is set to 0. It no longer appears in the
directory. If you now change this byte back to its old file
type with the DOS monitor (described later) or other direct
access commands, VALIDATE will restore the file. If it has

not been overwritten, it will be the same as before the
SCRATCH command. The command has the following format:

PRINTtlfn,"VALIDATE"

or the shorter form

PRINTtlfn,"V"

17

Anatomy of the 1541 Disk Drive

An example:

OPEN l,8r15,"V"

CLOSE 1

If you have a diskette such that the sum of the file lengths

plus the number of free blocks does not equal the total

number available (664), use the VALIDATE command to restore

it.

Another example: If you want to store a program or data

record that uses more than the number of free blocks, the

DOS will give the error DISK FULL. If the disk had shown

some blocks free before, the number is now zero. The

VALIDATE command will restore the original free blocks.

1.3.10 ? * - The Wildcards

There are two wildcard characters - the asterisk (*) and the

characters of the first file on the disk that begins with

the characters which precede the asterisk. An example:

LOAD"TEST*",8

This command loads the first program that begins with the

first four letters "TEST". The command:

LOAD"*",8

loads the first program on the diskette because there are no

characters in front of the asterisk. The asterisk in the

SCRATCH command has a different effect. If used in the

SCRATCH command, not only the first file will be deleted,

but all files. For instance, the command:

OPEN l,8r15,"S:TEST*°

CLOSE 1

erases all files beginning with the the letters "TEST". This

must be taken into account! Loading the directory with an

asterisk can also select certain files. An example:

LOAD"$A*"r8

loads only the directory of the files that begin with the

letter "A".

The DOS offers an additional use of the asterisk that has

not been mentioned yet. It can also select file types if the

asterisk is followed by the first letter of the desired file

type. Here is a summary:

18

Anatomy of the 1541 Disk Drive

*=S selects only sequential files

*=P selects program files

*=R selects relative files
*=U selects user-files

For example, the command:

LOAD "$*=P"r8

causes only the directory entries of programs to be loaded

and shown when you type LIST. This can also be used with the

SCRATCH command to delete all sequential files, for

instance. Here is the command:

OPEN 1,8,15,"Ss*=S"

CLOSE 1

With the question mark, certain characters of a file name

can be declared "not relevant". To illustrate the function

of the question mark, here are two examples of shortened

file names and their effects:

A????? - refers to a six-letter filename of which

first character is A

????TEST - refers to an eight-character filename, the

last four letters of which are TEST

A combination of asterisks and question marks is allowed.

You should notice, however, that an asterisk followed by

question marks has no meaning. Two examples of combinations
of asterisks and question marks:

????.* - refers to all file names that have four
characters before a period

TEST.??* - refers to all file names having at least 7
characters, of which the first five are
TEST .

TEST-??01*=S - refers to all sequential files whose names
have at least nine characters, the first
five being TEST- and the eighth and ninth
being 01

19

Anatomy of the 1541 Disk Drive

1.4 Sequential Data Storage

A disk drive need not be used exclusively for storing pro

grams. If you have written a program that manages a large

quantity of data, you need a fast way of organizing it.

Sequential data storage is not the fastest, but it is the

easiest method of managing data. This method is comparable

to sequential storage on a cassette, which can be maintained

in a program as such:

1. Load the program

2. Read the entire data file into the memory of the computer

3. Work with the data in memory (change, delete, combine)

4. Write the new file on an external medium (cassette,

diskette)

5. Exit the program

The maximum number of data items that the program can handle

depends on the size of the computer's memory, because a

single data item cannot be changed or erased directly on the

cassette or diskette. To that end, the entire set of data

items must be read in, changed, and then rewritten again.

Reading and rewriting the data occurs remarkably faster on a

disk drive than on cassette.

It is worth mentioning that programs which work with

sequential data on cassettes can be easily modified to work

with disk. Only the corresponding OPEN commands need be

changed.

1.4.1 The Principle

A sequential data file consists of several data records that

are further divided into fields. The following is a name and
address file and illustrates the principle of sequential

data storage. Individual names and addresses comprise the

data records of this file. A record consists of several
fields (last name, first name, etc.). The structure of the

file looks something like this:

======

Field 1 : Field 2 : Field 3 : Field 1 : Field 2 : Field 3 :

Data record 1 : Data record 2

FILE

20

Anatomy of the 1541 Disk Drive

Only two records are shown above. The data records of a file
are stored one after another (sequentially) as are the the
fields within each record. The fields and records n>ay be of
any length. For example, field 1 of record 1 may be longer
than field 1 of record 2. This is possible because the
f*!? Ure seParated from each other by a special character
(the RETURN character), which is generated by the PRINT#
statement. When read back into the computer by the INPUT#
statement, the RETURN character is recognized as a field
separator.

Each field is associated with a variable when written with a
PRINT* statement or read with an INPUT# statement.

How does the computer know, when reading the data, where
each field ends? Each field ends with a RETURN character.
The RETURN character has the decimal ASCII value 13. An
example of a telephone directory file illustrates this. Our
telephone directory file has three fields:

FIELD 1 : LAST NAME

FIELD 2 : FIRST NAME

FIELD 3 : TELEPHONE EXTENSION

Let's look at a section of this previously written file (the
character + symbolizes a RETURN):

Position: 1111111111222222222233333333334444444
1234567890123456789012345678901234567890123456

Data: SMITH+JOHN+236+LONG+TIM+121+HARRIS+SAM+654+...

You can see that the fields are of different lengths and are
all separated by a RETURN character. This RETURN character
is automatically written after the data field by a PRINT#
statement, provided the PRINT# statement is not followed by
a semicolon (which suppresses the RETURN character).

These data items are assigned to the variables with an
INPUT# statement. After that, another INPUT* must follow in
order to read the next field, and so on. The following
sections explain the fundamentals of writing programs using
sequential data storage.

1.4.2 Opening a Sequential Data File

To create a sequential data file, you must first OPEN the

file. When opening a file to be written to, the following is
carried out:

1. The diskette is checked to»see if an existing file has

21

Anatomy of the 1541 Disk Drive

the same name. If so, the error message FILE EXISTS is

given by the DOS.

2. The file entry in the directory is written. In the file
type it is noted that this file is not yet CLOSEd. This
appears in a directory listing with an asterisk which

preceeds the file type.

3. A free block is found, into which the first data items
are written. The address (track and sector) of this free

block is stored in the file entry of the directory.

4. The number of blocks in the file is set to 0, because no

blocks of the file have been written yet.

The OPEN command specifies for what purpose (mode) the file
is to be used (reading or writing). The format of the OPEN

command looks like this:

OPEN Ifn,8,sa,"filename,filetype,mode-

When the logical file number is between 1 and 127, a PRINT#
statement sends a RETURN character to the file after each
variable. If the logical file number is greater than 127
(128-255), the PRINT# statement sends an additional line
feed after each RETURN. This is necessary for printers, for

example, that do not provide an automatic line-feed after a

RETURN character.

The secondary address (sa) can be a value between 2 and 14.

The secondary address indicates the channel over which the
computer is to transfer data to and from the disk drive.

Secondary addresses 0 and 1 are reserved by the DOS for

saving and loading programs. Secondary address 15 is desig
nated as the command and error channel. Should several files

be open at once, they must all use different secondary

addresses, as only one file can use a channel. If, however,

a file is opened with the secondary address of a previously

opened file, the previous file is closed.

A maximum of 3 channels can be opened with the VIC-1541 at a

time. When utilizing relative data files, the DOS requires 2

channels per file. Therefore, the following maximum

combinations are possible:

- 1 relative and 1 sequential file

or - 3 sequential files

When specifying the filename to be written to (in the OPEN

command), you must be sure that the file name does not

already exist on the diskette. If a file that already exists

is to be to opened for writing, an at sign followed by a

colon (@:) must be placed in front of the file name (same as

in the SAVE command). For example:

22

Anatomy of the 1541 Disk Drive

OPEN 1,8,2,"SiADDRESSES,S,W"

The file type must be given when the file is opened. The
file type may be shortened to one of following:

S - sequential file

U - user file

P - program

R - relative file

User files are sequential files that are listed in the
directory with the file type USR. It is not a data file in
the true sense. This file type is usually used when output
that normally goes to the screen (BASIC listing, directory)
is sent to the disk. In section 1.4.6 you find a description
of this technique.

The last parameter (mode) establishes how the channel will
used. There are four possibilities:

W - Write a file (WRITE - section 1.4.3)
R - Read a file (READ - section 1.4.4)
A - Add to a sequential file

(APPEND - section 1.4.4)
M - read a file that has not been closed

("discovered" by us in the DOS listing and
explained in section 1.4.5)

Now open a sequential file with the name SEQU.TEST for
writing:

OPEN l,8,2,"SE0U.TEST,S,W"

If you now load the directory with LOAD"$"r8 and then LIST
it, you see this file listed with an asterisk before the
file type:

0 SEQU.TEST *SEQ

But you are no longer allowed to close this file! After a

file is OPENed and data written to it, it must be closed
before the directory is loaded!

While a file is open, the command/error channel 15 may be

opened, but when channel 15 is closed, all other channels

are closed as well. You must take note of this.

Now some examples of the OPEN command:

OPEN 1,8,2,"SEOU.TEST,S,R" - open a sequential file for

reading

OPEN 2,8,3,"SEOU.TEST,U,W" - open a user file for writing

OPEN 3,8,4,"TEST,P,R" - open a program file for

reading

23

Anatomy of the 1541 Disk Drive

OPEN 4,8,5,"SEOU.TEST,S,A" - open a sequential file for
appending data

OPEN 5,8r6,IICSTMRS.1983rS,M" - open the unclosed customer
file for reading

1.4.3 Transferring Data Between Disk and Computer

After opening a file for writing, you transfer data to be
stored to the diskette with the PPINT# statement. This
statement transmits an additional RETURN that is required
for separating data. In the following example, a file is
OPENed, data written to it, and CLOSEd again. PRINT* cen

also be used as a direct command, that is, outside of the
program, so the following commands can be typed one after

the other and executed. Now open a file with the name

"TEST":

OPEN 1,8,2,"TEST,S,W

You should notice that the red LED on the disk drive was
lit. It signals the fact that a file was OPENed. You can now

write to the file named TEST. Here is how we would write a

name and address record consisting of 4 fields:

PRINT*1,"SAM"

PRINT#1,"HARRIS"

PRINT#l,"2001 MAIN STREET"

PRINT#1,"ANYTOWN"

Now these data items have been written to the file so we can

close the file with CLOSE 1. The red LED should go out. In

order to read this data again, you must open the file in the

read mode (R). Because the INPUT# statement cannot be used

directly, a small program must be written:

10 OPEN 1,8,2,"TEST,S,R"

20 INPUT*1,FN$

30 INPUT*1,LN$

40 INPUT*1,ST$

50 INPUT*1,CT$

60 CLOSE 1

70 PRINT"FIRST NAME: ";FN$

80 PRINT"LAST NAME: ";LN$

90 PRINT"STREET: ";ST$

100 PRINT"CITY: ";CT$

The program is simple to explain:

Line 10 The file TEST is opened for reading

24

Anatomy of the 1541 Disk Drive

Lines 20-50 The data are read in the same order as they
were written. Variables are used so that the

data can be printed later.

Line 60 The file is closed.

Lines 70-100 The data are printed out on the screen.

When you enter this program and type RUN, the data will
appear as written earlier, on the screen:

FIRST NAME: SAM

LAST NAME: HARRIS

STREET: 2001 MAIN STREET

CITY: ANYTOWN

Four INPUT* statements were used to read the data because
the name and address record is composed of four fields. But
when a record is written that has, say, 20 fields, it is
very time-consuming to type out 20 INPUT# statements. A loop
can make this much simpler. This is obvious in this example:

10 OPEN l,8,2,nTEST,S,Rn
20 FOR 1=1 TO 4

30 INPUT#1,D$(I)

40 NEXT I

50 CLOSE 1

60 PRINT"FIRST NAME: ";D$(1)

70 PRINTnLAST NAME: H;D$(2)

80 PRINT"STREET: ";D$(3)

90 PRINT"CITY: ";D$(4)

Here, instead of four separate string variables, an array
with index 1-4 is used. It should be noted that in BASIC
2.0, if an index higher than 10 is used, the array must be
dimensioned with a DIM statement. Should we want to read in
20 fields, the statement DIM D$(20) must be given before any
are read.

There are still more ways of shortening input and output of
data. With the INPUT statement for keyboard input, several
variables can be given in one line, separated by commas. For
example:

INPUT FN$,LN$,TE

With this statement, three variables must be entered, such
as:

NICHOLAS,MULLER,7465

The read data can be printed on the screen with:

PRINT FN$,LN$,TE

25

Anatomy of the 1541 Disk Drive

In this manner, sequential data can be written and later

read back in again. The only difference is that the string
variables containing the data to be written must be
separated by commas enclosed in quotes. For example, if you

wish to write the previous variables to a file, the PRINT#

statement command must changed as follows:

PRINTt1,FN$"r"LN$","TE

Numeric variables need only be separated with a comma from

the other variables. To read the data, use the command:

INPUT#1,FV$,LN$,TE

Because the maximum number of characters read by an INPUT!

statement may not exceed 88, this method of reading is only
marginally useful. If a field in a record is more than 88

characters long, a different statement must be used. This is
the GET# statement, which reads each individual character,

one at a time. Suppose you want to read a record of which a
field is 100 characters long. This record can be placed in a

string variable with the following routine:

10 OPEN 1,8,

20 D$=""

30 FOR 1=1 TO 100

40 GET#1,X$

50 D$=D$+X$

60 NEXT I

70 GET#1,X$

80 CLOSE 1

At the end of this program, the string variable D$ will

contain the 100 characters of the data field. After opening

a sequential data file, the DOS establishes1a pointer that
always points to next character to be read. We assume that

the data was written with a PRINT# statement without a

trailing semicolon, so that a RETURN was written at the end

of the data item. After reading the first 100 characters,

the pointer points to this RETURN. The next GET# in line 70

is necessary to read the RETURN found at the end of the

field. Then the next GET# statement can read the next field

and not the RETURN.

In the above example, we used data records with a constant

length of 100 characters. According to the rules of sequen

tial access, the length of data records need not be con

stant. Since the INPUT! statement can only read a maximum of

88 characters, we will use the GET# statement to recognize

the RETURN as the end of a field. Such a routine looks like

this:

10 OPEN 1,8,

20 S$=M"

30 GET#1,X$

40 IF X$=CHR$(13) THEN 80

26

Anatomy of the 1541 Disk Drive

50 S$=S$+X$

60 IF STO64 THEN 30

70 CLOSE 1:END

80 PRINT S$

90 GOTO 20

Here a file with variable record length is read and printed
on the screen. Naturally, you can use the data in other ways
instead of printing it on the screen.

To avoid the problem of reading data records of more than 88
characters, divide the record into several parts, which you
can combine after reading them.

1.4.4 Adding Data to Sequential Piles

If you want to add data to a sequential file, you have to
read the entire file into memory, add the data, and write
the new file back to the diskette again. This is a very
time-consuming process. For this reason, the DOS offers an
easier alternative to add to a sequential data file without
reading the entire file. This is made possible through the
OPEN mode A (Append). If you have a sequential data file, as
in the previous section, you can add data to it by selecting
the A mode in the OPEN command. An example follows.

Give the following commands:

OPEN 1,8,2,"TEST2,S,W"

PRINT#1,"1. DATA RECORD"

CLOSE 1

Now you have a sequential data file containing one data

record. This file can be expanded with two more records as
follows:

OPEN 1,8,2,IITEST2,S,AM

PRINT#1,"2. DATA RECORD"

PRINT#1,"3. DATA RECORD"

CLOSE 1

Now the file TEST2 has three data records. You can check
this with the following program:

100 OPEN 1,8,2,"TEST2,S,R"

110 FOR 1=1 TO 3

120 INPUT#1,DR$

130 PRINT DR$

140 NEXT I

150 CLOSE 1

After the program starts, the data records is read and

printed on the screen.

27

Anatomy of the 1541 Disk Drive

You can see that the append A mode makes it quick and easy

to expand a sequential data files.

1.4.5 Closing a Sequential File

OPENed data files can be closed with the CLOSE command. This

command has the format:

CLOSE lfn

The parameter lfn is the logical file number of the file

that was used in the OPEN statement. Should several files

need to be closed a CLOSE statement roust be given for each

one. When the last file is closed, the red LED on the drive

goes out.

As you already know, data is sent to the disk drive over a

channel. This channel uses storage inside the disk (called a

buffer) in which the data transmitted by the computer is

stored. When this buffer is full, its contents are written

to the diskette.

When the file is closed, any data still in the buffer is

written to the diskette. An unclosed file is incomplete and

is also not recognized by the DOS as a properly closed file.

The DOS allows no read access in the R (Read) mode and

responds WRITE FILE OPEN when trying to read an unclosed

file.

This could be a problem if the DOS did not allow read access

to a file. For this reason, the DOS offers the M mode. A

file that is marked as an improperly closed file can be read

in this mode. It is logical to then write these records to a

second file which can then be properly closed. In this way

one can "rescue" a file.

The following program will transfer an improperly closed

file (original file) to a correctly closed file (destination

file):

100 INPUT"ORIGINAL FILE NAME";S$

110 INPUT"DESTINATION FILE NAME";D$

120 OPEN 1,8,2,S$+",S,M"

130 OPEN 2,8,3,D$+",S,W"

140 INPUT#1,X$

150 PRINT#2,X$

160 IF STO64 THEN 140

170 CLOSE 1:CLOSE 2

180 OPEN 1,8,15,"S:"+S$

190 CLOSE 1

At the completion of the program, the unneeded original file

28

Anatomy of the 1541 Disk Drive

is deleted (scratched).

1.4.6 Redirecting the Screen Output

Any output appearing on the video screen (PRINTr LIST, etc)
can be redirected to a sequential data file. This is accon-
plished through the CMD command, which has the following
format:

CMD lfn

For this to occur, a file of type USR must be opened. To
$""??r1 % BASIC program listing, for instance, as a
sequential file on diskette, use the following commands:

OPEN 1,8,2,"TEST.LIST,U,WM

CMD 1

LIST

CLOSE 1

The command CLOSE 1 causes further output to be sent to the
screen.

Storing a program as a sequential file on disk is very
useful, if, for example, you would like to read a program
with a word processor to edit it. it is assumed that the
word processor in this case reads data stored in ASCII code.

This is how the listings in this book were transferred from
a Commodore 64 to a Commodore 8032.

In order to print this file on the screen again, you need
the following routine:

10 OPEN 1,8,2,"TEST.LIST,U,R"
20 GET#1,X$

30 PRINT X$

40 IF STO64 THEN 20

50 CLOSE 1

This routine is a loop that reads every character (byte) of
the file and displays it on the screen. The end of the file
is signalled by the status variable which is set to 64 at
the end. To send a sequential file to the printer, use the
following program:

10 OPEN 1,8,2,"TEST.LIST,U,R"

20 OPEN 2,4

30 GET#1,X$

40 PRINT#2,X$

50 IF STO64 THEN 30

60 CLOSE 1

29

Anatomy of the 1541 Disk Drive

Here it assumed that the printer is connected as device

address 4.

1.4.7 Sequential Files as Tables in the Computer

Sequential data files must reside completely in the computer
for data management. Most of the time, a two dimensional
table can be used. This table is also called an array or

matrix, because a data element can be addressed through the
input of two coordinates. To this end, you use a two dimen
sional variable, which must be reserved with a DIM state
ment. The first dimension corresponds to the data record,
the second dimension to the field inside the record. The
following diagram shows an example of a table:

Field 1 Field 2 Field 3
,1 11

Record 1 11 D$(l,l) 1! D$(l,2) 11 D$(l,3) 11
r 1!

Record 2 11 D$(2,l) 11 D$(2,2) 11 D$(l,3) 1!
^ 11

Record 3 1! D$(3,l) 11 D$(3,2) 11 D$(3,3) 11
, 11

Record 4 11 D$(4,l) 1! D$(4,2) 11 D$(4,3) 11
j 11

Record 5 11 D$(5,l) 11 D$(5,2) 11 D$(5,3) 11
1(11

Record 6 1! D$(6,l) 11 D$(6,2) 11 D$(6,3) 11
1, _ 11

This table is a file composed of six records which have

three fields each. The variable D$ is reserved with DIM

D$(6,3). To read a sequential file as a table, it is
necessary to create such a file with, for example, six
records with three fields each. For this purpose, use the

following program:

100 OPEN lf8r2fMTABFILE,SrW"

110 FOR X=l TO 6

120 PRINT CHP$(147)

130 PRINT"RECORD ";X

140 PRINT" "

150 FOR Y=l TO 3

160 PRINTHFIELD ";Y;M: " ?

170 INPUT X$

180 PRINT#1,X$

190 NEXT Y

200 NEXT X

.2101 CLOSE 1

Two nested loops are used here, whose variables are numbered

with the record and field. Enter six data records. When the

program is done, these records will be contained on the

30

Anatomy of the 1541 Disk Drive

diskette with the filename of TABFILE. A tip: save this
program with SAVE"TABPROG",8 so you can use it later.

This file can now be loaded into the computer as a table.
Two nested loops indexed for the table are necessary:

100 OPEN l,8,2r"TABFILE.SEO,SfR11

110 DIM D$(6r3)

120 FOR X=l TO 6

130 FOR Y=l TO 3

140 INPUT#1,D$(X,Y)

150 NEXT Y

160 NEXT X

170 CLOSE 1

This program places data into the table. You can check this
with a PRINT statements, to see if the data has been stored
in the right place. Because each field can be addressed with
indices, you can give a command like PRINT D$(l,2) to see
the second field of record one. It is meaningful to be able
to display the fields of a given record. Use the following
routine for this purpose, after you have saved the previous
program:

100 INPUT"RECORD NUMBER: ";X
110 PRINT" "

120 PRINT"FIELD 1: "?D$(X,1)

130 PRINT"FIELD 2: n;D$(X,2)

140 PRINT"FIELD 3: ";D$(X,3)

Notice that the first index (the record number) after the
question is used as the variable in the field output. The
second index (field number) is then constant.

This table can now be altered as desired. Add the following
lines to the preceeding program:

160 PRINT"- »

170 INPUT"FIELD TO CHANGE:";Y

180 INPUT"NEW CONTENTS: ";D$(X,Y)
190 PRINT"OK"

200 PRINT"FURTHER CHANGES (Y/N)?"

210 GET X$:IF X$="" THEN 210

220 IF X$="Y" THEN 100

230 IF X$="N" THEN END

240 GOTO 210

Here the number of the field to be changed is used as the
second index, which is adjacent to the index of the desired
record to input the new table element.

This modified table must now be written to the diskette
again. You can use the following routine. Don't forget to
save the previous edit program first!

31

Anatomy of the 1541 Disk Drive

100 OPEN 1,8,2,"@:TABFILE,S,W"

110 FOR X=l TO 6

120 FOP Y=l TO 3

130 PRINT#lrD$(XfY)

140 NEXT Y

150 NEXT X

160 CLOSE 1

This routine also is relatively short because of the use of

nested loops. The @: in line 10 is necessary in order to

overwrite the existing file.

Accessing data through the use of the table is very fast.

The access time is independent of the size of the table. The

size of the table and therefore the quantity of data is

dependent on the memory capacity of the computer, however.

The large storage area of the Commodore 64 is excellent for

table management. If you write a data management program

that occupies 8K bytes, then 30K bytes still remain for

storing data. If you consider that storing a name and

address record of about 80 characters, you can still store

384 records in memory! And this with an access time that

cannot be surpassed by refined data management techniques

(indexed sequential, relative). But with larger quantities

of data, sequential storage is no longer feasible.

1.4.8 Searching Tables

As mentioned in the table processing section, each data

record of a table can be indexed. Because the table is two

dimensional, the first index selects the data record. If a

record of the table is to be changed or accessed, the

operator must know the record number. The record number can

be a part or customer number. There are files, however, for

which there is no suitable method of numbering. In such

files, the number of the record must be found through a

search of all the records. Here is a practical example:

First of all, create a data file with the following program.

Names and telephone numbers are saved in the example:

100 OPEN l,8,2,nTELEDAT,S,W"

110 PRINT CHR$(147)

120 INPUT"LAST NAME :";LN$

130 INPUT"FIRST NAME :";FN$

140 INPUT"AREA CODE :";AC$

150 INPUT"NUMBER :";NU$

160 PRINT"INFORMATION CORRECT (Y/N)?11

170 GETX$:IF X$="" OR X$O"Y" AND X$O"N" THEN 170

180 IF X$="N" THEN 110

190 PRINT#1,LN$","FN$IVIAC$",IINU$

32

Anatomy of the 1541 Disk Drive

200 PRINT"MORE INPUT (Y/N)?11

210 GETX$:IF X$=IIM OR X$O"Y" AND X$O"N" THEN 200
220 IF X$=MN" THEN 240
230 GOTO 110

240 CLOSE 1

Program Documentation:

Line 100 The sequential file "TELEDAT" is opened for
writing

Line 110 The screen is cleared

Lines 120-150 The four fields are entered from the keyboard

Lines 160-180 If the data are not correct, they can entered
again

Line 190 The four fields are written to disk

Lines 200-220 Here the execution of the program can be
ended

Line 230 Input will be continued

Line 240 The file opened in line 100 is closed

Type this program inf RUN it, and enter some data. Save the
the program on diskette, so you can combine it with other
routines later if you like, in the last section of this
chapter, is a complete program for managing your telephone
numbers.

If you have entered some data, you would probably like to
find a telephone number. To do so, you could print the
entire file on the screen or printer and find it yourself.
This is, however, a wasteful method, especially if you have
entered many records.

The search for the telephone number corresponding to a given
name can be performed by the computer. It runs through the
whole list, looking for the desired name. Once found, it
gives you the complete record which contained that name. The
following routine accomplishes this:

100 OPEN 1,8,2,"TELEDAT,S,R"
110 DIM D$(100,4):X=1

120 INPUT#1,D$(X,1),D$(X,2),D$(X,3),D$(X,4)
130 IF STO64 THEN X=X+1:GOTO 120
140 CLOSE 1

150 PRINT CHR$(147)

160 PRINT"DESIRED NAME: n;N$
170 FOR 1=1 TO X

180 ID D$(I,1)=N$ THEN 210
190 NEXT I

33

Anatomy of the 1541 Disk Drive

200 PRINT"NAME NOT FOUND!":GOTO 280

210 PRINT"NAME FOUND:11

220 PRINT" "
230 PRINT"LAST NAME: "?D$(I,1)

240 PRINT"FIRST NAME: n;D$(I,2)
250 PRINT"AREA CODE: ";D$(I,3)
260 PRINT"NUMBER: ";D$(I,4)

270 PRINT" "
280 PRINT"MORE (Y/N)?"
290 GETX$:IF X$=IMt OR X$OIIY11 AND X$O"N11 THEN 290

300 IF X$= ttY" THEN 150

310 PRINT"PROGRAM DONE":END

Program Documentation

Line 100 The sequential file "TELEDAT" is opened for

reading

Line 110 The table is dimensioned for 100 records and

the index is set to one

Line 120 The data records are read into the table

Line 130 The status variable ST is checked for end of
file (indicated by a value of 64). If the

end has not been reached, the index is
incremented and a new record is read.

Line 140 The file opened in line 100 is closed

Line 150 The screen is cleared

Line 160 The last name to be searched for is read from
the keyboard and placed in the variable N$

Lines 170-190 The loop searches the table of records,
checking the name fields against the desired

name. If the position is found, the program

branches to the output routine

Line 200 The name was not found

Lines 210-270 The record containing the desired name is

displayed

Lines 280-310 The possibility to search for a new name is

allowed

You will notice that this search is quite fast when the data

is already loaded into the computer. Searching the

computer's memory is faster than searching the diskette. The

program can be easily changed to search for a desired field

other than the name. You might want to search for an area

code, for instance. The first program stops the search when

the first matching data record is found. This is not always

34

Anatomy of the 1541 Disk Drive

desired, however. If, for instance, you wish to search the
table looking for a particular area code and want all
matches to be displayed, a different routine is needed. The
routine must continue the search after the first match is
found. The next program takes care of this:

100 OPEN 1,8,2,"TELEDAT,S,RM
110 DIM D$(100,4):X=1

120 INPUT#1,D$(X,1),D$(X,2),D$(X,3),D$(X,4)
130 IP STO64 THEN X=X+1:GOTO 120
140 CLOSE 1

150 PRINT CHR$(147)

160 PRINT"AREA CODE TO SEARCH FOR: ";AC$
170 FOR 1=1 TO X

180 IF D$(I,3)=AC$ THEN 210
190 NEXT I

200 PRINTMEND OF DATA!":GOTO 270
210 PRINT" »

220 PRINT"LAST NAME: ";D$(I,i)
230 PRINT"FIRST NAME: ";D$(I,2)
240 PRINT"AREA CODE: ";D$(I,3)
250 PRINT"NUMBER: n;D$(I,4)
260 PRINT" •»

270 PRINT"MORE (Y/N)?n

280 GETX$:IF X$="" OR X$<>"Y" AND X$O"N" THEN 280
290 IF X$="Y" THEN 190

300 PRINT"SEARCH DONE!":END

Here the search is continued if a record with the
appropriate area code is found. This happens in line 290,
which branches back to the loop instead of ending the
program. After searching all of the records, the program
responds END OF DATA. If you understand the operation of
this program, you can now develop a search for the last
name. With the help of the previous programs, this should
present no difficulty.

1.4.9 Simple Sorting of Tables

In data processing, it is often necessary to sort data into
numeric or alphabetic order. This has always been a time
consuming task, which the programmer has tried to shorten ty
using better sorting methods. Sorting is certainly a time
consuming task when performed with the programming language
BASIC, which is relatively slow.

Why should we sort the data at all? Suppose you had a
telephone book in which the names were not ordered, you
would have search the entire book from beginning to end to

find a name. Sorting offers advantages when searching data.
The computer can also search sorted data faster.

35

Anatomy of the 1541 Disk Drive

There are several search methods which differ mainly in
their speed of execution. The simplest method compares each
data item with every other. If a table is supposed to be
sorted in ascending order, the first item in the table is
compared to the second. If the first is greater, it is
exchanged with the second. After that, the first will be
compared to the third, and so on, until the last item is
reached. Now the smallest item is at the beginning, in the
right place. The next time through, the first item is no
longer needed. A flowchart of the program logic appears

below.

TA(O)=TA(I)

TA(I)=TA(X)

TA(X)=TA(O)

1

36

Anatomy of the 1541 Disk Drive

This sort program starts using an index of 1, which is
stored in the variable I. The second index is the variable
X, which receives a value one greater than I. Then the first
item is compared to the second. If the value of TA(I) is
greater then TA(X), the program must use a temporary
variable, TA(0), to make the exchange between the two. After
this, the value of X is incremented, to three, and TA(I) is
again compared to TA(X), etc. When the last item in the
table is reached, (X > last index), the first item will be
the smallest, and the index I is incremented by one. Now the
second item is compared to every other (starting with the
third), and so on.

This sort method looks quite complicated at first glance.
Comparisons in memory are done relatively quickly, however.
This method is sufficient for small quantities of data.

In order to run this program, a table must be built. This
example uses a table with twelve items containing alpha
numeric data (strings). The table is filled by the following
routine:

100 DIM TA$(12)

. 110 FOR 1=1 TO 12

120 INPUT TA$(I)

130 NEXT I

This program allows you to enter twelve strings, which are
then sorted with the following program:

140 1=1

150 X=I+1

160 IF TA$(I) < TA$(X) THEN 180

170 TA$(0)=TA$(I):TA$(I)=TA$(X):TA$(X)=TA$(0)
180 X=X+1

190 IF X <= 12 THEN 160
200 1=1+1

210 IF I <> 12 THEN 150

220 FOP 1=1 TO 12

230 PPINT TA$(12)

240 NEXT I

The table is sorted and displayed on the screen. If, instead
of a one dimensional table, you want to sort a two
dimensional table such as our telephone file, exchange the
fields by changing lines 160-170 as below:

160 IF D$(I,1) < D$(X,1) THEN 180

170 D$(0,l)=D$(I,l):D$(I,l)=D$(X,l):
D$(X,l)=D$(0,l)

171 D$(0,2)=D$(I,2):D$(I,2)=D$(X,2):
D$(X,2)=D$(0,2)

172 D$(0,3)=D$(I,3):D$(I,3)=D$(X,3):
D$(X,3)=D$(0,3)

173 D$(0,4)=D$(I,4):D$(I,4)=D$(X,4):
D$(X,4)=D$(0,4)

37

Anatomy of the 1541 Disk Drive

It is very time consuming to sort a greater amount of data

with this method. If you have a large amount of data to be

sorted, we recommend that you use the very fast machine
language sort routine from our book Commodore 64 Tips &

Tricks.

1.4.10 NAILING LIST MANAGEMENT with Sequential Data Storage

At the end of this section, is a mailing list management

program that every user will hopefully find easy to use. At

the same time, this program provides insight into the opera

tion of many data processing techniques.

A mailing list record of this program consists of the

following fields:

- NAME 1

- NAME 2

- STREET

- CITY, STATE

- ZIP CODE

- TELEPHONE NUMBER

- NOTES

The use of the fields 'NAME I1 and 'NAME 21 are up to the

user. For instance, "NAME I1 can be the first name and 'NAME
2' the last name, or 'NAME 1' the company name and "to the

attention of..." in 'NAME 2'. The field 'NOTES' can be used
for grouping the addresses (family, business, friends,

etc.).

The program offers the following Main Menu options:

-1- LOAD DATA

-2- SAVE DATA

-3- INPUT DATA

-4- EDIT DATA

-5- SELECT/PRINT DATA

-6- DELETE DATA

-0- END PROGRAM

-1- LOAD DATA

Use this function to enter the name of the mailing list
file that is to be maintained. If the file exists on the

diskette, it is loaded and ready to be used. The number
of records in the file is displayed. If an error is
encountered while loading, or if the file does not exist,
the message DISK ERROR! is displayed. At the conclusion
of this function, the Main Menu reappears.

38

Anatomy of the 1541 Disk Drive

-2- SAVE DATA

Use this function to write an updated or expanded copy of
the mailing list to the diskette. If the file name
already exists, then the file is overwritten.

The mailing list should be saved often while using the
program in case a power outage should erase the

computer's memory. After saving, the file can be used
further, without having to reload it in again.

-3- INPUT DATA

Use this function to add records to the mailing list:

1. When no data has been previously loaded.

First a file name for the mailing list is entered.
Enter a file name which does not already exist on the

diskette or the old file is overwritten. All records
that are inputted are new to the mailing list.

2. When data has been previously loaded.

All records that are inputted are added to the
existing mailing list.

After entering an mailing list entry, the message CORRECT

(Y/N)? is displayed. Here you may correct the data. If
the entry is not correct, press the N key. If the entry
is correct, press Y. Now the message MORE INPUT (Y/N)? is
displayed. If you want to enter another mailing list
entry, press Y. If you press N, the Main Menu appears
again.

-4- EDIT DATA

Use this function to change existing mailing list rec
ords. Both Name 1 and Name 2 must be entered. If both
names are not known, the other can be found with the

SELECT/PRINT DATA routine. After entering the names, the
mailing list is searched fo^r matching names. When they
are found, the complete address is displayed with the
fields numbered. Now you must enter the number of the
field which you want to change. The new contents are
requested. The record is once again displayed in its
updated form. If no more changes to this record are
required, press 9. The program asks if another record is
to be changed. This question is to be answered by
pressing Y or N.

39

Anatomy of the 1541 Disk Drive

-5- SELECT/PRINT DATA

Use this function to search for certain records and print

or display them. You must first specify if the selected

records are to be printed on the screen (S) or the

printer (P). If you have selected the printer, you must

again choose if the data is to be printed with all fields

on normal paper (P), or if fields 1-5 are to be printed

on mailing labels (M). The address labels must be in a

single column and measure 89mm x 36mm.

In order to select the data, enter search criteria. For

fields which are not relevant, simply press RETURN. If,

for example, you want to find all addresses in Grand

Rapids, press RETURN for the first three fields and type

GRAND RAPIDS, MI for the fourth, and press RETURN for the

next three.

An example:

NAME 1 : M

NAME 2 : <return>

STREET : <return>

CITY, STATE : <return>

ZIP CODE : <return>

TELEPHONE NUMBER : <return>

NOTES : FAMILY

All family members whose name 1 begins with 'M1 will be

displayed.

You can see how versatile this search is. Try it out

yourself.

-6- DELETE DATA

Use this function to delete records. After entering the

first and second names of the record, the record is read

and the remaining fields are displayed. Then you are

asked to confirm that the record is to be deleted. If you

press Y, the record is deleted.

-0- END PROGRAM

Use this function to leave the program. Before the

program is ended, you are reminded that you can restart

the program without losing data by typing GOTO 110. This

is important if you forget to save the data before ending

the program.

40

Anatomy of the 1541 Disk Drive

Here is the program listing:

100 POKE 53280f5:POKE53281,2:PRINTCHR$(158);:DIMD$(100,7)
110 GOSUB2030

120 PRINTMSELECT THE DESIRED FUNCTION:"
130 PRINT" • " :PRINT

140 PRINT" -1- LOAD DATA"

150 PRINT" -2- SAVE DATA"

160 PRINT" -3- INPUT DATA"

170 PRINT" -4- EDIT DATA"

180 PRINT" -5- SELECT/PRINT DATA"
190 PRINT" -6- DELETE DATA":PRINT
200 PRINT" -0- END PROGRAM"
210 PRINT

220 PRINT" CHOICE (0-6)?"

230 GETX$:IFX$<"0"ORX$>"6"THEN230
240 IF X$O"0"THEN340

250 PRINT:PRINT" ARE YOU SURE (Y/N)?"

260 GETX$:IFX$<>"N"ANDX$<>"YIITHEN260
270 IFX$="N"THEN110
280 GOSUB2030

290 PRINT"THE PROGRAM CAN BE RESTARTED WITH
300 PRINT" 'GOTO 1101"

310 PRINT" WITHOUT LOSS OF DATA"
330 END

340 ONVAL(X$)GOSUB360,540,680,880,1190,1770
350 GOTO 110

360 REM *********

370 REM LOAD DATA

380 REM *********

390 GOSUB 2030

400 INPUT"NAME THE FILE :";FN$

410 OPEN 15,8,15

420 OPEN1,8,2,FN$+",S,R"

430 INPUT#15,FE:IF FE=0 THEN 460
440 PRINT"DISK ERROR!"

450 GOTO 510

460 X=l

470 INPUT#1,D$(X,1),D$(X,2),D$(X,3),D$(X,4),D$(X,5),D$(X,6),
D$(X,7)

480 IF STO64 THEN X=X+1 :GOTO470

490 PRINT"FILE IS LOADED AND CONTAINS";X;"RECORDS."
500 PRINT

510 CLOSE:CLOSE15

520 PRINT"RETURN FOR MORE"

530 INPUTX$:RETURN

540 REM *********

550 REM SAVE DATA

560 REM *********

570 IF X>0 THEN 590

580 GOSUB2230:RETURN

590 GOSUB 2030

600 OPEN 1,8,2,"@:"+FN$+",S,W"

610 FORI=1TOX

620 PRI NT# 1, D$ (1,1) " , " D$ (1,2) " , " D$ (1,3) ;

41

Anatomy of the 1541 Disk Drive

630 PRINT#1,D$(I,4)","D$(I,5)","D$(I,6)","D$(I,7)

640 NEXT

650 PRINT"DATA IS SAVED":CLOSE1:RETURN

660 PRINT"RETURN FOR MORE"

670 INPUTX$:RETURN

680 REM **********

690 REM INPUT DATA

700 REM **********

710 IFX>0THEN730

720 GOSUB2030:INPUT"FILENAME ";FN$

7 30 X=X+1

740 GOSUB2030

750 PRINT"INPUT DATA:"

760 PRINT" ":PRINT

770 I=X:GOSUB2110

780 FORI=1TO7:PRINTCHR$(145) ; :NEXT

790 FORI=1TO7:PRINTTAB(12);:INPUTD$(X,I):NEXT

800 PRINT:PRINT"CORRECT (Y/N)?"

810 GETX$:IFX$<>"N"ANDX$O"YtITHEN810

820 IFX$="Y"THEN840

830 GOTO 740

840 PRINT"MORE INPUT (Y/N)?"
850 GETX$:IFX$O"N"ANDX$OIIYIITHEN850

860 IFX$="Y"THEN730

870 RETURN

880 REM *********

890 REM EDIT DATA

900 REM *********

910 IF X>0THEN930

920 GOSUB2230:RETURN

930 GOSUB2030

940 INPUT"NAME 1: ";Nl$

950 INPUT"NAME 2: ";N2$

960 FORI=1TOX
970 IF D$(I,l)=Nl$ANDD$(I,2)=N2$THEN1010

980 NEXTI

990 PRINT"NAME NOT FOUND!"

1000 PRINT"RETURN FOR MORE":INPUTX$:RETURN

1010 GOSUB2030

1020 PRINT"-1- NAME 1 :";D$(I,1)

1030 PRINT"-2- NAME 2 :";D$(If2)

1040 PRINT"-3- STREET :";D$(I,3)

1050 PRINT"-4- CITY, STATE :";D$(I,4)

1060 PRINT"-5- ZIP CODE :";D$(I,5)

1070 PRINT"-6- TELEPHONE :";D$(If6)

1080 PRINT"-7- NOTES :"?D$(I,7)

1090 PRINT"NO. OF FIELD TO CHANGE: ":PRINT"(9=NO

CHANGES)"

1100 GETX$:IFVAL(X$)<10RVAL(X$)>7ANDVAL(X$)09THEN1100

1110 IFVAL(X$)=9THEN1150

1120 Y=VAL(X$)

1130 INPUT"NEW CONTENTS";D$(I,Y):PRINT

1140 GOTO 1010

1150 PRINT"MORE CHANGES (Y/N)?"

1160 GETX$:IFX$<>"Y"ANDX$<>"N"THEN1160

42

Anatomy of the 1541 Disk Drive

1170 IFX$="YMTHEN880
1180 RETURN

1190 REM *****************

1200 REM SELECT/PRINT DATA
1210 REM *****************

1220 IF X>0THEN1240

1230 GOSUB2230:RETURN

1240 GOSUB2030:PRINTnOUTPUT TO PRINTER (P) OR SCREEN (S)?"
1250 GETX$:IFX$<>nS"ANDX$OltP"THEN1250
1260 O$=X$:IFO$="SMTHEN1300
1270 PRINT:PRINT"PAPER (P) OR MAILING LABELS (M)?"
1280 GETX$:IFX$<>"P"ANDX$OIIM"THEN1280
1290 D$=X$

1300 GOSUB2030

1310 PRINT"ENTER THE SEARCH DATA:"

1320 PRINT"PRESS RETURN BY IRRELEVANT FIELDS."
1330 PRINT" •• .pRTNT

1340 I=0:GOSUB2110

1350 FORI=1TO7:PRINTCHR$(145);:S$(I)="":NEXT
1360 FORI=1TO7:PRINTTAB(12);:INPUTS$(I):NEXT
1370 IFO$="S"ORD$="M"THEN1450
1380 GOSUB2030:PRINT"PRINTER READY (Y)?M
1390 GETX$:IFX$O"Y"THEN1390
1400 OPEN 1,4

1410 PRINT#lr"NAME 1";SPC(8);"NAME 2";SPC(8);"STREET";
SPC(IO);

1420 PRINT#1,"CITY, STATE";SPC(4);"ZIP CODE TELEPHONE NOTES"
1430 FORI=lTO79:PRINT#lf"=";:NEXT:PRINT#l
1440 CLOSE1

1450 FORI=1TOX

1460 FORY=1TO7

1470 IFS$(Y)=LEFT$(D$(I,Y),LEN(S$(Y)))THEN2=Z+1:GOTO1480
1480 NEXTY

1490 IFZ=7THENGOSUB1550
1500 Z=0:NEXTI

1510 PRINT:PRINT"END OF DATA!":PRINT
1520 PRINT"RETURN FOR MORE":PRINT
1530 INPUTXS

1540 RETURN

1550 IFO$="S"THEN1730

1560 IFD$="M"THEN1670

1570 OPENlf4

1580 PRINT#l,D$(Ifl);SPC(14-LEN(D$(I,l)));

1590 PRINT#1,D$(I,2);SPC(14-LEN(D$(I,2)));

1600 PRINT#l,D$(If3);SPC(16-LEN(D$(I,3)));
1610 PRINT#1, D$(1,4);SPC(15-LEN(D$(1,4)));

1620 PRINT#1,D$(I,5);SPC(8-LEN(D$(I,5)));

1630 PRINT#1,D$(I,6);SPC(12-LEN(D$(I,6)));
1640 PRINT#1,D$(I,7)

1650 PRINT#1:CLOSE1

1660 RETURN

1670 OPEN2,4

1680 PRINT#2

1690 FORJ=lTO5:PRINT#2,D$(IrJ):NEXT

1700 PRINT#2:PRINT#2:PRINT#2

43

Anatomy of the 1541 Disk Drive

1710 CLOSE2

17 20 RETURN

1730 GOSUB2030:GOSUB2110

1740 PRINT:PRINT"MORE (Y)?M

1750 GETX$:IFX$O"YllTHEN1750

1760 RETURN

1770 REM ***********

1780 REM DELETE DATA

1790 REM ***********

1800 IFX>OTHEN182O

1810 GOSUB2230:RETURN

1820 GOSUB2030

1830 INPUT"NAME 1 : ";N1$
1840 INPUT"NAME 2 : ";N2$

1850 FORI=1TOX
1860 IFD$(I,l)=Nl$ANDD$(I,2)=N2$THEN1900

1870 NEXTI

1880 PRINTMNAME NOT FOUND!":PRINT

1890 PRINT"RETURN FOR MORE":INPUTX$:RETURN

1900 GOSUB2030:GOSUB2110

1910 PRINT:PRINT"DELETE RECORD (Y/N)?"
1920 GETX$:IFX$OfIY"ANDX$OIIN"THEN1920

1930 IFX$="N"THENRETURN

1940 FORY=ITOX-1

1950 FORJ=1TO6

1960 D$(Y,J)=D$(Y+1,J)

1970 NEXTJ,Y

1980 FORJ=1TO6:D$(X,J)="":NEXTJ

1990 X=X-1

2000 PRINT"RECORD IS DELETED!"

2010 PRINT"RETURN FOR MORE"

2020 INPUTXS:RETURN

2030 REM ***************

2040 REM PROGRAM HEADING

2050 REM ***************

2060 PRINTCHR$(147);

2070 PRINTTAB(8);"======================="

2080 PRINTTAB(8);"M AILING LIST

2090 PRINTTAB(8);"======================="

2100 RETURN

2110 REM ************

2120 REM PRINT RECORD

2130 REM ************

2140 PRINT"NAME 1 : ";D$(I,D

2150 PRINT"NAME 2 : "?D$(I,2)

2160 PRINT"STREET : ";D$(I,3)

2170 PRINT"CITY, STATE : N;D$(I,4)

2180 PRINT"ZIP CODE : n;D$(If5)

2190 PRINT"TELEPHONE : ";D$(I,6)

2200 PRINT"NOTES : ";D$(I,7)

2220 RETURN

2230 REM ********

2240 REM NO DATA!

2250 REM ********

2260 GOSUB2030

44

Anatomy of the 1541 Disk Drive

2270 PRINT"NO DATA IN MEMORY!":PRINT

2280 PRINT"RETURN FOR MORE"
2290 INPUTXS:RETURN

1.4.11 Uses for Sequential Storage

The great advantage of sequential storage as compared to
relative and direct access storage, is that a lot of data
can be written to the diskette quickly. Data of varying
lengths can be stored together, without requiring the rec
ords to be of a definite length. It makes sense to make use
of this advantage, where the the file must not be
permanently divided into parts. Examples are:

* Bookkeeping files

In a bookkeeping journal, all entries are recorded
continuously. Changes should not be made to these
entries. Instead, adjustment entries should be made
to effect changes.

* Analysis files

You analyze a direct access file, looking for, say, all
customers with whom you have done more than 2000

dollars of business in a certain zip code, and write
the found records in a sequential file for later
access.

Naturally, sequential files also offer a substitute for

direct access files, as discussed in this chapter, if the
user does not possess further programming knowledge. We must
certainly recommend that you work through the other methods
of data storage, which offer other advantages.

45

Anatomy of the 1541 Disk Drive

1.5 Relative Data Storage

Relative data storage and its programming is not described
in the VIC-1541 user's manual. The reason may lie in the

fact that the Commodore 64 and the VIC-20 have no commands
to process relative files using BASIC 2.0. Therefore, it is
in principle not possible to use relative data storage on

the Commodore 64 and VIC-20 - but only in principle. We have
developed a few tricks that work within the limitations of
BASIC 2.0 and permit the Commodore 64 and also the VIC-20 to
use relative data storage. The examples may seem to be
somewhat complicated at first. For example, information
about the record lengths will be transmitted to the disk

using CHR$(x) codes. But they provide for a very easy method

of data storage.

1.5.1 The Principle

When using relative record data processing, the data records

are numbered. It is assumed that all records in a relative
file have the same length and that the record number of
every record is known or can be calculated. To find a
record, it is not necessary to search through the entire

file. Only the record number need be given to access the
record. Using the record number, the DOS can find where the

record is "relative" to the beginning of the file on the
diskette and can read it directly. Therefore, you don't have

to read an entire file into the computer, only the desired

records.

Managing a relative file follows this pattern:

Create a relative file:

1. The file is opened. With this the length of a record

is established.

2. The last record is marked.

3. The file is closed.

Writing a record:

1. The file is opened.

2. The file is positioned on the record to be written.

3. The record is written.

4. The file is closed.

Reading a record:

1. The file is opened.

2. The file is positioned over the record to be read.

3. The record is read.

4. The file is closed.

46

Anatomy of the 1541 Disk Drive

This is only an outline. In the following sections these
processes will be explained in detail.

1.5.2 The Advantage over Sequential Storage

The greatest advantages of relative storage are:

* faster access to individual records
* does not require much of the computer's memory

It has already been mentioned that the sequential file must
reside completely in the computer's memory for processing.
Using sequential techniques, it may be necessary to search
the entire file to find a given record. The record must be
read and compared during the search process. But if a
sequential file cannot be entirely loaded into memory, this
method of. search is impossible.

Using relative data files, the processing is much simpler.
By using the record number, a desired record can be read
individually. The file size is not limited to the computer's
memory. So, for example, a program that uses all 3.5K bytes
of a standard VIC-20 can manage a file with up to 163
Kbytes!

The advantages of relative over sequential file management
are large enough that many of you, once acquainted with the
techniques will prefer to use them.

1.5.3 Opening a Relative Pile

Relative files are also opened with the OPEN command. The
command differs only slightly from that for sequential
files. Take a look at the format of the OPEN command:

OPEN lfn,da,channel,-filename,L,"+CHR$(recordlength)

The first four parameters are identical to those for
sequential files. They are logical file number, device
address (normally 8), channel (2-14), and name of the file.

Next follows an L which informs the DOS that a relative file

should be opened, whose record length follows. This record
length is transmitted with a CHR$ code. The length is
between one and 254. Thus each record of a relative file is
limited to a maximum of 254 characters.

If the record length is smaller than 88, the record can be

read with an INPUT# statement. For this, it is necessary

47

Anatomy of the 1541 Disk Drive

that the PRINT# statement transfers the record with a

trailing RETURN. A PRINT# statement sends a RETURN when it

is not ended with a semicolon. This RETURN is now a part of

the record. When you want to read records with INPUT#, the

record length must be increased by one.

A file composed of 80-character records, to be read by the

INPUT# statement would be opened as follows:

OPEN 1,8,2,"FILE.REL,L,"+CHR$(81)

Here a relative file with the name "FILE.REL" is opened

using channel 2. The record length should total 81

characters. Records comprised of 80 characters should be

sent with a PRINT# statement, with no trailing semicolon.

It is important to note that only one relative file can be

opened at a time. If you want to work with two relative

files, you must always close the first before opening the

second. One sequential file may be opened in addition to one

relative file.

When a relative file is opened for the first time, the DOS

creates as many "null" or unused records that can fit in a

single 254 byte block. It creates these "null" records by

writing a record with a CHR$(255) at the beginning of each

record. This is called formatting a relative file.

If you want to expand a relative file beyond the initial

number of records that the DOS formatted, then you can

reference the last record number that you want to write (by

positioning to that record number) and the DOS automatically

formats the records between the current end of file and the

new last record number by writing records containing

CHR$(255). Formatiing takes time to complete.

If you try to read a record whose number greater than that

of the last record, the DOS returns the error RECORD NOT

PRESENT. However, if you write a record which is greater

than the highest current record, all records less than the

new record number are also written with CHR$(255).

Subsequently accessing these record does not result in an

error.

If you want to avoid long delays as relative records are

formatted (as the file is expanded), then you should

reference the last record number immediately after opening

the file. The formatting of the null records takes place at

that time instead of at a more inconvenient time.

To position the DOS for a specific relative record you must

send a position command over the command channel (15), as

shown here:

PRINTtlfn,"P"+CHR$(channel)+CHR$(low)+CHR$(hig3O+CHR$(byte)

48

Anatomy of the 1541 Disk Drive

If you are positioning to a record which is beyond the
current end of file, the DOS presents the message RECORD
NOT PRESENT appears to the disk error channel. If this
record is to be written, then you can ignore the message.
The following PRINT# statement is carried out in spite of
the error message.

The parameters low and high in the P command designate the
record number. The maximum value that can be given with one
byte is 255, but a relative file contains up to 65535 rec
ords. Therefore, the record number must be transmitted in
two bytes. These two bytes are calculated with the following
formula:

HB=INT(RN/256)

LB=RN-HB*256

HB = High Byte (parameter high)

LB = Low Byte (parameter low)
RN = Record Number

The last parameter (byte) serves to position to a specific
location within the given record. An example:

PRINT#2,"P-+CHR$(2)+CHR$(10)+CHR$(l)+CHR$(5)

Here the file is positioned to the fifth byte of the 266th
record. This 266 is coded as a low byte of 10 and a high
byte of 1 (high byte * 256 + low byte = record number).

To read or write a complete record, the file is positioned
to the first byte of the record. If the last parameter is
not given, the trailing RETURN (CHR$(13)) is taken as the
character location.

The corresponding BASIC program to establish a file of 100
80-character records looks like this:

100 RN=100

110 HB=INT(RN/256)

120 LB=RN-HB*256

130 OPEN1,8,2,"FILE.REL,L,M+CHR$(80)
140 OPEN2,8,15

150 PRINT#2 , IIP"+CHR$ (2) +CHR$ (LB) +CHR$ (HB) +CHR$ (1)
160 PRINT#1,CHR$(255)

170 CLOSE 1:CLOSE 15

Freeing 100 records takes some time. The creation of this

file takes about ten minutes. Notice that of the 80 char

acters in a record, only 79 can be used to hold data,

because transferring data with a PRINT# command adds a

trailing RETURN.

49

Anatomy of the 1541 Disk Drive

1.5.4 Preparing Data for Relative Storage

As already mentioned, you cannot change the record length of
a relative file. If a record consists of several fields,

these fields must be combined. It is important that these
fields always be in the same position so that they can be
separated later. Let's work through a problem:

We want to manage an inventory using relative storage
techniques. To that end, the following fields are necessary:

PART NUMBER 4 CHARACTERS

DESCRIPTION 15 CHARACTERS

QUANTITY 5 CHARACTERS

COST 6 CHARACTERS

PRICE 6 CHARACTERS

Record length 36 bytes
===============

The inventory contains approximately 200 items with a record
length of 36 bytes. This inventory file can now be created:

100 RN=200:REM NUMBER OF INVENTORY ITEMS

110 RL=36 :REM RECORD LENGTH

120 OPEN 1,8,2,"INVEN,L,II+CHR$(36)

130 OPEN 2,8,15 ^/ %
140 PRINT#2,MPM+CHR$(2)+CHR$(200)+CHR$(0)+CHR$(l)

150 PRINT*1,CHR$(255)

160 CLOSE 1:CLOSE 2

Now the file is created and all records are written. Let's
suppose that the inventory is present as a sequential file.
It consists of 200 records, the fields of which are ordered
one after the other. These fields must be written to the
relative file. This is not simple, however, because many of
the descriptions are not the full fifteen characters in
length, for example. The structure of the relative file

looks as follows:

Position

Field
=========

Contents

111111111122222222223333333

123456789012345678901234567890123456

PN$-DE$ 0$ C$ P$

1 1/8 in. sheet 1344 11.40 20.30

2 No. 10 screw 1231 4.00 7.00

3 Valve A3A4 1243 11.45 16.40

200 1/2 in. tubing 2321 3.35 4.10

The fields will be read from the sequential file into the

following variables:

50

Anatomy of the 1541 Disk Drive

Part number pn$

Description DE$
Quantity Q$

Cost c$

Price p$

The following command chains these fields together:

RC$ = PN$ + DE$ + 0$ + C$ + P$

The record variable RC$ does not have the desired structure.
The reason is that the quantity immediately follows the
description. Because the quantity must begin at position 20
and the description is not always fifteen characters, we
have a problem. In order to read the records from the rela
tive file, the structure must be observed. Therefore, all

fl5id2 t?ia* a,re shorter than the planned length must be
padded with blanks. Taking this into account, the chaining
goes like this:

BL$=n

RC$=PN$+LEFT$(BL$,4-LEN(PN$))
RC$=RC$+DE$+LEFT$(BL$,15-LEN(DE$))
RC$=RC$+Q$+LEFT$(BL$,5-LEN(0$))

RC$=RC$+C$+LEFT$(BL$,6-LEN(C$))
RC$=RC$+P$+LEFT$(BL$,6-LEN(P$))

This concatenation looks more complicated than it really is.
Each field must be filled with enough blanks to bring it to
its appropriate length. The blanks are added to the
individual fields from the string BL$, defined at the
beginning. T

Let's go through an example:

Suppose the first part number is 8. The length of this

string, LEN(PN$), is then one. The maximum length of this
field (4) minus the actual length (1) is 3. The string PN$
must therefore be padded with three blanks, LEFT$(BL$,3).

Each record of the old sequential file must be prepared in-
this manner before it can be transferred to the relative
file.

Naturally, the above is true for all input values to be used

in a relative file. Therefore, you must always remember to
use a routine to fill each field with blanks to its full

length when working with relative data processing.

51

Anatomy of the 1541 Disk Drive

1.5.5 Transferring Data

In principle, transferring data to and from a relative file
does not differ from sequential storage. Records are written
with PRINT# and read with INPUT* or GET#. The only
difference is that before a record is be written or readr
the file must be positioned to that record. This is accom

plished with the P command. This example program illustrates

what we have discussed:

100 BL$="
105 OPEN 1,8,2,"TEST.RELrL,"+CHR$(41)

110 OPEN 2,8,15
120 PRINT#2,nP"+CHR$(2)+CHR$(100)+CHR$(0)+CHR$(l)

130 PRINT*1,CHR$(255)

140 PRINT CHR$(147)
150 PRINT"INPUT RECORD:"

160 PRINT" "
170 INPUT"RECORD NUMBER (1-100) : ";RN
180 IF RN<1 OR RN>100 THEN PRINTCHR$(145)?:GOTOl60
190 INPUT"FIELD 1 (MAX.10 CHAR.) : ";Fl$
200 IF LEN(Fl$)>10 THEN PRINTCHR$(145);:GOTO190

210 INPUT"FIELD 2 (MAX. 5 CHAR.) : ";F2$
220 IF LEN(F2$)>5 THEN PRINTCHR$(145);:GOTO210
230 INPUT"FIELD 3 (MAX.10 CHAR.) : W;F3$
240 IF LEN(F3$)>10 THEN PRINTCHR$(145);:GOTO230

250 INPUT"FIELD 4 (MAX.15 CHAR.) : ";F4$
260 IF LEN(F4$)>15 THEN PRINTCHR$(145);:GOTO250

270 PRINT"CORRECT (Y/N)?"

280 GETX$:IF X$<>MY" AND X$O"N11 THEN 280

290 IF X$="N" THEN 140
300 RC$=Fl$+LEFT$(BL$,10-LEN(Fl$))

310 RC$=RC$+F2$+LEFT$(BL$,5-LEN(F2$))
320 RC$=RC$+F3$+LEFT$(BL$,10-LEN(F3$))

330 RC$=RC$+F4$+LEFT$(BL$,15-LEN(F4$))

340 PRINT*2,"P"+CHR$(2)+CHR$(RN)+CHR$(0)+CHR$(1)

350 PRINT!1,RC$

360 PRINT"MORE INPUT (Y/N)?"
370 GETX$:IF X$O"Y" AND X$O"N" THEN 370

380 IF X$="Y" THEN 140

390 CLOSE 1:CLOSE 2:END

The following line-oriented documentation explains the

operation of the program:

100 A blank-character string with 15 blanks is

defined.

105 The relative file is opened with a length of 15.

110 The command channel 15 is opened.

120 To initialize the relative file, the head is

positioned over the first byte of the last (100th)

record.

130 The last record is freed and the initialization

begun.

140 The screen is erased.

52

Anatomy of the 1541 Disk Drive

150-260 The record no. and fields 1-4 are entered and
checked for correct length.

270-290 The entered data can be corrected.
300-330 The record is prepared.

340 The head is positioned over the first byte of the
record.

350 The record is written to the disk.
360-380 New data can be entered.
390 The program ends.

Now write some records with this program, but don't forget
to save in case you need it later.

Certainly, it also necessary to read and change existing
records. To do this, the relative file is opened, the file

It 5OSi,u3:Oned to the appropriate record, and the record is
read. This record must then be divided into its fields!

realar°r? that dd i
ided into its fields!

roralfn°r? that WaS corded with the previous
program. The following routine reads the record:

100 OPEN 1,8,2,"TEST.REL,L,M+CHR$(41)
110 OPEN 2,8,15

115 PRINT CHR$(147)

120 INPUTMRECORD NUMBER :lf;RN

140 ^^
160 IF ASC(RC$)<>255 THEN PRINT"RECORD NOT FOUND!11-

GOTO250 * '

170 PRINT RC$

250 CLOSE 1:CLOSE 2

This routine reads a specified record, if this record has
never been written, it is recognized by the value 255 with
which every record was marked at the establishment of the
11 J.e.

A record that is found is displayed. You can see that the
four fields are in the same positions. If you want to divide
the record into its individual parts, you must use the
function MID$. For example, in order to extract field 1 of
the record, give the following statements in the direct mode
after the record is found and read:

Fl$=MID$(RC$,l,10)
PRINT Fl$

Now the variable Fl$ contains the first field, as written by
the first program. The division of records into individual
fields is accomplished by building on the previous program.
Add or change the following lines:

170 Fl$=MID$(RC$,l,10)

180 F2$=MID$(RC$,11,5)

190 F3$=MID$(RC$,16,10)

200 F4$=MID$(RC$,26,15)

53

Anatomy of the 1541 Disk Drive

210 PRINT"FIELD 1: ";F1$

220 PRINT"FIELD 2: "?F2$

230 PRINTMFIELD 3: M?F3$

240 PRINT"FIELD 4: ";F4$

250 PRINTMMORE (Y/N)?M

260 GETX$:IF X$OllYtI AND X$O"N" THEN 260

270 IF X$="Y" THEN 115

280 CLOSE 1:CLOSE 2

Here the record is separated into the individual fields and
the fields are displayed. It is important for the MID$
function that the exact positions of the fields within the
record be maintained. The first parameter within the paren
theses is the string variable containing the record. The
second parameter is the position at which the number of
characters represented by the parameter will be taken out.

Further work may done with the selected fields inside the

program.

So far, we have read the records with the INPUT# statement.

If the record is longer than 88 characters, it can no longer

be read with the INPUT# statement. The way to get around the
limited INPUTt statement is with the GET# statement. The
bytes of a record are read one at a time with this command
and assembled into a single string. Suppose you have a
relative file with 128-character records. Now you want to

read the tenth record of this file and place it in the
variable RC$. The example of the following routine

illustrates reading this with GET#:

100 OPEN l,8,2,"TEST.GET,LrII+CHR$(128)

110 OPEN 2,8r15

120 PRINT#2fnPM+CHR$(2)+CHR$(10)+CHR$(0)+CHR$(l)

130 RC$«""

140 FOR 1=1 TO 128

150 GET#lfX$

160 RC$=RC$+X$

170 NEXT I

After running this routine, the record is contained in the

variable RC$. If this record had been written with a PRINT#

statement without a trailing semicolon, the last character

in the string will be a RETURN. To ignore this RETURN, allow

the loop in line 140 to run only to 127. The last character

of the record RETURN is not read.

As already mentioned, the last parameter of the P command

specifies at which character the transfer of data should

begin. If, for instance, in the 127-character record of the

previous example, you want to read positions 40-60 into a

54

Anatomy of the 1541 Disk Drive

field, the head must be positioned over the 40th character
and the next 21 bytes read. The following routine clarifies
this:

100 OPEN l,8,2,nTEST.GET,L,M+CHR$(128)
110 OPEN 2,8f15

120 PRINT#2,"P"+CHR$(2)+CHR$(10)+CHR$(0)+CHR$(40)
130 F$=""

140 FOR 1=1 TO 21

150 GET#1,X$

160 F$=F$+X$

170 NEXT I

In line 120, the head is positioned over the the 40th byte
of the tenth record in line 120 and the loop in lines 140-
170 reads the following 21 bytes (bytes 40-60 of the record)
into F$.

You see then that the entire record need not be read if you
only want to work with part of it.

1.5.6 Closing a Relative File

There is no difference between closing a relative file and
sequential file. Because the command channel must always be
open to send the position command when working with relative
storage, it must also be closed.

1.5.7 Searching Records with the Binary Method

Normally each record is accessed by record number. But what
if you want to search for a specific name in a relative file
and the record number is not known. It is possible to read

each record and compare each for the desired name. But this
is very time consuming if the file has many records.

If the file is kept in name order, the records can be

searched using an alternative method. This method is called

a binary search. In order to use a binary search, the

relative file must be arranged in sorted order.. Using the

above example, relative record 1 must contain a name with

the lowest collating sequence while the last relative record

must contain a name with the highest collating sequence.

Thus the name AARON might be contained in relative record 1

and ZYPHER might be contained in the last relative record of

55

Anatomy of the 1541 Disk Drive

the file and all other names would be ordered throughout.

When records are added to the file, then the records must
be reordered. Similarly if a name is changed, then the

records must be reordered.

The binary search can be explained using a simple example.

When you want to find a name in the telephone book, you
don't search through it sequentially. You open the book in
the middle and compare the first letter of the desired name
with the first letter of names on the page. If the desired
name comes before these, you turn halfway into the first
section of the book, and so on. You go through it

systematically.

The binary search is not a sequential search. It identifies
a record halfway through the remaining number of records.

The following example will clarify this:

There exists the following relative file, sorted in

ascending order:

Record number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Contents

1985

1999

2005

2230

2465

2897

3490

3539

4123

5000

5210

6450

6500

6550

6999

Out of these fifteen records we will search for a contents

of 3490. It is not known which record it is stored in.

We must first know how many records are in the file. In this

case, there are fifteen. We divide this by two. The middle

of the file is record eight with the contents 3539. We

determine if the contents of this record equal to the target

value, and if not, whether it is larger or smaller. In this

case, it (3539) is larger. This means the record we are

looking for is in the first half of the file. So we divide

eight by two and examine the contents of record four, 2230.

Since 2230 is less than 3490, it lies between four and

eight. We again divide by two and add this to record 4 which

and results in record 6 whose contents is 2897. 2897 is less

than 3490, so our target lies between records six and eight.

Record seven is indeed the record we are looking for.

56

Anatomy of the 1541 Disk Drive

The principle of the binary search is to determine by the
result of each comparison whether to search upwards or
downwards until the search data is found. The maximum number
of comparisons can be found using the following formula:

S=INT(LOG(N)/LOG(2)+1)

S is the number of comparisons (searches) and N is the
number of records in the file. In a sorted relative data
tile with 1000 records, no more than ten comparisons will be
necessary to find the desired record!

Let's create a relative data file with fifteen records to
test the binary search:

100 OPENl,8,2,"BINARY.REL,L,tl+CHR$(5)
110 PORI=1TO15

120 READ RC$

130 PRINT#1,RC$
140 NEXT I

150 CLOSE 1:CLOSE 2:END

160 DATA 1985,1999,2005,2230,2465,2897,3490,3539
170 DATA 4123,5000,5210,6450,6500,6550,6999

This program .puts the fifteen records in a file called
BINARY.REL using the values given in lines 160-170. The
position command is not necessary because the data will be
written straight through from first to last record. After
opening the file the pointer points to the first record.
This file is designed to be searched with the binary method.
The following program is based on the logic of the binary
search:

100 OPENl,8,2,tlBINARY.REL,L,"+CHR$(5)
110 OPEN2,8,15

120 PRINTCHR$(147)

140 N=15: REM NUMBER OF RECORDS

150 I=LOG(N)/LOG(2)

160 IF I-INT(I)<>0 THEN I=INT(I)+1
170 M=I-1

180 I=2AI

190 X=I/2

210 INPUT"RECORD TO FIND (* TO END): n;SR$
220 IF SR$="*" THEN 320

230 IF M<0 THEN PRINT"RECORD NOT FOUND":GOTO140
240 M=M-1

250 PRINT#2,"P"+CHR$(2)+CHR$(X)+CHR$(0)+CHR$(1)
260 INPUT#1,RC$

270 IF SR$=RC$ THEN 340

280 IF SR$<RC$ THEN X=X-2AM:GOTO230
290 X=X+2*M

300 IF X>I THEN PRINT"END OF FILE EXCEEDED!11
310 GOTO 230

320 CLOSE 1:CLOSE 2

57

Anatomy of the 1541 Disk Drive

330 END

340 PRINT"RECORD FOUND!"
350 PRINT"CONTENTS : n;RC$

360 GOTO 140

Program Documentation:

100 The relative file "BINARY.REL" is opened.

110 The command channel is opened.

120 The screen is erased.

140 The number of records is assigned to the variable

N.

150-190 If the maximum number of records does not

represent a power of twof the next higher power

of two is formed. The file will be expanded, but

no records are lost. The exponent of this power of

two is used as the index. X is the value of 1/2.
1/2 indicates the exact middle of the (expanded)

file. After that, the variable M receives the

value of 1-1.

210-220 The record to be found is read. To end the

program, enter a '*•.

230 If M<0, the record was not found.

240 M is decremented by one. The next Mth power

represents half of the rest of the file.

250-260 The file is positioned over the record containing

in the variable X.

270 If the target record is found, the search is

ended and the record displayed.

280-310 It is determined if the target record is larger

or smaller than the record just read. The middle

of the upper or lower half (as appropriate) is

stored in the variable X.

320-330 The file is closed and the program is ended.

340-360 The found record is displayed.

This binary search, coded in BASIC, is implemented

universally. Only.the number of records and the appropriate

record to be searched for need be changed. You can use this

routine for finding records in your sorted relative data

files.

1.5.8 Searching Records with a Separate Index File

If you work with individual records frequently and need

quick access with alphanumeric keys that don't correspond to

the logical record number, and your file is not sorted, we

recommend another method.

Create an index file for each desired key field, in which

each record is composed of

58

Anatomy of the 1541 Disk Drive

- an index key

- the corresponding record number

This entire index file is to be loaded into the computer's
memory. An example:

You have constructed your name and address manager as a
relative file consisting of

- First name

- Last name

- Street

- City, State

- Zip code

- Telephone number

You want to be able to search the file based on the last
name. So you create an additional sequential file that
contains the desired key (in this case the last name) and

fOUmber °f the corresPondin9 rec°rd in the

The index file is read completely into the computer so the
search can be accomplished as quickly as possible. If you
want to access a record that has the last name HARRIS, then
you search through the appropriate index in memory and when
tound, read the corresponding relative record by using the
record number also contained in the index.

Here is an example:

We assume that a data file and an index file exist for the
names:

Data file: Index file:
========== =========—=

Last name First name more fields Index Record No.

(last name) LB HB

Smith John Smith 01 00
Harris Sam Harris 02 00
Hanson Carl Hanson 03 00

Johnson Mark Johnson 04 00

•

• • • .

Green Simon Green 99 00

The file contains 99 records. Before the program can be
used, the index file must be read in. This can be a

sequential file, which can be read into a memory table
reserved with DIM IT$(99). The first twenty characters of
each index table position comprise the last name. The next

59

Anatomy of the 1541 Disk Drive

to the last byte (no. 21) is the low byte and the last byte

(no. 22) is the high byte of the record number. With these

conditions, a desired record can be found with the following

routine:

100 INPUT "LAST NAME";N$

110 FOR 1=1 TO 99

120 IF LEFT$(IT$(I)f20)=N$ THEN 150

130 NEXT I

140 PRINT "NAME NOT FOUND!":END

150 PRINT "RECORD FOUND!"

160 OPEN1,8,2,"ADDRESS,L,M+CHR$(81)

170 OPEN 2,8,15
180 PRINT#2,"P"+CHR$(2)+MID$(IT$(I),21,1)+CHR$(0)

+CHR$(1)

190 INPUTt1,RC$

The loop in lines 110-130 goes through the index table

sequentially, searching for the target name contained in the

twenty leftmost characters. If the name is not found, an

appropriate message is given (line 140), before the program

is ended.

If, in line 120, the target name matches the index entry,

the program branches to line 150. After giving the message,

the address file is opened. After opening the command
channel, the position command is sent to the disk. Because

the next to the last byte of the index entry contains the

low byte of the record number, it must be extracted using

the MID$ function. The high byte is known to be zero since

there are fewer than 255 record.

Finally the relative record is read in line 190.

The access of index files is an equally fast and

extraordinarily flexible form of data organization. One can

theoretically have as many index files as desired. Above

all, you must take note of two important restrictions:

1. Changes in the main data file which affect the key

fields must also be made to the corresponding index

file. With several index files this can become very

time-consuming.

2. The number and size of the index files that are kept in

the computer's memory for fast access are limited by

the availability of memory.

60

Anatomy of the 1541 Disk Drive

1.5.9 Changing Records

The logical process for changing a record is this:

1. Read the record

2. Split the record into its fields
3. Change the appropriate field
4. Rebuild the record (combine fields)
5. Rewrite the record

In section 1.5.5 we wrote some records in the filp
"TEST.REL". This file had the following properties:

Record length 41 bytes

Number of records loo
Number of fields 4

Length, position field 1 : 10, l-io

" , " field 2 : 5r 11-15
field 3 : 10, 16-25

' v' " field 4 : 15, 26-40
Trailing RETURN in position 41

A file description such as the one above should be made for
each of your files. This is very important if other programs
are to use these data. The file description defines the
order and length of the fields of the file.

rh*nH flle%W1e1alfOW for the contents of the records to be
changed. The following program allows changes:

100 REM ===================

110 REM PREPARATION
120 REM ===================

130 BL$= M •»

140 OPEN 1,8,2,"TEST.REL,L,"+CHR$(41)
150 OPEN 2,8,15
160 REM ===================

170 REM READ RECORD
180 REM ===================

190 PRINT CHR$(147)

200 INPUT"RECORD NUMBER (1-100): ";RN
205 IF RN<1 OR RN>100 THEN PRINTCHR$(145);:GOTO200
210 PRINT" ii

220 PRINT#2,"P"+CHR$(2)+CHR$(RN)+CHR$(0)+CHR$(l)
230 INPUT#1,RC$

240 IF ASC(RC$)<>255 THEN 270
250 PRINT "RECORD NOT WRITTEN"
260 GOTO 630

270 REM ======================

280 REM PREPARE RECORD
290 REM ======================

300 F$(l)=MID$(RC$,l,10)
310 F$(2)=MID$(RC$,11,5)
320 F$(3)=MID$(RC$,16,10)
330 F$(4)=MID$(RC$,26,15)

61

Anatomy of the 1541 Disk Drive

340 REM ======================

350 REM DISPLAY FIELDS

360 REM ======================

370 PRINT CHR$(147)

380 FOR 1=1 TO 4

390 PRINTflFIELDII;I;M: ";F$(I)

400 NEXT I

410 PRINT" "
420 REM ======================

430 REM CHANGE FIELDS

440 REM ======================

450 PRINT"CHANGE WHICH FIELD (1-4)?"

460 GETX$:IFX$<"1" OR X$>"4" THEN 460

470 INPUT"NEW CONTENTS : ";F$(VAL(X$))

480 PRINT"RECORD IS CHANGED"

490 PRINT"MORE CHANGES IN THIS RECORD (Y/N)?"
500 GETX$:IF X$OnY" AND X$O"N" THEN 500

510 IF X$="Y" THEN 340

520 REM ====================

530 REM CHAIN FIELDS

540 REM ====================

550 RC$=F$(1)+LEFT$(BL$,10-LEN(F$(1)))
560 RC$=RC$+F$(2)+LEFT$(BL$,5-LEN(F$(2)))

570 RC$=RC$+F$(3)+LEFT$(BL$,10-LEN(F$(3)))

580 RC$=RC$+F$(4)+LEFT$(BL$,15-LEN(F$(4)))

590 REM =========================

600 REM WRITE RECORD BACK

610 REM =========================

620 PRINT#1,RC$

630 REM ====================

640 REM END PROGRAM?

650 REM ====================

660 PRINT"MORE CHANGES TO FILE (Y/N)?"

670 GETX$:IF X$O"Y" AND X$O"N" THEN 670

680 IF X$="Y" THEN 160

690 CLOSE 1:CLOSE 2:END

After this program is RUN you can change any desired record.

This record must have been written with the program in

section 1.5.5.

This editing program does not check the new field data for

correct length.

The important commands in this program have already been

explained in the corresponding sections.

1.5.10 Expanding a Relative File

Every relative file has a user-determined number of records

that ranges from 1 to 65538. This number is the record with

the highest record number and is written to the file with a

62

Anatomy of the 1541 Disk Drive

value of CHR$(255). Writing this last record also formats
all records in the file that precede this record number with
CHR$(255)•

You can expand the size of a relative file at a later time.
For example, consider a relative file that is initially
created with three records. After the file is OPENed, you
position the file at record number 3 and write the record
with CHR$(255). Here's an example of how you might do this:

10 OPEN l,8,2,MRELFILE,L,"+CHR$(50)
20 OPEN 15,8,15

30 PRINT#15,"Plt+CHR$(2)+CHR$(3)+CHR$(0)+CHR$(l)
40 PRINT*1,CHR$(255)

When statement 40 is performed, not only is record 3
written, but records 1 and 2 are also formatted by the DOS.
Subsequently, if you position and write a 90th record, the
DOS formats records 4 through 89 (see lines 150 and 160
below). Each time the file is expanded, the DOS formats
records between the current high record number and the new
high record number.

150 PRINT#15,"P"+ CHR$(2)+CHR$(90)+CHR$(0)+CHR$(l)
160 PRINT#1,CHR$(255)

500 PRINT#15,llP"+CHR$(2)+CHR$(175)+CHR$(0)+CHR$(l)
510 PRINT#1,CHR$(255)

An existing relative file can be expanded at any time,
provided there is sufficient room on the disk. To do so, the
new last record is written with CHB$(255). At the same time,
all records between the old and new end of file are also
formatted.

When writing a record to a relative file whose record number

is higher than the current high record number, a DOS error
is not returned. If there is room on the diskette for the
new records (current high record number through the new high

record number) the file is simply expanded. If there is a

lack of space on the diskette for the new records, the DOS
error FILE TOO LARGE is returned. When reading a record from

a relative file whose record number is higher than the

current High record number, the DOS error RECORD NOT PRESENT
is returned to the error channel.

63

Anatomy of the 1541 Disk Drive

1.5.11 Home Accounting with Relative Data Storage

A complete example of problem solving using relative files

offers you a good insight into the organization of relative

file processing. It can be used by most readers of this
book. Few examples of relative file usage have been

explained elsewhere, so here is such a program.

In this application, individual accounts are numbered. This

account number is used as a key to the corresponding

records.

This provides that each account contain a clear text

description. The first field of each record is this account

name. Twenty characters are allowed for the name.

Since information is needed for each month, twelve fields

are necessary for each record. These summary fields are each

ten characters long. The account summaries are stored as

strings which are converted to numbers with the help of the

VAL function. The record consists of 141 characters (twenty

for the name, 12*10 for the month summaries and one for

RETURN).

The layout of the records follows:

Field Length Position

Account name

January summary

February summary

November summary 10 121-130

December summary - 10 131-140

The maximum number of accounts per year is set to twenty.

Therefore, a year's file consists of twenty records of 141

bytes each.

We also specified the functions that this program is to

perform.

* Create accounts

* Post to accounts

* Display summary by Account

* Display account names

* Display Monthly summary

64

20

10

10

1-20

21-30

31-40

Anatomy of the 1541 Disk Drive

* Display Year-end summary

Create accounts:

This function creates the file for a year, it asks for the
number and names of the accounts. The records are then
written with the account name and the summary fields are set
to zero. Should a data file already exist with the sane
name, the old file is deleted.

Post to accounts:

This function asks for the account number to be posted and
whether the posting is an income or expense. For example,
the category "SALARY" is an income account and the category
RENT" is an expense account.

After this, the current contents of the account are

2l1w«i«yed'^W-hen Y2U P°St the aPProPriate amount, which is
always positive. If you are making a correction entry, use a
negative amount.

Now the updated contents are displayed. You may then make a
new entry.

Producing account summary:

After entering the account number, the summary of the twelve
months and the year's total are displayed for that account.

Display account names:

Each account is determined by its number. Should you forget
a number, this function lists all accounts by name and
corresponding number.

Display monthly summary:

Here the income or expenses of all accounts are displayed.
The monthly balance of all accounts is also displayed.

Display year-end summary:

This function shows the summary of all accounts and the
year-end balance. This display takes some time, since all
monthly fields of each record must be read and totaled, it
accesses the entire file.

Here's the program listing:

65

Anatomy of the 1541 Disk Drive

100 POKE 53280,2:POKE53281f2:PRINTCHR$(158);:

BL$=" M:DIMS(12)

110 GOSUB 2050

120 INPUT"CURRENT YEAR : M;Y$
130 IF Y$<"1984"ORY$>"1999"THENPRINTCHR$(145);:GOTO120

140 GOSUB 2050

150 PRINTMSELECT A FUNCTION:

160 PRINT" n:PRINT
170 PRINT" -1- CREATE ACCOUNTS"

180 PRINT" -2- POST TO ACCOUNTS"
190 PRINT" -3- ACCOUNT SUMMARY"
200 PRINT" -4- DISPLAY ACCOUNT NAMES"
210 PRINT" -5- MONTHLY SUMMARY"
220 PRINT" -6- YEAR SUMMARY":PRINT

230 PRINT" -0- END PROGRAM"
240 GETX$:IFX$<"0"ORX$>"9"THEN240

250 IFX$O"0"THEN270

260 END

270 ONVAL(X$)GOSUB 290,560r920,1160,1370,1720

280 GOTO 140

290 REM ========================

300 REM CREATE ACCOUNTS

310 REM ========================

320 GOSUB 2050

330 PRINT"CAUTION1 ANY PREVIOUS FILE FOR THIS YEAR"
340 PRINT"WILL BE ERASED1":PRINT

350 PRINT"CONTINUE (Y/N)?"
360 GETX$:IFX$O"YIIANDX$O"NIITHEN360

370 IFX$="Y"THEN390

380 CLOSE1:CLOSE2:RETURN

390 OPEN2,8,15,"S:ACCOUNTS"+Y$

400 OPEN1,8,2,"ACCOUNTS"+Y$+",L,"+CHR$(141)

410 GOSUB 2050

420 INPUT"HOW MANY ACCOUNTS (1-20): ";AN

430 PRINT

440 IFAN<lORAN>20THENPRINTCHR$(145);:GOT<0420

450 FORI=1TOAN

460 PRINT"NAME OF ACCOUNT NO.";I;": ";

470 INPUTAN$

480 IFLEN(AN$)>20THENPRINTCHR$(145);:GOTO420

490 RC$=AN$+LEFT$(BL$,20-LEN(AN$))

500 FORX=1TO12

510 RC$=RC$+STR$(0)+LEFT$(BL$,8)

520 NEXTX

530 PRINT#1,RC$

540 NEXT I

550 CLOSE 1:CLOSE 2:RETURN

560 REM =============

570 REM POSTING

580 REM =============

590 GOSUB2050

600 INPUT"ACCOUNT NUMBER";AN

610 IFAN<lORAN>20THENPRINTCHR$(145);:GOTO600

620 GOSUB2140

630 PRINT" "

66

Anatomy of the 1541 Disk Drive

640 PRINT"NO.";AN;" - ";AN$
650 PRINT" •'

660 PRINT-INCOME OR EXPENSE (I/E)?"
670 PRINT" ••

680 GETX$:IFX$O"I"ANDX$O"E"THEN680
690 INPUT"MONTH (1-12) : "?M

700 IFM<1ORM>12THENPRINTCHR$(145);:GOTO690
710 PRINT" . — »

720 PRINT"OLD CONTENTS : ";S(M)
730 PRINT" «

740 INPUT"POSTING AMOUNT : ";PA
750 PRINT" «

760 IFX$="I"THENS(M)=S(M)+PA:GOTO780
770 S(M)=S(M)-PA

780 PRINT"NEW CONTENTS : ";S(M)
790 PRINT" "

800 RC$=AN$+LEFT$(BL$,20-LEN(AN$))
810 FORI=1TO12

820 S$=STR$(S(I))

830 RC$=RC$+S$+LEFT$(BL$,10-LEN(S$))
840 NEXTI

850 PRINT#2,"P"+CHR$(2)+CHR$(AN)+CHR$(0)+CHR$(1)
860 PRINT*1,RC$

870 CLOSE1:CLOSE2

880 PRINT"FURTHER POSTING (Y/N)?"

890 GETX$:IFX$O"Y"ANDX$O"N"THEN890
900 IFX$0"Y"THENGOSUB2050 2GOT0600
910 RETURN

920 REM ===================

930 REM ACCOUNT SUMMARY
940 REM ===================

950 GOSUB2050

960 INPUT"ACCOUNT NUMBER : ";AN

970 IFAN<lORAN>20THENPRINTCHR$(145);:GOTO960
980 GOSUB2140

990 GOSUB2050:PRINTCHR$(145);CHR$(145);
1000 PRINT" «

1010 PRINT"NO.";AN;" - ";AN$
1020 PRINT" »

1030 PRINT"MONTH TOTAL"
1040 PRINT" «

1050 TL=0

1060 FORI=1TO12

1070 PRINTI;TAB(8);S(I)

1080 TL=TL+S(I)

1090 NEXTI

1100 PRINT" ••

1110 PRINT"TOTAL";TAB(8);TL
1120 PRINTTAB(9);"======="

1130 PRINT"RETURN FOR MOPE"
1140 INPUTX$

1150 CLOSE1:CLOSE2:RETURN
1160 REM =====================

1170 REM DISPLAY ACCOUNT NAMES
1180 REM =====================

67

Anatomy of the 1541 Disk Drive

1190 GOSUB2050

1200 OPEN1,8,2,"ACCOUNTS"+Y$+",L,"+CHR$(141)

1210 OPEN2f8r15

1220 1=1

1230 PRINT* 2,"P"+CHR$(2)+CHR$(I)+CHR$(0)+CHR$(1)

1240 RC$=""

1250 FORX=lTO20

1260 GET#1,X$

1270 RC$=RC$+X$

1280 NEXTX

1290 INPUT#2fX

1300 IFX=50THEN1340

1320 PRINTI?" - ";RC$

1330 1=1+1:GOTO1230

1340 PRINT"RETURN FOR MORE"

1350 INPUTXS

1360 CLOSE1:CLOSE2:RETURN

1370 REM ===============

1380 REM MONTH SUMMARY

1390 REM ===============

1400 GOSUB2050

1410 INPUTMMONTH : ";M

1420 GOSUB2050

1430 PRINT" "

1440 PRINT"NO. NAME CONTENTS"

1450 PRINT" ■ "
1460 OPENlf8,2r"ACCOUNTS" + Y$+",LfII+CHR$(141)

1470 OPEN2,8,15

1480 TL=0

1490 FORAN=lTO20

1500 AN$=Iin:S$=M"

1510 PRINT#2,"P"+CHR$(2)+CHR$(AN)+CHR$(0)+CHR$(l)

1520 FORI=lTO20

1530 GET#lrX$

1540 AN$=AN$+X$

1550 NEXTI

1560 INPUT#2,F

1570 IFFO50THEN1590

1580 GOTO1670

1590 PRINT#2r"P"+CHR$(2)+CHR$(AN)+CHR$(0)+CHR$(20+(M-l)*10)

1600 FORI=lTO10

1610 GET#lfX$

1620 S$=S$+X$

1630 NEXT I

1640 TL=TL+VAL(S$)

1650 PRINT AN;TAB(6);AN$;TAB(26);S$

1660 NEXT AN

1670 PRINT" "
1680 PRINT"TOTAL BALANCE";TAB(26);STR$(TL)

1690 PRINTTAB(26);"======="

1700 PRINT"RETURN FOR MORE";

1710 INPUTX$:CLOSE1:CLOSE2:RETURN

1720 REM ==============

1730 REM YEAR SUMMARY

1740 REM ==============

68

Anatomy of the 1541 Disk Drive

1750 GOSUB2050

1760 OPEN1,8,2,"ACCOUNTS"+Y$+",L,"+CHR$(141)
1770 OPEN2,8,15

1780 PRINT" •.

o Sin?-----™ YEAR balance;;
1810 TL=0

1820 FOR AN=lTO20

!o^ PRJNIf2'"P"+CHR$<2)+CHR$(AN)+CHR$(0)+CHR$(l)
1840 RC$=

1850 FORI=lTO140
1860 GET#1,X$

1870 RC$=RC$+X$
1880 NEXTI

1890 INPUT#2,F:IFF=50THEN1980
1900 AN$=LEFT$(RC$,20)
1910 YB=0

1920 FORI=lTO10

1930 YB=YB+VAL(MID$(RC$,20+(I-l)*10,10))
1940 NEXTI

1950 TL=TL+YB

1960 PRINTAN;TAB(6);AN$;TAB(26);YB
1970 NEXTAN

1980 PRINT" ..

1990 CLOSE1:CLOSE2

2000 PRINT"TOTAL BALANCE";TAB(26);TL
2010 PRINTTAB(26);II======="

2020 PRINT"RETURN FOR MORE"
2030 INPUTX$

2040 RETURN

2050 REM ===================

2060 REM PROGRAM HEADING
2070 REM ===================

2080 PRINTCHR$(147);
2090 PRINTTAB(4);"======================—----«

2100 PRINTTAB(4);"H OME ACCOUNTING"
2110 PRINTTAB(4) ;"========================:====..

2120 PRINT:PRINT

2130 RETURN

2140 REM ================

2150 REM READ ACCOUNT
2160 REM ================

2170 OPENlr8,2/"ACCOUNTS"+Y$+"fLf"+CHR$(141)
2180 OPEN2,8f15

2190 PRINT#2,"P"+CHR$(2)+CHR$(AN)+CHR$(0)+CHR$(l)
2200 RC$=""

2210 FORI=lTO140

2220 GET#lrX$

2230 RC$=RC$+X$

2240 NEXT I

2250 INPUT#2fF

2260 IFFO50THEN2300

2270 PRINT"YEAR FILE OR ACCOUNT NOT FOUND!":PRINT
2280 PRINT"RETURN FOR MORE":INPUTX$

2290 CLOSE1:CLOSE2:RETURN

69

Anatomy of the 1541 Disk Drive

2300 AN$=LEFT$(RC$,20)

2310 TL=0

2320 FORI=1TO12

2330 S(I)=VAL(MID$(RC$r20+(I-l)*10r10))

2340 TL=TL+S(I)

2350 NEXT I

2360 RETURN

Program Documentation:

Initialization:

100 Screen and character color set; blank character

string defined; variable for account summaries

dimensioned.

110-130 Program heading displayed and current year read.

140-280 Program functions displayed and choice read;

corresponding subprogram called.

Establish Accounts:

390-400 Any existing files of this year are erased and the

new file is opened.

480 Account name is placed in positions 1-20 of the

record RC$.

500-540 Month summaries are set to zero and placed in the

record as string variables.

530 The record is transferred with a trailing RETURN.

Posting:

590 The routine "Read Account" is called. This routine

places the month summaries of the account in the

variables S(l) to S(12).

800 Account name is placed in the record.

810-840 Account summary is placed in the record.

850-860 Record is transferred.

Account Summary:

980 Desired account is read and the month summaries'

are placed in variables S(l) to S(12).

1050-1090 Month summaries are displayed and the total (TL)

is added up.

1110 Total displayed.

Display Account Names:

1220 Account number is initialized.

1230 The head is positioned over the corresponding

70

Anatomy of the 1541 Disk Drive

record.

1240-1280 Account name is read out of the record in RC$.
1290-1300 If RECORD NOT PRESENT is sent over the error

channel (error 50), the routine is broken off,
1320 Account number and name are displayed.

Month Summary:

1490-1660 Loop to read all accounts.
1510 Position head over record.
1520-1550 Read account name.

1560-1580 Determine if account exists; stop if all twenty
accounts have been defined.

1590 Position over summary field of the desired month.
1600-1630 Read the month summary.

1640 Add month summary to total.
1650 Account number, account name and month summary are

displayed.

1680 Total balance displayed.

Year Summary:

1820-1970 Loop to read all accounts
1830 Position head over record.
1850-1880 Complete record read into RC$.
1890 Test if RECORD NOT PRESENT.
1900 Get account name from record.
1920-1940 Read month summary, convert to numerical form and

add to year summary (YS).

1950 Year summary (YS) is added to total (TL).
1960 Account number, account name and year summary

displayed.

2000 Total balance (month balance) displayed.

Read Account:

2190 Position over record given in AN.
2210-2240 Read record into RC$.

2250-2260 Test if RECORD NOT PRESENT.

2300 Account name read from record.

2320-2350 Month summaries read from record, converted to

numerical form and placed into the table S(l) to
S(12)

71

Anatomy of the 1541 Disk Drive

1.6 Disk Error Messages and their Causes

If you cause an error while working with the disk drive, the

drive signals this by blinking the red LED. The LED blinks
until you read the error channel of the disk drive or until
you send a new command. First we want to see how to read the

error message from the disk drive.

In order to do this, the error/command channel must be

opened with the secondary address 15:

100 OPEN 15,8,15

110 INPUT#15,A,B$,C,D

120 PRINT A,B$,C,D

If no error has occurred, the following is displayed:

0 OK 0 0

The first number is the error number, in this case zero,

which means no error has occurred. Next follows the error
message (variable B$). The variables C and D contain the

track and sector numbers, respectively, in which the error

occurred, which is dependent on the type of error (mainly
associated with hardware errors and block-oriented

commands)•

This routine accomplishes the same function:

100 OPEN15,8,15

110 GET#15,A$:PRINTA$;:IFSTO64THENH0

00, OK,00,00

Here characters are read from the error channel until the

end is recognized (status =64). This gives the error message

exactly as the BASIC 4.0 command

PRINT DS$

When using BASIC 4.0, variables DS$ and DS are reserved

variables which contain the complete error message and error

number. Each access of these variables gives the error

status of the last disk operation. Unfortunately, the

Commodore 64 does not use BASIC 4.0, so these variables are

meaningless in Commodore 64 BASIC (BASIC 2.0).

Next follows the list of error messages that the DOS can

recognize:

00, OK,00,00

This message occurs when the last disk operation was error

free or if no command or data was sent after the last

error message.

72

Anatomy of the 1541 Disk Drive

01,PILES SCRATCHED,XX,00

This is the message after a SCRATCH command. The number XX
denotes the number of filed that were erased. Since this
is not really an error message, the LED does not blink.

20,READ ERROR,TT,SS

This error means that the 'header1 of a block was not
found. It is usually the result of a defective diskette.
TT and SS designate the track and sector in which the
error occurred. Remedy: change defective diskette.

21,READ ERROR,TT,SS

This is also a read error. The SYNC (synchronous) marker
of a block was not found. The cause may be an unformatted
disk, or no disk in the drive. This error can also be
caused by a misaligned read/write head. Remedy: Either
insert a diskette, format the disk, or have the read/write
head aligned.

22,READ ERROR,TT,SS

This error message means that a checksum error has
occurred in the header of a data block, which can be
caused by the incorrect writing of a block.

23,READ ERROR,TT,SS

The error implies that a data block was read into the DOS
buffer, but a checksum error occurred. One or more data
bytes are incorrect. Remedy: Save as many files as
possible onto another diskette.

24,READ ERROR,TT,SS

This error also results from a checksum error in the data
block or in the preceding data header. Incorrect bytes
have been read. Remedy: same as error 23.

25,WRITE ERROR,TT,SS

This error is actually a VERIFY ERROR. After writing every
block the data is read again checked against the data in
the buffer. This error is produced if the data are not

identical. Remedy: Repeat the command that caused the
error. If this doesn't work, the corresponding block must

be locked out from further use with the block-allocate
command.

26,WRITE PROTECT ON,TT,SS

An attempt was made to write to a disk with a write

protect tab on it. Remedy: Remove write protect tab.

27,READ ERROR,TT,SS

A checksum error occurred in the header of a data block.
Remedy: Repeat command or rescue block.

73

Anatomy of the 1541 Disk Drive

28,WRITE ERROR,TT,SS

After writing a data block, the SYNC characters of the

next data block were not found. Remedy: Format disk again,

or exchange it.

29,DISK ID MISMATCH,TT,SS

The ID (two character disk identification) in the DOS
memory does not agree with the ID on the diskette. The

diskette was either not initialized or there is an error
in the header of a data block. Remedy: Initialize

diskette.

30,SYNTAX ERROR,00,00

A command was sent over the command channel that the DOS

could not understand. Remedy: Check and correct command.

31,SYNTAX ERROR,00,00

A command was not recognized by the DOS, for example, the

BACKUP command (Duplicate) on the 1541. Remedy: Do not use

the command.

32,SYNTAX ERROR,00,00

The command sent over the command channel was longer than

40 characters. Remedy: Shorten command.

33,SYNTAX ERROR,00,00

A wildcard C*1 or ■?■) was used in an OPEN or SAVE

command. Remedy: Remove wildcard.

34,SYNTAX ERROR,00,00

The DOS cannot find the filename in a command. This may be

because a colon was forgotten after the command word.

Remedy: Check and correct command.

39,FILE NOT FOUND,00,00

User program of type 'USR1 was not found for automatic

execution. Remedy: Check filename.

50,RECORD NOT PRESENT,00,00

A record was addressed in a relative data file that has

not yet been written. When writing a record this is not

really an error. You can avoid this error message if you

write the highest record number of the file with CHR$(255)

when initializing it. This error will no longer occur upon

later access.

51,OVERFLOW IN RECORD,00,00

The number of characters sent when writing a record in a

relative file was greater than the record length. The

excess characters are ignored.

52,FILE TOO LARGE,00,00

The record number of a relative file is too big; the

diskette does not have enough capacity. Remedy: Use

another diskette or reduce the record number.

74

Anatomy of the 1541 Disk Drive

60,WRITE FILE OPEN,00,00

An attempt was made to OPEN a file that had not previously

been CLOSEd after writing. Remedy: Use mode 'M' in the
OPEN command to read the file.

61,FILE NOT OPEN,00,00

A file was accessed that had not been OPENed. Remedy: Open
the file or check the filename.

62,FILE NOT FOUND,00,00

An attempt was made to load a program or open a file that

does not exist on the diskette. Remedy: Check the
filename.

63,FILE EXISTS,00,00

An attempt was made to establish a new file with the name

of a file already on the diskette. Remedy: Use a different
filename or @r (to replace the old file).

64,FILE TYPE MISMATCH,00,00

The file type use in the OPEN command does not agree
with the file type in the directory. Remedy: Correct
file type.

65,NO BLOCK,TT,SS

This error message is given in association with the BLOCK-
ALLOCATE command when the specified block is no longer

free. In this case, the DOS automatically searches for a

free block with a higher sector and/or track number and
gives these values as the track and sector number in the

error message. If no block with a greater number is free,

two zeroes will be given.

66,ILLEGAL TRACK OR SECTOR,TT,SS

If you attempt to use a block with the block commands that
does not exist, this error is returned.

67,ILLEGAL TRACK OR SECTOR,TT,SS

The track-sector combination of a file produces a non
existent track or sector.

70,NO CHANNEL,00,00

An attempt was made to open more files than channels

available or a direct access channel is already reserved.

71,DIR ERROR,TT,SS

The number of free blocks in the DOS storage does not
agree with the BAM. Usually this means the disk has not
been initialized.

72,DISK FULL,00,00

Fewer than three blocks are free on the diskette or the

maximum number of directory entries have been used (144 on
the VIC 1541).

75

Anatomy of the 1541 Disk Drive

73,CBM DOS V.26 1541,00,00

The message is the power-up message of the VIC 1541. As an

error message, it appears when an attempt is made to write
to a disk that was not formatted with the same DOS

version, for example, the forerunner of the CBM 4040, the

CBM 2040 (DOS version 1.0).

74,DRIVE NOT READY,00,00
When one attempts to use the disk without a diskette in

the drive, this error message is returned.

75,FORMAT SPEED ERROR,00,00

This error message occurs only on the CBM 8250. It

indicates a deviation from the normal revolutions per

minute while formatting.

76

Anatomy of the 1541 Disk Drive

1.7 Overview of Commands with a Comparison of BASIC 2.0 -
BASIC 4.0 - DOS 5.1

BASIC 2.0

OPEN - Mode 'A1

LOADn$M,8 & LIST

V(alidate)

C(opy)

CLOSE ...

LOAD"...",8

OPEN ...,8,...

OPEN 1,8,15 ...

SAVE11...",8
N(ew)

I(nitialize)

P

R(ename)

S(cratch)

BASIC 4.0 (abbrev)

APPEND (aP)

BACKUP (bA)

CATALOG (CA)

COLLECT (COL)

CONCAT (conC)

COPY (COP)

DCLOSE (dC)

DLOAD (dL)

DOPEN (dO)

DS$, DS

DSAVE (dS)

HEADER (hE)

I(initialize)

RECORD (reC)

RENAME (reN)

SCRATCH (sC)

DOS 5.1

@$ or >$

@V or >V

@C:.. or >C:..

©file or /file

@ or >

@N:.. or >N:..

01 or >I

@R:.. or >R:..

@S:•• or >S:••

This table lists the different versions of BASIC. The DOS
5.1 is found on the TEST/DEMO disk and will be described in
section 4.2.1.

The essential difference between BASIC 2.0 and BASIC 4.0 is
that with BASIC 2.0, each command is executed by the disk
control system (DOS) and must be sent over channel 15. The

disk commands of BASIC 4.0 manage this channel themselves
(with the exception of INITIALIZE). For example, the command
HEADER D0,nDISKl",IHJ generates the same sequence of
commands necessary in BASIC 2.0, namely:

OPEN 1,8,15,"N:DISK1,HJ"
CLOSE 1

Here are are the specifics of the BASIC 4.0 commands:

Note the following parameters:

lfn = logical file number

dn = drive number - drive 0 (DO) or drive 1 (Dl) with
a double drive, or DO for a single drive

da = device address of the disk drive (U4 to U31)

Information in parentheses is optional. The standard
parameters DO and U8 will be used (meaning Drive 0 and Unit
8) •

77

Anatomy of the 1541 Disk Drive

APPEND;

This command allows data to be added to a sequential file,

which is accomplished in BASIC 2.0 with the OPEN-command

mode A.

This command has the following format:

APPEND*lfn,"filenameM(,Ddn,Uda)

For example, should the sequential file "SEQU.l" be on drive

0, the following statements are necessary to add a data

record to it:

100 APPEND#l,MSEOU.l",D0

110 PRINT#1,X$

120 CLOSE 1

BACKUP:

With this command, a complete diskette can be copied. The

BACKUP command can only be used with a dual disk drive (such

as the 4040), however. Notice the format of this command:

BACKUP Ddn TO Ddn(,Uda)

It is important that either DO to Dl or Dl to DO be given.

An example:

The diskette in drive 1 is supposed to be copied onto the

disk in drive 0. To this end, give the following command:

BACKUP Dl TO DO

CATALOG:

The CATALOG command of BASIC 4.0 has the advantage that the

program in the computer's memory is not erased, as is true

in BASIC 2.0. The format of the command:

CATALOG (Ddn,Uda)

If no drive number is given for a double drive, the contents

of both drives are given. With a single drive, CATALOG DO is

assumed. An example:

CATALOG DO

The contents of the disk in drive 0 will be displayed.

COLLECT:

This command corresponds with the VALIDATE command of BASIC

2.0. The syntax of this command looks like this:

COLLECT (Ddn)

78

Anatomy of the 1541 Disk Drive

CONCAT:

CONCAT concatenates sequential files, in which one file is
to be made from the data of two files. The format:

CONCAT (Ddnr)"filel" TO (Ddn,)"file2" (ON Uda)

Suppose you want to combine the data of the files "SEQU.2"

in drive 0 and "SE0U.1" in Dl. To accomplish this, issue the
following command:

CONCAT DO,"SEQU.2" TO Dl,"SEQU.l"

COPY:

With this command files can be copied from one drive to the
other (except relative files). The command is useless with a
single drive. The syntax looks like this:

COPY (Ddn,)("filel") TO (Ddnr)("file2M)

To copy all files (for example, from drive 0 to drive 1),
use the following command:

COPY DO TO Dl

DCLOSE:

The command DCLOSE has the same function as the simple CLOSE
command, with the following exceptions:

DCLOSE closes all files

DCLOSE#1 closes file number 1

DCLOSE#1 ON U9 closes the logical file #1 on device

address 9

DCLOSE U8 closes all files on device address 8

The command has the following syntax:

DCLOSE (#lfn) (ON Uda)

DLOAD:

The command DLOAD has the advantage that the standard device

address 8 used. The format:

DLOAD "program" (,Ddn)(,Uda)

For instance, if you want to load the program "PRG.2" from

drive 0 or from a single drive, give the following command:

DLOAD "PRG.2"

Drive 0 (DO) is the default value.

79

Anatomy of the 1541 Disk Drive

DOPEN:

This command of BASIC 4.0 is very comprehensive. The

following format verifies this:

DOPEN#lfn,"file"(,Ddn)(,Uda)(,fileparameter)

The peculiarity of this method of opening is the file
parameter. There are two file parameters, that have the

following function:

: 'L'-parameter : 'W-parameter : Mode of operation :

. YES : NO : A relative file is :

. : : opened. :

. no : YES : A sequential file is :

. . : opened for writing. :

. no : NO : A file is opened for :

. . : reading(REL,SEQ,PRG,USR):

In addition to the 'L1 parameter the record length must be

given (such as L80). A DOPEN command of this type looks like

this:

DOPEN#1,"FILE.PEL",DO,L8 0

Here a relative file is opened with a record length of 80

bytes. The declaration of the file parameter is only

necessary oncer at the establishment of the file. All later
openings of the file can occur without the parameter

declaration.

DS$ & PS:

After a disk error, the complete error message can be

displayed with PRINT DS$ or just the error number with PRINT

DS. Of course, the error can be read within a program and

the appropriate branch made. For example:

100 IF DS = 26 THEN GOTO ...

DSAVE:

A program can be saved on disk with this command. The

following format is to be noted:

DSAVE (Ddn,)"programname"(,Uda)

HEADER:

A disk is formatted with the HEADER command in BASIC 4.0. It

corresponds to the NEW command in BASIC 2.0. The syntax of

the command:

80

Anatomy of the 1541 Disk Drive

HEADER "disknameMfDOflid(U,da)

or HEADER Ddn,"diskname",Iid

Here there are two possibilities to designate the drive. The
id is the diskette identification. If it is not given, the
disk is presumed to be formatted and is merely given a new
name and all files are erased.

RECORD;

This command corresponds to the position command of BASIC
2.0 (DOS 2.6). The read/write head can be positioned over a
record in a relative file, without the need to send the
position over channel 15. The syntax of this command
illustrates how easy this positioning is:

RECORD*lfn,rn(,bp)

The logical file number is obtained from the opened relative
file, 'rn1 is the record number (1-65535) and 'Dp' is the
position within this record (1-254).

An example: You want to position the head over the twelfth
byte of the 128th record of a relative file opened with the
logical file number 2. The following command accomplishes
this:

RECORD#2,128,12

RENAME:

This RENAME is similar to the RENAME of BASIC 2.0. The
format of this command:

RENAME (Ddn,)"old name" TO "new name"(,Uda)

SCRATCH:

This method of erasing files is essentially easier because
files can be erased with one command. The format of this
command:

SCRATCH (Ddn,)"file"(,Uda)

After entering a SCRATCH command the message "ARE YOU SURE?"
which allows the command to be stopped. If the file is
really supposed to be erased, answer 'Y1 else 'N1. After
erasing the file, the message "FILES SCRATCHED" appears on
the screen.

81

Anatomy of the 1541 Disk Drive

Chapter 2: Advanced Disk Programming

2.1 Direct Access of any Block of the Diskette

When handling files and programs on the diskette, as des

cribed in Chapter 1, we didn't have to concern ourselves

with the organization on the diskette/ because the disk
operating system (DOS) took care of these details for us.

But the DOS offers the capability of accessing each

individual block on the diskette. This gives us a lot of

flexibility - ranging from manipulation of individual files

to creating completely new data structures.

In order to access a block directly, a channel is OPENed to

a data buffer within the 1541 disk drive. It is over this

channel that data is transmitted. The data buffer serves as

an intermediate storage place for the data that is read from

the diskette or written to the diskette. In order to inform

the DOS that we want to work with direct access commands, we

use a special filename in the OPEN command:

OPEN 1,8,2,-f

Using this command, logical file number 1 on device 8 (the

disk drive), is associated with a direct access file.

Channel 2 serves to transmit data to and from the disk

drive. The channel number (secondary address in the OPEN

command) may be 2 through 14. Channels 0 and 1 are reserved

for LOAD and SAVE and channel 15 is the command channel. The

choice of a secondary address is arbitrary. You may not use

the same secondary address simultaneously, since the DOS,

upon encountering the second OPEN command with the same

secondary address, closes the previous file using this
channel number. This also occurs when working with

sequential or relative files.

This form of the OPEN command causes the DOS to search for

a free data buffer and assign it to that channel. By using a

GET# statement immediately after the OPEN we can find the

buffer number that the DOS assigns:

100 OPEN 1,8,2,"#"

110 GET#1, A$

120 PRINT ASC(A$+CHR$(0))

RUN

In this case, buffer three was assigned. The buffer numbers

range from 0 to 4. Each buffer can hold 256 characters of

data. The buffers are located in the following memory

82

Anatomy of the 1541 Disk Drive

locations in the VIC 1541:

Buffer number Memory location

0 $300-$3FFf 768-1023
1 $400-$4FF, 1024-1279
2 $500-$5FF, 1280-1535
3 $600-$6FF, 1536-1791
4 $700-$7FF, 1792-2047

Buffer 4 is normally unavailable, because the BAM is stored
there. If we work with sequential or relative files at the
same timef buffer 3 is also unavailable, because it is used
for the directory, if we want to associate a specific data
buffer for direct access, we can assign it with the OPEN
command.

OPEN 1,8,2,"#3"

This associates buffer 3 ($600-$6FF) with channel number 2,
assuming it is still free. Unless you have a pressing reason
to use a specific buffer, you should leave the choice of the
buffer up to the DOS, because the choice of a definite
buffer increases the possibility that it will not be
available.

After opening a channel, you should check the error channel.

130 OPEN 15,8,15

140 GET#15, A$: PRINT A$; : IF STO64 THEN 140

If the buffer is already in use, you will receive the error
message

70,NO CHANNEL,00,00

If no other files are open, you can open up to 4 channels
for direct access. The following example illustrates this:

10 OPEN 1,8,15,"IO" : 1=2 : REM ERROR CHANNEL
20 OPEN 2,8,2, "#M : GOSUB 100

30 OPEN 3,8,3, "#" : GOSUB 100

40 OPEN 4,8,4, M#n : GOSUB 100

50 OPEN 5,8,5, ■#" : GOSUB 100

60 OPEN 6,8,6, "#" : GOSUB 100
70 END

100 GET#I,A$:PRINT ASC(A$+CHR$(0))
110 1=1+1 : REM BUFFER NUMBER

120 GET#1,A$: PRINT A$; : IF STO64 THEN 120
130 RETURN

When RUN, the above program produces the following output:

3

83

Anatomy of the 1541 Disk Drive

00, OK,00,00

2

00, OK,00,00

1

00, OK,00,00

0

00, OK,00,00

199

70,NO CHANNEL,00,00

As you see, attempting to open a fifth channel for direct

access fails.

Transmitting data to and from the buffer usually takes place

using the GET#, INPUT# and PRINT# statements.

If a buffer contains pure text (alphanumeric data) which is
not longer than 88 characters and is separated using CR

(Carriage Return, CHR$(13))r it can be read using INPUT#.
However, if the buffer contains control characters or the
text is separated using commas or colons, the INPUT#

statement fails. Then we must use the GET# statement, which
retrieves only one character at a time. GET# does not allow

null values (CHR$(0)) to be read. In this case, GE1#
receives an empty string and you must check for this

condition as below:

100 GET#2, A$: IF A$ + "" THEN A$ = CHR$(0)

A simpler alternative to the GET# statement is to use the

statement INPUT*, as is described in section 4.3.1. Here you

can declare how many characters are to be read into a

string. It also handles null values (CHR$(0)). You can read
almost the entire buffer (255 characters are possible) with

one command.

In the next section, all commands used for direct access are

described in detail. Keep the following points in mind when

using direct access commands.

When using direct access commands, you must explicitly cause

the blocks on the diskette to be read or written. The direct

access commands are transmitted over command channel 15. The

data that is read from or written to a buffer are

transmitted over a separate channel that is associated with

that buffer. Both channel 15 and the separate channel must

be OPENed before transmission can begin.

1) A PRINT# statement to command channel 15, sends a direct

access command to the DOS.

2) A PRINT# statement to channels 2 thru 14 sends data to a

buffer.

3) An INPUT# or GET# statement to command channel 15 re-

84

Anatomy of the 1541 Disk Drive

turns any error messages detected by the DOS.

4) An INPUT# or GET# statement to channels 2 thru 14, reads
the data from the buffer.

If you are ready to work with the block commands and want to
display individual blocks on the screen or change them, you
can use the DOS monitor in section 4.6, which provides a
simple and easy way of doing so.

85

Anatomy of the 1541 Disk Drive

2.2 The Direct Access Commands

2.2.1 The Block-Read Command B-R

The block-read command instructs the 1541 to read a block
from the diskette into a buffer of a previously opened
direct access file. The block-read command is sent over the
command channel (secondary address 15) to the disk drive.
The block-read command can be shortened to B-R. Because this
command does not read the first byte of the block, you can

substitute the command Ul to read a block. The command has

the following syntax:

Ul channelnumber drive track sector

You must give the channel number that you used when OPENing

the direct access file. Next follows the drive number, which
is always zero for the VIC 1541, and then the track and

sector numbers of the block you want to read.

10 OPEN 1,8,15

20 OPEN 2,8,2, "#"

30 PRINT#1, nUl 2 0 18 0M

This reads the contents of track 18 sector 0 into the buffer

belonging to channel 2. Now you can read the data from this

buffer with GET#2.

40 GET#2, A$,B$

50 PRINT ASC(A$), ASC(B$)

18 1

Now we have read and displayed the first two bytes in the

buffer. Sector 0 of track 18 contains a pointer to the first
directory block (track and sector) and the BAM for the

diskette.

In the demo program DISPLAY T&S on the TEST/DEMO diskette

(section 4.2.7) this command is used in order to read the

BAM from the disk and to graphically display each record on

the disk.

We can read all 256 bytes of the block from the buffer with

the GET# statement; in our example we will read the diskette

name and ID from position 144.

The blocks which comprise a file are chained to each other.

The first two bytes of each file block contains a pointer to

the track and sector of the following block. Using this

information, you can piece together the usage of disk space

for a file. A track pointer of zero indicates the last

86

Anatomy of the 1541 Disk Drive

block of the file and the pointer which usually contains the
sector number now contains the number of bytes of the last
block which are part of this file. The first sector of a
file can be read with our program in section 4.1.1. The
following small program displays all of the remaining tracks
and sectors that are part of the file.

100 OPEN 1,8,15

110 OPEN 2,8,2, "#"

120 INPUT "TRACK AND SECTOR M;T,S .

130 PRINT#1,"U1 2 0";T;S
140 GET#2, T$, S$

150 T = ASC(T$+CHR$(0)): S = ASC(S$+CHR$(0))
160 IF T=0 THEN CLOSE 2 : CLOSE 1 : END
170 PRINT "TRACK";T,"SECTOR";S
180 GOTO 130

Enter 18 and 0 as track and sector to follow the blocks for
the BAM and directory.

2.2.2 The Block-Pointer Command B-P

The diskette name is located starting at position 144 of
track 18, sector 0. Using the above example, we have to read
the first 143 bytes of the buffer in order to be positioned
at the diskette name. But the DOS has an easier way to do

this. To access any desired byte of a buffer, you can use
the block-pointer command. Using the block-pointer command
the DOS moves to an exact position within the buffer. The
block-pointer command can be shortened to B-P. The syntax
is the following:

B-P channelnumber position

Now we can read the diskette name directly:

100 OPEN 1,8,15

110 OPEN 2,8,2, "#"

120 PRINT#1,"U1 2 0 18 0"

130 PRINT#1,"B-P 2 144"

140 FOR I = 1 TO 16 : REM MAXIMUM LENGTH
150 GET#2, A$: IF A$=CHR$(160) THEN 170
160 PRINT A$; : NEXT

170 CLOSE 2 : CLOSE 1

Here we first read the block, set the buffer pointer to
position 144 and then read and print the diskette name which
has a maximum length of 16 characters. A shifted space
(CHR$(160)) indicates the end of the diskette name.

The bytes in the buffer are numbered 0 through 255, the
first byte having the number 0. The buffer pointer is auto-

87

Anatomy of the 1541 Disk Drive

matically set to zero by reading a block with 01. You can,

for example, read byte number 2 after reading the name. You

do this by setting the buffer pointer to this value.

PRINT#1, "B-P 2 2"

2.2.3 The Block-Write Command B-W

The block-write command allows us to write the contents of a

buffer to a desired block on the diskette. With this, you can

write the block one has sent to the buffer within the disk

drive.

It is possible to read a block into the buffer with the

block-read command, change some bytes, and then write the
block back. The block-write command can be shortened to B-W.

Because this B-W command writes the contents of the buffer
pointer, one usually uses the 02 command which always sets

the buffer pointer to 1. The syntax of the command is

analogous to the B-R command:

02 channelnumber drive track sector

100 OPEN 1,8,15

110 OPEN 2,8,2, "#"

120 PRINT#2, "TEST DATA"

130 PRINT#1, "U2 2 0 10"

140 CLOSE 2 : CLOSE 1

Here the text "TEST DATA" will be written to the buffer

associated to channel 2 and then written to track 1 sector 0

of the diskette. The 02 command does not change the contents

of the buffer.

Here's an example of using the block-write command to change

the diskette name that we read in the last section. For this

we must fill the new name with 16 characters ending with a

shifted spaces CHR$(160), so that we can write it to the

disk. We will again use the block-pointer command to set the

buffer pointer directly to the desired position within the

buffer.

100 OPEN 1,8,15

110 OPEN 2,8,2, "#"

120 PRINT#1,"U1 2 0 18 0"

130 PRINT#1,"B-P 2 144"

140 A$="NEW FILE NAME"

150 IF LEN(A$)<16 THEN A$=A$+CHR$(160) : GOTO 150

160 PRINT#2,A$;

170 PRINT#1,"U2 2 0 18 0"

180 CLOSE 2

190 PRINT#l,"I0" : CLOSE 1

88

Anatomy of the 1541 Disk Drive

First we read track 18 sector 0 into the buffer, set the
buffer pointer to the position of the diskette name and
write a new 16 character name to the buffer. Note that the
diskette name is changed in the buffer only. But in line
170, the buffer contents are written to the same block which
changes the name permanently on the diskette. Next channel 2
is closed. Finally the diskette is initialized so the BAM
and name in the DOS memory are updated. Get the directory

LOAD"$",8

LIST

on the screen to verify that the diskette name has changed.

2.2.4 The Block-Allocate Command B-A

The block-allocate command has the task of indicating in the
BAM (block availability map) is a particular diskette block
is being used. The block allocate command can be shortened
to B-A. For program, sequential or relative files, as
diskette blocks are used, the BAM is updated to note that
the block is no longer available. But blocks written using
the direct access commands are not automatically allocated.
When blocks used in this manner are not allocated, the
possibility exists that they will be overwritten when other
files are used. The block-allocate command can be used to
prevent this overwriting. The block-allocate command has the
following syntax:

B-A drive track sector

With this the corresponding block in the BAM is marked as
allocated and is protected from being overwritten by other
files. If the block was already allocated, the error channel
returns error message 65,'NO BLOCK1.

100 OPEN 1,8,15

110 INPUT "TRACK, SECTOR ";T,S

120 PRINT#1, "B-A 0";T;S

130 INPUT*1, A$,B$,C$,D$

140 PRINT A$","B$",IIC$","D$

Using this program you can input a track and sector number
of a block that you want to allocate. If the block is still

free, it was allocated and the message 00r OK,00,00 is

returned. If that block is already allocated, the message

65,NO BLOCK,TT,SS is returned. In this case TT and SS
contain the next higher numbered free block on the diskette.

This tells you that the requested block is allocated but the

block at TT,SS is still available. If error message 65
returns zeroes as the track and sector numbers, it means

89

Anatomy of the 1541 Disk Drive

that no block with a higher track and/or sector number is

available. The following program automatically allocates the

next free sector:

100 OPEN 1,8,15

110 INPUT "TRACK, SECTOR M;T,S

120 PRINT#1, "B-A 0";T;S

130 INPUT#1, A$,B$,TT,SS

140 IF A$ = "00" THEN 190

150 IF A$<>"65" THEN PRINT A$","B$M,"TT","SS : END

160 IF TT=0 THEN PRINT "NO MORE FREE BLOCKS" : END

170 IF TT=18 THEN TT=19 : SS=0

180 T=TT : S=SS : GOTO 120

190 PRINT "TRACK" TT "SECTOR" SS "ALLOCATED."

The test for track 18 in line 180 prevents a block in the

directory from being allocated. An additional error message

in connection with the B-A command is interesting. If one

attempts to allocate a block that does not exist, for

example, track 20 sector 21, one received the error message

66,ILLEGAL TRACK OR SECTOR,20,21

Marking a block as allocated in the BAM prevents it from

being overwritten by other files. The block will be

recognized as allocated until the command VALIDATE (COLLECT

in BASIC 4.0) is issued. The VALIDATE command rebuilds a new

BAM by rechaining the blocks of individual files and marking

each block as belonging to a a new BAM. Unclosed files,

marked in the directory with * are deleted. All blocks

allocated with the B-A command and those not belonging to a

properly closed file are freed. So, if you allocate blocks

that do not belong to a file that appears in the directory ,

you should not use the VALIDATE command, or the blocks will

be freed, thus destroying your file.

2.2.5 The Block-Free Command B-F

The block-free command performs the opposite function of the

block-allocate command. It marks a block as not allocated

(free) in the BAM. The block-free command can be shortened

to B-F.The syntax is analogous to the block-allocate

command:

B-F drive track sector

100 OPEN 1,8,15

110 PRINT#1, "B-F 0 20 9"

Here the block in track 20 sector 9 is freed in the BAM. If

this block is already free, no error occurs.

90

Anatomy of the 1541 Disk Drive

Allocating and freeing blocks has an effect only on the

blocks used by program, sequential or relative file by the

DOS. The block-write and block-read commands do not check

the BAM before overwriting blocks. With these commands you

can write to blocks marked as allocated in the BAM. If, for
example, you have a disk containing only direct access

files, it is in principle unnecessary to allocate written
blocks because no other files will be written on the
diskette. In this case, you can use the directory blocks in
track 18 and have 672 blocks available on the VIC 1541
diskette.

2.2.6 The Block-Execute Command B-E

The block-execute command allows a block to be read from
diskette into a buffer and then the contents of the buffer

to be executed as a machine language program. You can can
write routines that the DOS is supposed to execute with the

B-W or U2 command to a sector and later load it into a

buffer with the block-execute program where it will be

executed as a machine language program. Naturally, this

presupposes knowledge of the internal workings of the DOS.

If you want to use the B-E command, you usually give the
buffer number in the OPEN command, in case the machine

language program is not relocatable and is written for a
specific buffer. The block-execute command has the following
syntax:

B-E channelnumber drive track sector

100 OPEN 1,8,15

110 OPEN 2,8,2, "#3"

120 PRINT#1, "B-E 2 0 17 12"

Here buffer 3 ($600-$6FF) is assigned to channel 2. The

contents of track 17 sector 12 is loaded into this buffer

and there the machine language program is executed.

The block-execute command is a combination of the block-read
and memory-execute commands. Examples of the design of

machine language programs to execute in the DOS are found in
section 2.4 by the memory commands.

91

Anatomy of the 1541 Disk Drive

2.3 Uses of direct access

What do the direct access commands permit us to do?

Here is a sample of their use:

By manipulating individual sectors you can make changes to

the BAM sector (Track 18, Sector 0) such as changing the

diskette name or ID,

You can make changes to the DIRECTORY (beginning at Track

18, Sector 1). Each file entry in the directory has unused

space. You can use the unused space to store additional

information.

You can change file names in the directory by using direct

access commands.

You can follow the "chaining" of the blocks in a file to

determine if the file is intact.

You can CLOSE an unclosed file by setting bit 7 of the file

type indicator in the directory. For example, you can change

the file type indicator from $02 to $82. Normally these

files are indicated in the directory with an asterisk; after

the above change the asterisk will disappear.

Each file entry also contains a "lock" which disallows

deletion (SCRATCH command). If you set bit 6 of the file

type then the file is said to be locked and not available

for deletion. These entries have the < symbol after the type

designation in the directory listing. Using this bit of

knowledge, you can protect important programs on your

diskette from accidental erasure. More information on this

topic is found in section 4.1.

If you are interested in making such changes, you may want

to read an entire sector and display it on the screen,

change it, and write it back again. Such a program called

the DISK MONITOR is described in section 4.6. Before you

begin with such experiments, however, you should make a copy

of your diskette. A directory or BAM error can result in the

loss of the entire diskette contents.

Have you ever accidentally scratched a program or file from

a diskette? As long as you haven't written any other

programs or data to the diskette, you can recover this

scratched file. Scratching a file simply sets the file type

to 0 in the directory and frees the allocated blocks. You

need only search the directory entries for the file and

restore the file type: $81 for SEOr $82 for PRG, $83 for
USR, and $84 for REL. After restoring the file type, you

should use the VALIDATE command to reallocate the blocks

again (for example: OPEN l,8,15:PRINT#l,"V0").

92

Anatomy of the 1541 Disk Drive

Other uses of direct access can provide the means for
creating new data structures that the DOS normally does not
recognize. You can undertake the management of the new file
yourself, and use the direct access commands for reading and

writing. Such a data structure is the ISAM file. ISAM is an
abbreviation for Indexed Sequential Access Method. With an
ISAM file, you can directly access each record, similar to
the relative file. However, access is not by the record
number, however, but by a key or index. This index is a
field within the record. If, for example, a record consists
of 5 fields, last name, first name, street, city/state and
zip code, last name can be defined as the access key. To to
read the record Muller, the command is simply fread record
"Muller"1. We need not concern ourselves with record number
or other ordering criteria and can select which record we
want to read, change, write or erase with clear text. In

such an ISAM file system, the index is usually saved
separately, together with the information where the data
record can be found on the disk. Such an ISAM file

management with very powerful additions as described here,
is found along with other features in the program
development system MASTER 64, also available for the
Commodore 64 from Abacus Software.

93

Anatomy of the 1541 Disk Drive

2.4 Accessing the DOS - The Memory Commands

In section 2.2.6 we saw a way to load a program into DOS

memory and execute it. With the memory commands, we can

access each byte of the DOS and execute programs in RAM and

ROM. For instance, we can access the work space of the DOS

and read the number of free blocks on the disk or get the

disk name from the BAM buffer. By writing into the DOS RAM

we can change constants such as the device number of the

drive or the number of read attempts for a block until an

error message results. Furthermore, we can execute routines

inside the DOS memory. These can be DOS ROM routines or your

own, that are stored in a buffer and executes there. Of

course this presumes knowledge of 6502 machine language and

of the method of operation of the DOS. We hope this book is

be helpful for the latter. Now follows a description of the

commands and examples of their use.

2.4.1 The Memory-Read Command M-R

Using this command, you can access each byte of the DOS. The

memory-read command can be shortened to M-R. The memory-read

command is transmitted over the command channel. The byte

read is then returned over the command channel where it can

be retrieved with GET#. The syntax of the command looks like

this:

M-R CHR$(LO) CHR$(HI)

LO and HI signify the low and high bytes of the address in

the DOS that should be read. The following program asks for

an address and reads the contents of the address out of the

DOS.

100 INPUT"ADDRESS ";A

110 HI = INT (A/256)

120 LO = A-256*HI

130 OPEN 1,8,15

140 PRINT#1, "M-R";CHR$(LO);CHR$(HI)

150 GET#1,A$

160 PRINT ASC(A$+CHR$(0))

For instance, if we want to know the number of free blocks

on a diskette, we don't have to read the entire directory,

rather we can read the approprial -• bytes directly from the

DOS storage. This may be necessary il files are to be

established by a program and you don't know if there is

enough space on the disk.

100 OPEN l,8,15f"I0"

110 PRINT#1, "M-R" CHR$(250) CHR$(2)

120 GET#1, A$: IF A$="" THEN A$=CHR$(0)

94

Anatomy of the 1541 Disk Drive

130 PRINT#1, "M-R" CHR$(252) CHR$(2)
140 GET#1, B$: IF B$=nM THEN B$=CHR$(0)
150 PRINT ASC(A$) + 256 * ASC(B$) "BLOCKS FREE"
160 CLOSE 1

With this syntax, an M-R command must be given for each byte
that is to be read. As you can gather from the DOS listing
and through checking and verifying, one can read more than
one byte at a time with a M-R command. You need only give
the number of bytes to be read as the third parameter:

M-R CHR$(LO1 CHR$(HI) CHR$(NUMBER)

We can use this to read the name of a diskette from the BAM
Duffer storage. Before this can be done, the diskette must

^e iu A u1 «ized so that the current diskette name is stored
in the buffer at address $700, out of which we will read the
name of the disk with the M-R command.

100 OPEN 1,8,15, "10"

110 PRINT#1, "M-R" CHR$(144) CHR$(7) CHR$(16)

130 PRINT A$

This is a simple way to read the name of the diskette (16
characters padded with shifted spaces (CHR$(160)). with this
you can check if the correct diskette is in the drive.

The disk buffer can also be read using this method. It also
allows parts of the DOS to be manipulated by copying the
contents of the ROM to a buffer where it can be changed and
executed. This is explained in the next two sections.

2.4.2 The Memory-Write Command M-W

The complement command of memory-read is the command to
write data in the DOS storage memory-write or M-W. Writing
is allowed only to DOS RAM - page zero, stack, and buffers.
It is possible to send several bytes with one command. The
syntax look like this:

M-W CHR$(LO) CHR$(HI) CHR$(NUMBER) CHR$(DATA1) CHR$(DATA2)

The number of bytes as specified by NUMBER can be
transmitted, theoretically 255, but because the input buffer
holds only 40 characters, the number of bytes is limited to

34. A possible use of this command is to change the address

number (see program 'DISK ADDRESS CHANGE1, section 4.2.3).
The address is stored in two memory locations in page zero.

The device number plus $20 (32 decimal) is stored in address
$77 (119 decimal) for LISTEN, for receiving data from the

computer. The address immediately following contains the

95

Anatomy of the 1541 Disk Drive

device number plus $40 (64 decimal) for TALK, for sending
data to the computer. Because the addresses are saved

separately. It is possible to use different send and receive
addresses. In the following example, the receive address is

set to 9 and the send address to 10.

100 OPEN 1,8,15

110 PRINT*1, "M-W" CHR$(119) CHR$(0) CHR$(2)
CHR$(9+32) CHR$(10+64)

120 CLOSE 1

140 OPEN 1,9,15

150 OPEN 2,10,15

160 PRINT#1,"IO"

170 INPUT#2,A$,B$,C$,D$

180 PRINT A$",MB$tf,1IC$lVID$

00, OK,00,00

Programs cannot be loaded this way because the DOS will try
to load the program using the same address that the filename

was sent under.

Changing the device number is necessary if you want to use

more than one disk drive with a single computer. To this

end, change the device address of the second drive to 9.

This software change remains in effect only until a reset

(for example, turning the drive off). If the change needs to

be permanent, you can change the with DIP switches or cut

the circuit board jumper inside the drive.

Because many parameters of the DOS are in RAM, you can make

extensive changes to the function of the DOS, such as the

step size, with which the number of sectors per track is

determined (address $69 (105 decimal), normally contains

10). We can also specify the number of attempted reads until

an error results (address $6A (106 decimal), contains 5).

More addresses of parameters can be found in section 3.1.2.

2.4.3 The Memory-Execute Command M-E

Using this command you can call up and execute machine

language programs in the DOS memory. The memory-execute

command can be shortened to M-E. The programs must end with

RTS (Return from Subroutine, $60). The syntax of the

command:

M-E CHR$(LO) CHR$(HI)

Again, LO and HI are the low and high bytes of the starting

address of the machine language routine. It is possible to

call up routines in the DOS ROM as well as our own routines

written to a buffer with M-W and there executed. As an

96

Anatomy of the 1541 Disk Drive

example, you can call up a routine that creates an error
message. For example, address $EFC9 is the entry point for

message 72, "DISK FULL". The. example looks like this:

100 OPEN 1,8,15

110 PRINT#1,"M-E" CHR$(201) CHR$(239)
120 INPUT#1,A$,B$,C$,D$
130 PRINT A$ "," B$ ",M C$ "," D$

In line 110, the address $EFC9 is divided into a low byte of
$C9 (201) and high byte of $EF (239) and sent as the
parameters of the M-E command. Then the error channel is
read and the message displayed.

72,DISK FULL,00,00

If you want to run your own programs in the 1541 drive, the
program should be written to a buffer and there called with
M-E. Should this program be used more often, the contents of
the buffer can be written to a block on the diskette. It can
then be executed with the B-E command, which loads the
contents of the block in the buffer and then automatically
starts the routine. As a suggestion for your own program in
DOS, you can display the directory in a different form, with
additional parameters, similar to the program in section
4.1.1. In addition, you could count the number of files on
the disk and display that. Using such a routine you can get
a much clearer understanding of how the directory is created
in the DOS listing. If you are clear on the matter of the
new directory format, you are ready to take the additionel
parameters from the directory entries and assemble them in
the desired format.

2.4.4 The User Commands U

Using the USER commands there are two possible ways of
executing programs in the drive. The user commands have the
following syntax:

UX

X can be a letter from A to J or a digit from 1 to 9 or ':'
(which takes the place of 10). When a command is called, a
jump is made to the following addresses in DOS:

substitute for 'Block-Read'

substitute for 'Block-Write'

UA

UB

UC

UD

UE

UF

UG

Ul

U2

U3

U4

U5

U6

U7

$CD5F

$DC97

$0500

$0503

$0506

$0509

$050C

97

Anatomy of the 1541 Disk Drive

UH

UI

UJ

U8

U9

U:

$050F

$FF01

$EAA0 reset

You are already acquainted with the commands Ul and U2 (also

UA and UB); they serve as substitutes for BLOCK-READ and
BLOCK-WRITE. The commands U3 to U8 (UC to UH) jump to
addresses within buffer 2 (address $500 (1280) - see section
2.1). If you want to use several commands, a jump table to
individual routines can be placed there; if only one user

command (U3) is used, the program can begin directly at

$500.

The user command UJ jumps to the reset vector; the disk

drive is then reset.

100 OPEN 1,8,15

110 PRINT*1,"UJ"

120 FOR 1=1 TO 1000 : NEXT
130 GET#1,A$: PRINT A$: IF STO64 THEN 130

73,CBM DOS V2j.6 1541,00,00

Line 120 waits for the reset to take place. Then the

initialization message is retrieved in line 130.

By using the user commands, parameters can be passed to the

routines. The complete command string is put in the input
buffer at $200 (512). Possible parameters are addresses,

command codes, and filenames. This way, the user commands

can be utilized to expand the commands of the disk or to
realize a new data structure. Whole user commands can

replace the M-E command with its corresponding addresses;

the user-call is shorter and clearer.

98

Anatomy of the 1541 Disk Drive

Chapter 3: Technical Information

3.1 The Construction of the VIC 1541

3.1.1 Block Diagram of the Disk Drive

O D
IT) &(

VO U

< 3
5 S

I IS

JO^OW

< cs
h in
> vo A

99

Anatomy of the 1541 Disk Drive

3.1.2 DOS Memory Map - ROM, RAM, I/O

Memory map of the VIC 1541 disk drive

65535

49152

16K

Control system

$FFFF

$C000

7183

7168

6159

6144

VIA Disk Control

VIA serial bus

$1COF

$1COO

$180F

$1800

2047 $07FF

$0000

100

Anatomy of the 1541 Disk Drive

Layout of the I/O Ports (VIA 6522)

VIA 6522 1, Port for Serial Bus

$1800

$1801

$1802

$1803

$1805

PB 0:

PB 1:

PB 2:

PB 3:

PB 4:

Port B

Port A

Direction of Port B

Direction of Port A

Timer

DATA IN

DATA OUT

CLOCK IN

CLOCK OUT

ATN A

PB 5,6: Device address

CB 2: ATN IN

VIA 6522 2, Port for Motor and Read/Write Head Control

$lC00

$1CO1

$1CO2

$1CO3

PB 0:

PB 1:

PB 2:

PB 3:

PB 4:

Port B, control port

Port A, data to and from read/write head
Direction of Port A

Direction of Port B

STP I

STP O

MTP

ACT

WPS

step motor for head movement

drive motor

LED on drive

Write Protect Switch

PB 7:

CA 1:

CA 2:

SYNC

Byte ready

SOE

101

Anatomy of the 1541 Disk Drive

The Layout of the Important Memory Locations

0

1

2

3

4

6

8

10

12

14

18

20

22

32

48

57

58

61

63

67

71

73

74

81

105

106

111

119

120

121

122

124

125

127

128

129

130

131

132

133

139

148

153

155

157

159

161

163

165

$00

$01

$02

$03

$04

$06-$07

$08-$09

$0A-$0B

$0C-$0D

$0E-$0F

$12-$13

$14-$15

$16-$17

$20-$21

$30-$31

$39

$3A

$3D

$3F

$43

$47

$49

$4A

$51

$69

$6A

$6F-$70

$77

$78

$79

$7A

$7C

$7D

$7F

$80

$81

$82

$83

$84

$85

$8B-$8D

$94-$95

$99-$9A

$9B-$9C

$9D-$9E

$9F-$A0

$A1-$A2

$A3-$A4

$A5-$A6

Command code for buffer 0

Command code for buffer 1

Command code for buffer 2

Command code for buffer 3

Command code for buffer 4

Track and sector for buffer 0

Track and sector for buffer 1

Track and sector for buffer 2

Track and sector for buffer 3

Track and sector for buffer 4

ID for drive 0

ID for drive 1

ID

Flag for head transport

Buffer pointer for disk controller

Constant 8f mark for beginning of data

block header

Parity for data buffer

Drive number for disk controller

Buffer number for disk controller

Number of sectors per track for

formatting

Constant 7, mark for beginning of data

block header

Stack pointer

Step counter for head transport

Actual track number for formatting

Step size for sector division (10)

Number of read attempts (5)

Pointer to address for M & B commands

Device number + $20 for listen

Device number + $40 for talk

Flag for listen (1/0)

Flag for talk (1/0)

Flag for ATN from serial bus receiving

Flag for EOI from serial bus

Drive number

Track number

Sector number

Channel number

Secondary address

Secondary address

Data byte

Work storage for division

Actual buffer pointer

Address of buffer 0 $300

Address of buffer 1 $400

Address of buffer 2 $500

Address of buffer 4 $600

Address of buffer 5 $700

Pointer to input buffer $200

Pointer to buffer for error message $2D5

102

Anatomy of the 1541 Disk Drive

181

187

193

199

212

213

214

215

231

249

256-325

512-552

586

600

601

602

628

632

663

640-644

645-649

725-761

762/764

768-1023

1024-1279

1280-1535
1536-1791

1792-2047

$B5-$BA

$BB-$C0

$C1-$C6

$C7-$CC
$D4

$D5

$D6

$D7

$E7

$F9

$100-$145
$200-$228
$24A

$258

$259

$25A

$274

$278

$297

$280-$284
$285-$289
$2D5-$2F9

$2FA/$2FC
$300-$3FF
$400-$4FF

$500-$5FF
$600-$6FF

$700-$7FF

Record # lo, block # lo

Record # hi, block # hi

Write pointer for rel. file
Record length for rel. files

Pointer in record for rel. file
Side sector number

Pointer to data block in side sector
Pointer to record in rel. file
File type

Buffer number

Stack

Buffer for command string
File type

Record length

Track side-sector

Sector side-sector
Length of input line

Number of file names
File control method
Track of a file

Sector of a file

Buffer for error message

Number of free blocks
Buffer 0

Buffer 1

Buffer 2

Buffer 3

Buffer 4

103

Anatomy of the 1541 Disk Drive

3.2 Operation of the DOS - An Overview

The VIC-1541 is an intelligent disk drive with its own
microprocessor and control system (Disk Operation System,

DOS). This means that no memory space or processing time is
taken from the computer. The computer needs only transmit
commands to the disk drive, which it then executes on its

own.

The disk performs three tasks simultaneously: Firstly, it
manages data traffic to and from the computer. Secondly, it
interprets the commands and performs the management of files
and the associated communications channels and block buffer.
Thirdly, it handles the hardware-oriented related functions
of the disk drive - formatting, reading and writing, etc.

These tasks are carried out simultaneously by the 6502

microprocessor in the VIC 1541. This is possible with the
help of the interrupt technique. Only in this way can three

tasks be executed simultaneously.

Most of the DOS is concerned with interpreting and executing

the transmitted commands. The reception of data and commands
from the computer is controlled by interrupts. If the
computer wants to talk to a peripheral device, it sends a
pulse along the ATN line (ATteNtion, see section 5.1). This

generates an interrupt at the disk drive. The DOS stops its
current task and notices that the computer wants to send
data. The DOS then finishes the original task. After that,
the DOS will accept further data and commands from the the
computer. If the command is finished, the DOS stays in a
wait loop until new commands arrive from the disk.

The execution of a command at this level is limited to the
logical processing of the command, the management of the

communications channel to and from the computer and the
preparation and retrieval of data to be written or read,

respectively. The tasks of a disk controller, formatting

diskettes and writing and reading individual blocks, must

also be performed by the processor.

These tasks are again interrupt controlled. Regular programs

in the disk are interrupted every 14 milliseconds by a

built-in timer, and control branches to a program that

fulfills the tasks of a disk controller. Communications

between the two independent programs is handled through a

common area of memory, in which the main program places

codes for the disk controller program. If the interrupt

program is active, it looks at the memory locations to

determine which activities are demanded, such as formatting

a diskette, if this is the case, the drive and head motors

are set in motion. At the end of the interrupt routine, the

main program examines the memory locations to determine if

the task was carried out by the disk controller, or if it

104

Anatomy of the 1541 Disk Drive

case of'an^J" thlK W*y' th*. main pr°9ram is infomed incase of an error, such as a read error or if a write protect
taD ls. present. The main program can then re
appropriately and display the error message, for example.

adl«t ™T ?," dlSkSr tW° 6504 "• ^processors are used as
arel of memory^"' Comnlunlcation a9ain oc<=urs over a common

st.ora9e lavout of the DOS such as the I/O

l^^1'11^ and serial bus can be

105

Anatomy of the 1541 Disk Drive

3.3 The Structure of the VIC 1541 Diskette

The diskette of the 1541 is divided into 35 tracks. Each

track contains from 17 to 21 sectors. The total number of

sectors is 683. Because the directory occupies track 18, 664

data are available for use, each containing 256 bytes. The

tracks are layed out as follows:

TRACK NUMBER OF SECTORS

: 1

:18

:25

:31

TO

TO

TO

TO

17 :

24 :

30 :

35 :

21 :

19 :

18 :

17 :

The varying number of sectors per track is necessitated by

the shortening of the tracks from the midpoint on.

3.3.1 The BAM of the VIC 1541

BAM is an abbreviation for Block Availability Map. The BAM

indicates whether a block on the diskette is free or

allocated to a file. After every manipulation of blocks

(saving, deleting, etc.) the BAM is updated. When the BAM

indicates that a file to be saved requires more blocks than

are available, an error message is given. When a file is

OEPNed, the BAM in the DOS storage is updated, and is
rewritten to disk when the file is CLOSEd. Commands that'

have a write or delete function read the BAM, update it, and

rewrite it to the diskette. The BAM is organized as follows

on track 18 sector 0:

: Track 18, sector 0

: BYTE : CONTENTS : MEANING

: 0,1 ($00-$01) : $12,$01

: :

: 2 ($02) : $41

: :

: 3 ($03) : $00

: 4-143 ($04-$8F) :

: :

: Track and sector of the 1st":

: block of the directory :

: ASCII character •A1; :

: indicates 1541 format :

: Zero flag for future use :

: Bit map of free and :

: allocated blocks * :

: 1 = block free; 0 = block allocated

The bit map of the blocks is organized so that 4 bytes

106

Anatomy of the 1541 Disk Drive

represent the sectors on a track. As can be inferred from

the following table, the first of the 4 bytes contain the
number of free blocks in the track. The other 3 bytes (24
bits) indicate which blocks are free and which are allocated
in this track.

Structure of the BAM entry of a track:

: BYTE CONTENTS

: 0

: 1

: 2

: 3

: Number of available blocks in this track
: Bit map of sectors 0-7
: Bit map of sectors 8-15

: Bit map of sectors 16-23

4 bytes of a track designation in the BAM:

: Track 18, sector 0, bytes 4-7 (track 1) :

00001010

($0A)
00000000 00000011 11111111 :

($00) ($03) ($FF) :

: 10 free

: blocks
: 1

: 0

free

allocated

Using a simple program, you can read the first byte of each
track entry in the bit map, add them up and find the total
number of free blocks on the diskette.

3.3.2 The Directory

The directory is the table of contents of the diskette. It
contains the following information:

- disk name

- disk ID

- DOS version number

- filenames

- file types

- blocks per file

- free blocks

This directory is loaded into memory with the command LOAD

"$",8. A program previously in memory will be destroyed! It

can be displayed on the screen with the LIST command.

The directory occupies all of track 18 on the disk. The file

entries follow the directory header. Each block accommodates

107

Anatomy of the 1541 Disk Drive

a maximum of 8 file entries. Because the BAM and the header

occupy one block, 18 blocks are left for file entries. A
total of 144 files may reside on one diskette (18 blocks

with 8 entries each).

Format of the directory header:

Track 18, sector 0

BYTE CONTENTS : MEANING

: 144-161 ($9O-$A1) :

: 162,163 ($A2-$A3) :

: 164 ($A4) : $A0

: 165,166 ($A5-$A6) : $32,$41

• 167-170 ($A7-$AA) : $A0

: 171-255 ($AB-$FF) : $00

: Disk name (padded with :

: shifted spaces) :

: Disk ID marker :

: Shifted Space :

: ASCII characters "2A" :

: (format) :

: Shifted Space :

: not used, filled with 0 :

: * Bytes 180 to 191 have the contents "BLOCKS FREE11 on

: many diskettes

The Diskette Name:

The name of the diskette can be a maximum of 16 characters

in length and is established when the diskette is formatted.

If fewer then 16 characters are given, the rest is filled
with shifted spaces ($A0). The following BASIC routine reads

the name and saves it in the string variable DN$:

100 OPEN 15,8,15,"10"

110 OPEN 2,8,2,"#"

120 PRINT#15,"B-R";2;0;18;0

130 PRINT#15,"B-P";2;144

REM COMMAND CHANNEL 15

AND DISK INITIALIZED

: REM DATA CHANNEL 2 OPENED

: REM TRACK 18, SECTOR 0 READ

AND PLACED IN CHANNEL 2

: REM BUFFER-POINTER TO BYTE

144

: REM STRING DN$ IS ERASED140 DN$=""

150 REM LOOP TO READ THE 16 BYTES OF THE NAME

160 FOR 1=1 TO 16

170 ::GET#2,X$

180 ::IF ASC(X$)=160 THEN 200

190 ::DN$=DN$+X$

200 NEXT I

210 CLOSE 2:CLOSE 15

: REM READ A BYTE

: REM IGNORE SHIFT SPACE

: REM BYTE ADDED TO DN$

: REM CLOSE CHANNELS

After running the routine, the string DNS contains the disk

name.

108

Anatomy of the 1541 Disk Drive

Diskette ID:

The diskette ID is two characters in length and is specified
when formatting the diskette. The DOS uses this ID to detect

if a diskette in the drive has been replaced. If so, then
the DOS performs an INITIALIZE. Initializing a diskette
loads the BAM into memory in the drive. This way, the actual
BAM is always in memory, provided the ID given when
formatting is always different. Should this not be the case,
a diskette must be initialized explicitly by using the
INITIALIZE command.

3.3.3 The Directory Format

Blocks 1 through 19 on track 18 contain the file entries.
The first two bytes of a block point to the next directory
block with file entries. If no more directory blocks follow,
these bytes contain $00 and.SFF, respectively.

: Track 18, sector 1

! Byte : Contents

: °/l ($00,$01) : Track and sector number of the :
' : next directory block :

: 2-31 ($O2-$1F) : Entry of 1st file :

: 34-63 ($22-$3F) : Entry of 2nd file :

: 66-95 ($42-$5F) : Entry of 3rd file :
: 98-127 ($62-$7F) : Entry of 4th file :

: 130-159 ($82-$9F) : Entry of 5th file :

: 162-191 ($A2-$BF) : Entry of 6th file :

: 194-223 ($C2-$DF) : Entry of 7th file :

: 226-255 ($E2-$FF) : Entry of 8th file :

Format of a Directory Entry:

Each file entry consists of 30 bytes, the functions of which
are described below:

109

Anatcany of the 1541 Disk Drive

: BYTE : CONTENTS

: 3-18 ($03-$12)

: 19,20 ($13,$14)

: 0 ($00) : File type :

: 1,2 ($01,$02) : Track and sector number of the :

: : first data block :

Filename (padded with "SHIFT SPACE" :

Only used for relative files :

: : (track and sector of the first :

: : side-sector block) :

: 21 ($15) : Only used for relative files :

• : (record length) :

: 22-25 ($16-$19) : Not used :

: 26,27 ($1A-$1B) : Track and sector number of the new :

• : file when overwritten with the @: :

: 28,29 ($1C-$1D) : Number of blocks in the file (low :

: : byte, high byte) :

File Type Marker:

Byte 0 of the file entry denotes the file type. Bits 0-2 are

used to indicate the 5 file types. Bit 7 indicates if the

file has been CLOSEd properly. Closing a file sets bit 7. An

unclosed file is denoted with an asterisk in front of the

file type in the directory listing. If, for example, a

sequential file "TEST" is opened and the directory is
listed, this file will be represented like this:

12 "TEST" fcSEO

If the file is CLOSEd again, the asterisk does not appear in

future directory listings. If this file remains unclosed and

later opened, the error message "WRITE FILE OPEN" will

appear.

The File Type:

In order to understand the function of byte 0 in the file

entry, the file type, a table of all file types follows:

: File type : Bit mask opened

: 7654 3210 HEX

Bit mask closed

7654 3210 HEX

: DELeted

: SEQuential

: ProGram

: USeR

: RELative

: 0000

: 0000

: 0000

: 0000

: 0000

0000

0001

0010

0011

0100

$00

$01

$02

$03

$04

: 1000

: 1000

: 1000

: 1000

: 1000

0000

0001

0010

0011

0100

$80 :

$81 :

$8 2 :

$83 :

S84 :

Perhaps you have noticed that bits 3-6 have no function. But
we verified with help from the DOS listing, bit 6 has a

110

Anatomy of the 1541 Disk Drive

function:

BIT 6 OF THE FILE TYPE DENOTES A PROTECTED FILE!

If you set this bit to 1, the corresponding file can no
longer be deleted. This is designated in the directory
listing with a < next to the file type. Because setting this
bit requires some complicated commands, you will find a
program in chapter 4 of this book with which you can
protect, unprotect, and delete files.

Track and sector of the first Data Block

Bytes 1 and 2 of the file entry point to the first data
block of the file. The first byte contains the track and the
second the sector number where the file begins. The first
data block, in turn contains a pointer to the second block
of the file (also contained in the first two bytes of the
block). The last data block of the file is indicated by a
first-byte value of $00. The second byte contains the number
of bytes used in this last sector.

This concatenation can be explained with the help of the DOS
MONITOR, contained in this book:

>:B0 A0 A0 A0 A0 A0 00 00 00 ...

>:B8 00 00 00 00 00 00 0B 00

>:C0 00 00 81 13 09 54 31 32 T12
>:C8 2F 53 30 31 A0 A0 A0 A0 /S01

>:D0 A0 A0 A0 A0 A0 00 00 00

>:D8 00 00 00 00 00 00 06 00

>:E0 00 00 82 10 00 44 49 53 DIS

>:E8 4B 20 41 44 44 52 20 43 K ADDR C

>:F0 48 41 4E 47 45 00 00 00 HANGE...

>:F8 00 00 00 00 00 00 04 00

This is an extract from the directory (track 18, sector 1)
of the TEST/DEMO diskette. You can follow the organization
of the file DISK ADDR CHANGE. The entry of this file begins
at byte $E2 and ends with byte $FF. This is a PRG file,

which can be recognized by the file type $82 in byte $E2.

This file comprises 4 blocks on the disk. This is evident
from bytes $FE and $FF. Bytes $E3 and $E4 of the entry
address the first data block of the file ($10, $00,

corresponding to track 16, sector 0).

Let's look at a section of this block:

>:00 10 0A 01 04 OF 04 64 00 $.

>:08 97 35 39 34 36 38 2C 31 .59468,1

>:10 32 00 39 04 6E 0D 99 22 2.9...."

>:18 93 13 11 11 11 11 44 52 DR

>:20 49 56 45 20 41 44 44 52 IVE ADDR

>:28 45 53 53 20 43 48 41 4E ESS CHAN

111

Anatomy of the 1541 Disk Drive

>:30 47 45 20 50 52 4F 47 52 GE PROGR

>:38 41 4D 22 00 59 04 6F 00 AM".Y./.
>:40 99 22 11 54 55 52 4E 20 .".TURN

>:48 4F 46 46 20 41 4C 4C 20 OFF ALL

This block contains the first part of the program. It is
stored on the diskette exactly as it is stored in the

computer's memory. The BASIC commands are converted to one

byte codes called tokens. This is why only the text can be

recognized in the right hand translation of the hexadecimal
codes. The first two bytes of this data block indicate the
second data block ($10 and $0A, track 16, sector 10) from

with this section follows:

>:00

>:08

>:10

>:18

>:20

>:28

>:30

>:38

>:40

>:48

10

00

8F

52

45

36

48

44

B4

20

14

8D

20

49

00

30

41

52

00

53

34

20

46

56

39

30

4E

45

99

45

30

33

49

45

05

3A

47

53

22

4C

00

30

4E

20

AA

20

45

53

11

45

ID

30

44

54

00

8F

20

00

54

43

05

3A

20

59

8D

20

41

68

48

54

A0

20

44

50

20

43

44

05

45

45

..40...

.. 300:

. FIND D

DRIVE TYP

e . y • ..

600: . C

HANGE AD

DRESS.(.

..".THE

SELECTE

The program is continued in this block. Bytes $00 and $01

point to the third data block of the file ($10, $14, track

16, sector 20):

>:00

>:08

>:10

>:18

>:20

>:28

>:30

>:38

>:40

>:48

10

06

35

31

32

36

43

4D

3A

31

08

54

34

31

30

00

B2

54

20

2E

31

01

20

39

33

45

32

B2

32

32

30

8B

A7

3A

31

06

32

35

30

00

30

20

20

20

20

5E

36

30

34

67

30

43

4D

8F

56

01

20

3A

30

06

00

B2

54

3A

32

8B

A7

20

20

68

23

32

B2

20

2E

20

20

8F

56

01

..1000.#

.T.. C 2

54 MT

119: .:

2031 V2.

D . E . . .

C 226

MT 50: .

: 2040 V

1.2. .(.

This is the next to the last block of the program. You have

no doubt recognized that the data blocks are in the same

track, but are not contiguously. The first data block is

block 0. The next is block 10, 10 blocks from the first

block. 9 blocks are always skipped between data blocks of a

file. The third data block is block number 20. The DOS

begins again with the first block if the calculated block

oversteps the highest block. Because track 16 contains 21

blocks, the last data block is block number 8. The first two

bytes of this third block address it:

>:00 00 F8 5A 42 B2 31 20 A7 . ZB 1

>:08 20 34 34 30 00 14 07 A3 440...

>:10 01 8B 20 53 54 20 A7 20 .. ST

>:18 31 30 30 30 00 45 07 B8 1000.E.

112

Anatomy of the 1541 Disk Drive

>:20 01 98 31 35 2C 22 4D 2D .,15,"M-
>:28 52 22 C7 28 31 37 32 29 R" (172)

>:30 C7 28 31 36 29 3A Al 23 (16): #

>:38 31 35 2C 5A 43 24 3A 5A 15,ZC$:Z
>:40 43 B2 C6 28 5A 43 24 AA C F(ZC$
>:48 C7 28 30 29 29 00 66 07 G(0)).&.

Here the end of the program is marked by the value $00 in
byte $00. Byte $01 gives the number of bytes in this last
block that belong to the program. ($F8 corresponds to 248
bytes). Now we can find out the size of the program:

3 blocks with 254 bytes each = 762 bytes
last block = 248 bytes

Size of the program noo bytes

The Filename:

The filename is contained in bytes 3-18 of the file entry.
It consists of a maximum of 16 characters. Should the name
be shorter than 16 characters, the rest of the name is
padded with shifted spaces ($A0).

Track and Sector of the new File for "Overwriting":

If a file is overwritten by using the @:, the new file is
first completely saved. No filename entry is made in the
directory for this file because the file already exists
under this same name. Instead the address of the first block

of the new file is placed in bytes 26 and 27 of the filename
entry. If the new program is removed, the old one is
deleted, which merely designates the blocks allocated to the
file as free in the BAM. Now the address of the first data
block of the new file is placed into the filename entry in
bytes 1 and 2 is used and the file is "overwritten".

Number of Blocks in the File:

The length of a file is given in bytes 28 and 29 of its file
entry. A file consists of at least one block and as many as
664 blocks. The first byte is the low byte, and the second
is the high byte. If, for example, you discovered the file
length $lF,$00 with the DISK MONITOR, the file consists of
31 blocks.

113

Anatomy of the 1541 Disk Drive

3.4 The Organization of Relative Files

Relative files differ from sequential files in that each
data record can be accessed directly by a record number.
The 1541 DOS takes care of most of the tasks required to
support relative records. Let's take a closer look at the
organization of a relative file.

First OPEN a relative file with a record length of 100:

OPEN 2,8,2, nREL-FILE,L,M+CHR$(100)

Now write data record number 70:

OPEN 1,8,15
PRINT#l,"Pn+CHR$(2)+CHR$(70)+CHR$(0)+CHR$(l)

PRINT*2,"DATA FOR RECORD 70"

CLOSE 2 : CLOSE 1

The directory entry then looks like this:

>:00 84 11 00 52 45 4C ...REL

>:08 2D 46 49 4C 45 A0 A0 A0 -FILE

>:10 A0 A0 A0 A0 A0 11 0A 64 ..$
>:18 00 00 00 00 00 00 ID 00

The first byte $84 denotes a relative file. The next two

bytes denote the first track and sector of the data ($11,
$00; track 17 sector 0); exactly as with a sequential file.
As usual, the name of the file follows (16 characters,

padded with shifted spaces, $A0). Following are two fields
not used with sequential files. The first field is a two
byte pointer to the track and sector of the first side-

sector block. A side-sector contains the pointers to each

data record and is described more in detail later ($11, $0A;
track 17, sector 10). The second field is a byte which
contains the record length, a value between 1 and 254, in

our case $64 (100).

The convenience of being able to access each record

individually requires a definite length for each record that

must be defined when establishing a relative file. The rest

of the fields in the directory entry have the usual

significance; the last two bytes contain the number of

blocks in the file (lo and hi byte, $1D and $00 (29)).

What does such a side-sector block look like and what is its

function?

The side-sector blocks contain the track and sector pointers

to the individual data records. For example, if we want to

read the 70th record in the relative file, the DOS consults

the side-sector block to determine which track and sector

contains the record and then read this record directly. As

114

Anatomy of the 1541 Disk Drive

a result, you can read the 70th record of the file without
having to read the entire file. Now let's take a look at the
exact construction of a side-sector block. This side-sector
block is from our previous file.

>:00 00 47 00 64 11 0A 00 00 .G.$....

>:08 00 00 00 00 00 00 00 00
>:10 11 00 11 0B 11 01 11 0C

>:18 11 02 11 0D 11 03 11 0E

>:20 11 04 11 OF 11 "05 11 10
>:28 11 06 11 11 11 07 11 12

>:30 11 08 11 13 11 09 11 14

>:38 10 08 10 12 10 06 10 10
>:40 10 04 10 0E 10 02 10 0C
>:48 00 00 00 00 00 00 00 00
>:50 00 00 00 00 00 00 00 00 ...
etc.

The first two bytes point to the track and sector of the
next side-sector block, as usual, in our case, no further
side-sector blocks exist ($00) and only $47 = 71 bytes of
this sector are used. Byte 2 contains the number of the
side-sector block, 00. A relative file can contain a maximum
of 6 such blocks; the numbering goes from 0 to 5. The record
length, $64 (100), is in byte 3. The next twelve bytes
(bytes 4 through 15) contain the track and sector pointers
(two bytes each) to the 6 side-sector blocks (00,00 means
the block is not yet used). Starting at byte 16 ($10) are
the pointers to the data, and the track and sector pointers
to the first 120 data blocks (in our case, only 28
pointers). Using the record number and record length, the
DOS can calculate in which block the data lies and at which
position within the block the record begins. Take the
following example, for instance:

To read the 70th record from the file with a record length

of 100 characters, you can perform the following calcula
tions:

(70-1) * 100 / 254

We get a quotient of 27 and a remainder of 42. The DOS now

knows that the record can be found in the 27th data block at
the 42+2 or 44th position.

Here's an explanation of the calculation. Each block
contains 256 bytes, the first two of which are used as a
pointer to the next block. 254 bytes are then left over for
data storage. We can calculate the byte number from the

start of the file (which is record 1) from the record number

and record length. If we divide this value by the number of

bytes per block, we get the number of the block containing
the record. The remainder of the division gives the position

within the block (add 2, because the first two bytes serve
as a pointer). If the record overlaps the end of the block,

115

Anatomy of the 1541 Disk Drive

the next block must also be read.

In our example, the 27th data block lies in track $10 = 16
and sector $0C = 12. If we read this block, we get the

following picture:

>:00 00 F3 00 00 00 00 00 00

>:08 00 00 00 00 00 00 00 00

>:10 00 00 00 00 00 00 00 00

>:18 00 00 00 00 00 00 00 00

>:20 00 00 00 00 00 00 00 00

>:28 00 00 00 00 44 41 54 41DATA

>:30 20 46 4E 52 20 52 45 43 FOR REC

>:38 46 52 44 20 37 30 0D 00 ORD 70..

>:40 00 00 00 00 00 00 00 00

>:48 00 00 00 00 00 00 00 00

>:50 00 00 00 00 00 00 00 00

>:58 00 00 00 00 00 00 00 00

>:60 00 00 00 00 00 00 00 00

>:68 00 00 00 00 00 00 00 00

>:70 00 00 00 00 00 00 00 00

>:78 00 00 00 00 00 00 00 00

>:80 00 00 00 00 00 00 00 00

>:88 00 00 00 00 00 00 00 00

>:90 FF 00 00 00 00 00 00 00

>:98 00 00 00 00 00 00 00 00

>:A0 00 00 00 00 00 00 00 00

>:A8 00 00 00 00 00 00 00 00

>:B0 00 00 00 00 00 00 00 00

>:B8 00 00 00 00 00 00 00 00

>:C0 00 00 00 00 00 00 00 00

>:C8 00 00 00 00 00 00 00 00

>:D0 00 00 00 00 00 00 00 00

>:D8 00 00 00 00 00 00 00 00

?:E0 00 00 00 00 00 00 00 00

>:E8 00 00 00 00 00 00 00 00

>:F0 00 00 00 00 FF 00 00 00

>:F8 00 00 00 00 00 00 00 00

If we get a block number greater than 120 from the

calculation, the pointer can no longer be found on the first

side-sector block, rather in the next side-sector blocks. In

this case, you divide the block number by 120, the quotient

being the number of the side-sector block. The remainder

gives the location of the pointer within this block. Fcr

instance, to find record number 425, divide by 120 and get a

quotient 3, remainder 65. Therefore, you must read side-

sector block 3 and get the pointer to the 65th data block.

Between 2 and 4 block accesses are necessary to access a

record of a relative data file.

When creating or expanding a relative file, the following

takes place:

First, a directory entry is created for the relative file,

116

Anatomy of the 1541 Disk Drive

containing the record length. Two channels are reserved for
the relative file,one for the data, the other for the side-
sectors. If a record pointer is set to a specific record,
the DOS first checks to see if the record already exists. If

so, the corresponding block is read and the buffer pointer
set so that the contents can be accessed. If not, the record
is created. All records preceding this record number that do
not already exist are also created. The first byte of a new
record is written to contain $FF (255), and the rest of the
record is filled with $00.

If the corresponding record is at the beginning of a block,
th'e rest of the block is filled with empty records. Each
time a non-existing record is accessed, the error message
50,RECORD NOT PRESENT is returned. When writing a new
record, this is not considered an error, but indicates that
a new record was created.

You can use this method for creating a new file if you know
the maximum number of data records. You simply set the
record pointer to this record and write $FF (CHR$(255)) to
this record. By allocating a file like this, the error
message 50 no longer appears. You also know if there is
sufficient space on the diskette. If not, the error message
52, FILE TOO LARGE is returned.

With a maximum of 6 side sectors, a relative file can
contain 6 * 120 * 254 = 182,880 bytes. In the case of the

VIC 1541, this is more than the capacity of the whole
diskette. With the bigger 8050 drive, which contains more
than 500K of storage, this may present a limitation. But DOS
version 2.7 has an expansion of the side-sector procedure
('super side-sector1), with which a relative file mey
contain up to 23 MB. DOS 2.7 is contained in the CBM 8250
and the Commodore hard drives as well as the newer 8050
drives (see section 5.2).

Because a relative file requires two data channels, and the

VIC 1541 has only 3 channels available, only one relative
file can be open at a time. The third channel can still be
used for a sequential file open at the same time. With the
larger CBM drives, more channels are available (3 relative
files open simultaneously, see also section 5.2).

117

Anatomy of the 1541 Disk Drive

3.5 DOS 2.6 ROM LISTINGS

****************************** turn LED on

C100

C101

C103

C106

C107

C109

C10B

C10C

C10E

C110

cm

C113

C116

C117

78

A9

2D

48

A5

FO

68

09

DO

68

09

8D

58

60

F7

00

7F

05

00

03

08

00

1C

1C

SEI

LDA #$F7

AND $1COO

PHA

LDA $7F

BEQ $C110

PLA

ORA #$00

BNE $C113

PLA

ORA #$08

STA $1COO

CLI

RTS

C118 78 SEI

C119 A9 08 LDA #$08

CUB 0D 00 1C ORA $1COO

CUE 8D 00 1C STA $lC00

C121 58 CLI

C122 60 RTS

***************** ** ***********

C123 A9 00 LDA #$00

C125 8D 6C 02 STA $026C

C128 8D 6D 02 STA $026D

C12B 60 RTS

erase LED bit

drive number

0?

not drive 0, turn LED off

turn LED on

turn LED on

LED on

erase error flags

C12C

C12D

C12E

C12F

C131

C134

C136

C139

C13C

C13F

C142

C143

C144

C145

78

8A

48

A9

8D

A2

BD

8D

0D

8D

68

AA

58

60

50

6C

00

CA

6D

00

00

02

FE

02

1C

1C

SEI

TXA

PHA

LDA

STA

LDX

LDA

STA

ORA

STA

PLA

TAX

CLI

RTS

#$50

$026C

#$00

$FECA,X

$026D

$1COO

$1COO

C146

C148

C14B

A9

8D

AD

00

F9

8E

02

02

LDA

STA

LDA

#$00

$02F9

$028E

save X register

8

turn LED on

get x register back

interpret command from

computer

last drive number

118

Anatomy of the 1541 Disk Drive

C14E

C150

C153

C155

C157

C159

C15B

C15D

C160

C163

C165

C168

C16A

C16D

C170

C172

C173

C175

C177

C17A

C17D

C17F

C181

C184

C187

C18A

C18C

C18F

C191

85

20

A5

10

29

C9

F0

4C

20

Bl

8D

A2

BD

CD

F0

CA

10

A9

4C

8E

E0

90

20

AE

BD

85

BD

85

6C

7F

BC

84

09

OF

OF

03

B4

B3

A3

75

OB

89

75

08

F5

31

C8

2A

09

03

EE

2A

95

6F

Al

70

6F

E6

D7

C2

02

FE

02

Cl

02

Cl

02

FE

FE

00

STA

JSR

LDA

BPL

AND

CMP

BEQ

JMP

JSR

LDA

STA

LDX

LDA

CMP

BEQ
DEX

BPL

LDA

JMP

STX

CPX

BCC

JSR

LDX

LDA

STA

LDA

STA

JMP

$7F

$E6BC

$84

$C160

#$0F

#$0F

$C160

$D7B4

$C2B3

($A3),Y

$0275

#$0B

$FE89,X

$0275

$C17A

$C16A

#$31

$C1C8

$022A

#$09

$C184

$C1EE

$022A

$FE95fX

$6F

$FEA1,X

$70

($006F)

*****************************,

C194

C196

C199

C19C

C19E

C1A0

C1A1

C1A3

C1A5

C1A7

C1AA

C1AD

C1AF

C1B2

C1B3

C1B5

C1B7

C1BA

A9

8D

AD

DO

AO

98

84

84

84

20

20

A5

8D

AA

A9

95

20

4C

00

F9

6C

2A

00

80

81

A3

C7

23

7F

8E

00

FF

BD

DA

02

02

E6

Cl

02

Cl

D4

LDA

STA

LDA

BNE

LDY

TYA

STY

STY

STY

JSR

JSR

LDA

STA

TAX

LDA

STA

JSR

JMO

#$00

$02F9

$026C

$C1C8

#$00

$80

$81

$A3

$E6C7

$C123

$7F

$028E

#$00

$FF,X

$C1BD

$D4DA

C1BD

C1BF

AO

A9

28

00

LDY

LDA

#$28

#$00

drive number

prepare 'ok' message

secondary address

15, command channel

yes

to OPEN command

determine line length and
erase flags

get first character

and store

11

commands

compare to first character

found?

not found

31, 'syntax error1

number of command words

command number < 9?

test for 'R', "S1, and 'N'

command number

jump address lo

jump address hi

jump to command

prepare error message after

executing command

flag set?

yes, then set error message

error number 0

track number 0

sector number 0

prepare 'ok1 message

erase error flag

drive number

save as last drive number

erase input buffer

close internal channel

erase input buffer

erase 41 characters

119

Anatomy of the 1541 Disk Drive

C1C1 99 00 02

C1C4 88

C1C5 10 FA

C1C7 60

STA $0200fY

DEY

BPL $C1C1

RTS

C1C8 AO 00 LDY #$00

C1CA 84 80 STY $80

C1CC 84 81 STY $81

C1CE 4C 45 E6 JMP $E645

C1D1

C1D3

C1D6

C1D8

C1DB

C1DD

C1DE

A2 00

8E 7A 02

A9 3A

20 68 C2

FO 05

88

88

LDX #$00

STX $027A

LDA #$3A

JSR $C268

BEO $C1E2

DEY

DEY

C1DF 8C 7A 02 STY $027A

C1E2 4C 68 C3 JMP $C368

C1E5 A0 00 LDY #$00

C1E7 A2 00 LDX #$00

C1E9 A9 3A LDA #$3A

C1EB 4C 68 C2 JMP $C268

$200 to $228

give error message

(track & sector)

track = 0

sector = 0

error number ace, generate

error message

check input line

pointer to drive number

test line to ':' or to end

no colon found?

point to drive number

(before colon)

get drive # and turn LED on

check input line

pointer to input buffer

counter for commas
• . i

test line to colon or to end

C1EE

C1F1

C1F3

C1F5

C1F8

C1F9

C1FA

C1FD

C1FE

C200

C202

C205

C206

C208

C20A

C20C

C20F

C210

C213

C216

C219

C21B

C21D

C220

20

DO

A9

4C

88

88

8C

8A

DO

A9

20

8A

F0

A9

09

8D

E8

8E

8E

AD

F0

A9

0D

8D

E5

05

34

C8

7A

F3

3D

68

02

40

21

8B

77

78

8A

0D

80

8B

8B

Cl

Cl

02

C2

02

02

02

02

02

02

JSR

BNE

LDA

JMP

DEY

DEY

STY

TXA

BNE

LDA

JSR

TXA

BEO

LDA

ORA

STA

INX

STX

STX

LDA

BEO

LDA

ORA

STA

$C1E5

$C1F8

#$34

$C1C8

$027A

$C1F3

#$3D

$C268

$C20A

#$40

#$21

$028B

$0277

$0278

$028A

$C228

#$80

$028B

$028B

r check input line

test line to »:• or end

colon found?

34, 'syntax error1

set pointer to colon

position of the drive n

comma before the colon

yes, then 'syntax error

• = •

check input to '='

comma found?

no

bit 6

and set bit 0 and 5

flag for syntax check

wildcard found?

no

set bit 7

120

Anatomy of the 1541 Disk Drive

C223

C225

C228

C229

C22B

C22E

C231

C234

C236

C239

C23A

C23D

C23E

C24A

C243

C245

C248

C24A

C24C

C24E

C251

C254

C257

C2l5A
C25D

C25F

C260

C263

C265

A9

8D

98

FO

9D

AD

8D

A9

20

E8

8E

CA

AD

FO

A9

EC

FO

09

09

4D

8D

AD

AE

3D

DO

60

8D

A9

4C

00

8A

29

7A

77

79

8D

68

78

8A

02

08

77

02

04

03

8B

8B

8B

2A

A5

01

6C

30

C8

02

02

02

02

C2

02

02

02

02

02

02

02

FE

02

Cl

LDA

STA

TYA

BEQ

STA

LDA

STA

LDA

JSR

INX

STX

DEX

LDA

BEQ

LDA

CPX

BEQ
ORA

ORA

EOR

STA

LDA

LDX

AND

BNE

RTS

STA

LDA

JMP

#$00

$028A

$C254

$027A,X

$0277

$0279

#$8D

$C268

$0278

$028A

$C245

#$08

$0277

$C24C

#$04

#$03

$028B

$028B

$028B

$022A

$FEA5,X

$C260

$026C

#$30

$C1C8

C268

C26B

C26E

C270

C272

C273

C276

C278

C27A

C27C

C27E

C280

C283

C285

C287

C288

C28B

C28E

C290

C292

C294

C296

C299

8D

CC

BO

Bl

C8

CD

FO

C9

FO

C9

DO

EE

C9

DO

98

9D

AD

29

FO

A9

95

8D

E8

75

74

2E

A3

75

28

2A

04

3F

03

8A

2C

E4

7B

8A

7F

07

80

E7

8A

02

02

02

02

02

02

02

STA

CPY

BCS

LDA

I NY

CMP

BEQ

CMP

BEQ

CMP

BNE

INC

CMP

BNE

TYA

STA

LDA

AND

BEQ

LDA

STA

STA

INX

$0275

$0274

$C29E

($A3),Y

$0275

$C2A0

#$2A

$C280

#$3F

$C283

$028A

#$2C

$C26B

$027B,X

$028A

#$7F

$C299

#$80

$E7,X

$028A

reset wildcard flag

1=1 found?

no

number of commas before ' =

shift CR

check line to end

increment comma counter
store # of commas

wildcard found?

no

set bit 3

comma after '=•?

no

set bit 2

set bits 0 and 1

as flag for syntax check
syntax flag

command number

combine with check byte

set error flag

30, 'syntax error1

search characters in input

buffer

save character

already done?

yes

get char from buffer

compared with char

found
i * i

.?.

set wildcard flag

f

note comma position

wildcard flag

no wildcard

note flag

and save as wildcard flag

inc comma counter

121

Anatomy of the 1541 Disk Drive

C29A

C29C

C29E

C2A0

C2A3

C2A6

C2A9

C2AB

C2AD

C2AF

C2B1

C2B2

C2B3

C2B5

C2B7

C2B8

C2BA

C2BD

C2BF

C2C1

C2C2

C2C5

C2C7

C2C9

C2CA

C2CB

C2CE

C2D0

C2D2

C2D4

C2D7

C2D9

EO 04

90 CD

A0 00

AD 74 02

9D 7B 02

AD 8A 02

29 7F

F0 04

A9 80

95 E7

98

60

A4 A3

F0 14

88

F0

B9

C9

10

00 02

0D

F0 OA

88

B9 00 02

C9 OD

FO 02

C8

C8

8C 74 02

CO 2A

AO FF

90 08

8C 2A 02

A9 32

4C C8 Cl

CPX

BCC

LDY

LDA

STA

LDA

AND

BEO
LDA

STA

TYA

PTS

#$04

$C26B

#$00

$0274

$027BfX

$028A

#$7F

$C2B1

#$80

$E7rX

LDY $A3

BEO $C2CB

DEY

BEO $C2CA

LDA $0200,Y

CMP #$0D

BEO $C2CB

DEY

LDA $0200,Y

CMP #$0D

BEO $C2CB

INY

INY

STY $0274

CPY #$2A

LDY #$FF

BCC $C2DC

STY $022A

LDA #$32

JMP $C1C8

4 commas already?

no, continue

set flag for line end

wildcard flag

no wildcard

set flag

check line length

ptr to command input buffer

zero?

one?

pointer to input buffer

'CR1

yes, line end

preceding character

•CR1

yes

pointer to old value again

same line length

compare with 42 characters

smaller, ok

32, 'syntax error1 line too

long

****************************** erase flag for input command

C2DC

C2DE

C2DF

C2E1

C2E4

C2E7

C2EA

C2EC

C2EF

C2F2

C2F5

C2F8

C2FB

C2FD

C300

C302

C304

C306

A0 00

98

85 A3

8D 58 02

8D 4A 02

8D 96 02

85 D3

8D 79 02

8D 77 02

8D 78 02

8D 8A 02

8D 6C 02

A2 05

9D 79 02

95 D7

95 DC

95 El

95 E6

LDY

TYA

STA

STA

STA

STA

STA

STA

STA

STA

STA

STA

LDX

STA

STA

STA

STA

STA

#$00

$A3

$0258

$024A

$0296

$D3

$0279

$0277

$0278

$028A

$026C

#$05

$0279,X

$D7,X

$DC,X

$E1,X

$E6,X

pointer to input buffer lo

record length

file type

comma counter

wildcard flag

error flag

flags for line analysis

directory sectors

buffer pointer

drive number

wildcard flag

122

Anatomy of the 1541 Disk Drive

C308

C30B

C30E

C30F

C311

9D

9D

CA

DO

60

7F

84

EC

02

02

STA

STA

DEX

BNE

RTS

$027F

$0284

$C2FD

,x

,x

C312

C315

C318

C31A

C31D

C320

C323

C325

C327

C32A

C32D

C32F

C332

C333

C335

C336

C339

C33B

AD

8D

A9

8D

8D

AC

A2

86

BD

20

A6

9D

98

95

E8

EC

90

60

78

77

01

78

79

8E

00

D3

7A

3C

D3

7A

E2

78

EA

02

02

02

02

02

02

C3

02

02

LDA

STA

LDA

STA

STA

LDY

LDX

STX

LDA

JSR

LDX

STA

TYA

STA

INX

CPX

BCC

RTS

$0278

$0277

#$01

$0278

$0279

$028E

#$00

$D3

$027A,

$C33C

$D3

$027A

$E2,X

$0278

$C325

rX

C33C

C33D

C33F

C341

C344

C346

C349

C34B

C34C

C34D

C34F

C350

C351

C352

C355

C356

C357

C359

C35B

C35D

C35F

C361

C362

C364

C366

AA

A0

A9

DD

F0

DD

DO

E8

98

29

A8

8A

60

BD

E8

E8

C9

F0

C9

F0

DO

98

09

29

DO

00

3A

01

OC

00

16

01

00

30

F2

31

EE

EB

80

81

E7

02

02

02

TAX

LDY

LDA

CMP

BEO

CMP

BNE

INX

TYA

AND

TAY

TXA

RTS

LDA

INX

INX

CMP

BEO

CMP

BEQ

BNE

TYA

ORA

AND

BNE

#$00

#$3A

$0201,

$C352

$0200,

$C361

#$01

$0200,

#$30

$C34D

#$31

$C34D

$C34C

#$80

#$81

$C34F

rX

,x

X

track number

sector number

preserve drive number

number of commas

save

number of drive numbers

last drive number

position of the colon

get drive no. before colon

save exact position

drive number in table

got all drive numbers?

no, continue

search for drive number

note position

1 :'

colon behind it?

yes

colon here?

no

drive number

get drive number

■01?

yes

•I1?

yes

no, use last drive number

last drive number

set bit 7, uncertain drive #

erase remaining bits

get drive number

123

Anatomy of the 1541 Disk Drive

C368

C36A

C36D

C370

C372

C375

C377

C378

C37B

C37D

C380

C381

C383

C386

C388

C38A

C38C

C38F

C391

C393

C395

C397

C398

C39A

C39D

C3A0

C3A2

C3A5

C3A8

C3AB

C3AC

C3AE

C3B0

C3B3

C3B5

C3B6

C3B8

C3B9

C3BC

A9

8D

AC

Bl

20

10

C8

CC

BO

AC

88

DO

CE

A9

29

85

4C

A5

49

29

85

60

AO

AD

CD

FO

CE

AC

B9

A8

Bl

AO

D9

FO

88

DO

98

8D

60

00

8B

7A

A3

BD

11

74

06

74

ED

8B

00

01

7F

00

7F

01

01

7F

00

77

78

16

78

78

7A

A3

04

BB

03

F8

96

02

02

C3

02

02

02

Cl

02

02

02

02

02

FE

02

LDA #$00

STA $028B

LDY $027A

LDA ($A3),Y

JSR $C3BD

BPL $C388

INY

CPY $0274

BCS $C383

LDY $0274

DEY

BNE $C370

DEC $028B

LDA #$00

AND #$01

STA $7F

JMP SC100

U4444444444444

LDA $7F

EOR #$01

AND #$01

STA $7F

RTS

LDY #$00

LDA $0277

CMP $0278

BEQ $C3B8

DEC $0278

LDY $0278

LDA $027A,Y

TAY

LDA ($A3),Y

LDY #$04

CMP $FEBBrY

BEQ $C3B8

DEY

BNE $C3B0

TYA

STA $0296

RTS

C3BD

C3BF

C3C1

C3C3

C3C5

C3C7

C3C9

C9

FO

C9

FO

09

29

60

30

06

31

02

80

81

CMP #$30

BEQ $C3C7

CMP #$31

BEQ $C3C7

ORA #$80

AND #$81

RTS

erase syntax flag

position in command line

get chars from command buffer

get drive number

certain number?

increment pointer

line end?

yes

search line for drive no.

drive number

turn LED on

reverse drive number

drive number

switch bit 0

establish file type

' = • found?

no

get pointer

set pointer to character

pointer to buffer

compare with marker for

. file type

'S1, 'P1, fU', 'R'

agreement

note file type (1-4)

check drive number

•0'

•I1

no zero or one, then set bit

124

Anatomy of the 1541 Disk Drive

C3CA

C3CC

C3CE

C3D1

C3D2

C3D5

C3D6

C3D8

C3D9

C3DB

C3DD

C3DE

C3E0

C3E2

C3E4

C3E6

C3E8

C3E9

C3EB

C3ED

C3EF

C3F0

C3F1

C3F4

C3F5

C3F7

C3FA

C3FB

C3FC

C3FE

C400

C402

C404

C407

C409

C40C

C40E

C411

C413

C416

C419

C41B

C41D

C420

C423

C426

C427

C4 2A

C42B

C42D

C42F

C432

C434

A9

85

8D

48

AE

68

05

48

A9

85

CA

30

B5

10

06

06

4A

90

06

DO

68

AA

BD

48

29

8D

68

0A

10

A5

29

85

AD

F0

20

F0

20

A9

8D

20

F0

A9

20

20

20

08

20

28

F0

A9

8D

FO

20

00

6F

8D

78

6F

01

6F

OF

E2

04

6F

6F

EA

6F

E6

3F

03

8C

3E

E2

01

7F

8C

28

3D

12

8F

00

8C

3D

IE

74

C8

8F

3D

8F

OC

00

8C

05

3D

02

02

C4

02

02

C6

C3

02

C6

Cl

C3

C6

C3

02

C6

LDA

STA

STA

PHA

LDX

PLA

ORA

PHA

LDA

STA

DEX

BMI

LDA

BPL

ASL

ASL

LSR

BCC

ASL

BNE

PLA

TAX

LDA

PHA

AND

STA

PLA

ASL

BPL

LDA

AND

STA

LDA

BEQ

JSR

BEQ

JSR

LDA

STA

JSR

BE0

LDA

JSR

JSR

JSR

PHP

JSR

PLP

BEQ

LDA

STA

BEQ

JSR

#$00

$6F

$028D

$0278

$6F

#$01

$6F

$C3EF

$E2,X

$C3E8

$6F

$6F

A

$C3D5

$6F

$C3D5

$C43F

#$03

$028C

A

$C43C

$E2

#$01

$7F

$028C

$C434

$C63D

$C420

$C38F

#$00

$028C

$C63D

$C439

#$74

$C1C8

$C38F

$C63D

$C38F

$C439

#$00

$028C

$C439

$C63D

verify drive number

number of drive numbers

get syntax flag

isolate drive number

initialze drive
error?

switch to other drive

initialize drive

no error?

74, 'drive not ready1

initialize drive

switch to other drive

no error?

number of drives

initialize drive

125

Anatomy of the 1541 Disk Drive

C437 DO E2 BNE $C41B

C439 4C 00 Cl JMP $C100

C43C 2A ROL A

C43D 4C 00 C4 JMP $C400

C440 00 80 41 01 01 01 01 81

C448 81 81 81 42 42 42 42

error?

Turn LED on

drive # from carry after bit 0

flags for drive check

C44F 20

C452

C454

C457

C45A

C45C

C45F

C461

C462

C464

C467

C46A

C46D

C470

C473

C475

C478

C47B

C47D

C47E

C481

C483

C485

C488

C48A

C48B

C48E

C490

C492

C494

C497

C49A

C49D

C49F

C4A2

C4A5

C4A7

C4AA

C4AD

C4AF

A9

8D

20

DO

CE

10

60

A9

8D

20

20

4C

20

F0

20

AD

F0

60

AD

30

10

AD

F0

60

20

F0

DO

A9

8D

20

20

A9

8D

20

DO

8D

AD

DO

CE

CA

00

92

AC

19

8C

01

01

8D

8F

00

52

17

10

D8

8F

01

53

ED

F0

8F

D2

04

1A

28

01

8D

8F

00

00

92

AC

13

8F

8F

28

8C

C3

02

C5

02

02

C3

Cl

C4

C6

C4

02

02

02

C6

02

C3

Cl

02

C5

02

02

02

JSR $C3CA

LDA

STA

JSR

BNE

DEC

BPL

RTS

LDA

STA

JSR

JSR

JMP

JSR

BEQ

JSR

LDA

BEQ

RTS

LDA

BMI

BPL

LDA

BEO

RTS

JSR

BEQ

BNE

LDA

STA

JSR

JSR

LDA

STA

JSR

BNE

STA

LDA

BNE

DEC

#$00

$0292

$C5AC

$C475

$028C

$C462

#$01

$028D

$C38F

$C100

$C452

$C617

$C485

$C4D8

$028F

$C47E

$0253

$C470

$C475

$028F

$C45C

$C604

$C4AA

$C4BA

#$01

$028D

$C38F

$C100

#$00

$0292

$C5AC

$C4BA

$028F

$028F

$C4D7

$028C

* search for file in directory

initialize drive

pointer

read first directory block

entry present?

drive number clear?

no

change drive

Turn LED on

and search

search next file in directo

not found?

verify directory entry

more files?

file not found?

yes

search next directory block

not found?

change drive

turn LED on

read directory block

found?

126

Anatomy of the 1541 Disk Drive

C4B2

C4B4

C4B5

C4B8

C4BA

C4BD

C4C0

C4C2

C4C5

C4C7

C4C9

C4CC

C4CE

C4D0

C4D2

C4D5

C4D7

C4D8

C4DA

C4DD

C4DE

C4E1

C4E4

C4E6

C4E7

C4EA

C4EC

C4EE

C4F0

C4F1

C4F3

C4F5

C4F7

C4F9

C4FC

C4FE

C501

C502

C505

C507

C50A

C50D

C50F

C511

C513

C515

C517

C519

C51B

C51C

10

60

20

F0

20

AE

10

AD

F0

DO

AD

F0

B5

29

CD

DO

60

A2

8E

E8

8E

20

F0

60

20

DO

A5

55

4A

90

29

FO

A9

CD

FO

BD

AA

20

AO

4C

BD

Dl

FO

C9

DO

Bl

C9

FO

E8

C8

DE

17

FO

D8

53

07

8F

EE

OE

96

09

E7

07

96

DE

FF

53

8A

89

06

94

FA

7F

E2

OB

40

FO

02

8C

E9

7A

A6

03

ID

00

94

OA

3F

D2

94

AO

CC

C6

C4

02

02

02

02

02

02

C5

C5

02

02

C6

C5

02

BPL

RTS

JSR

BEQ

JSR

LDX

BPL

LDA

BEQ

BNE

LDA

BEQ

LDA

AND

CMP

BNE

RTS

LDX

STX

INX

STX

JSR

BEQ

RTS

JSR

BNE

LDA

EOR

LSR

BCC

AND

BEQ

LDA

CMP

BEQ

LDA

TAX

JSR

LDY

JMP

LDA

CMP

BEQ
CMP

BNE

LDA

CMP

BEQ

INX

INY

$C492

SC617

$C4AA

$C4D8

$0253

$C4C9

$028F

$C4B5

$C4D7

$0296

$C467

$E7,X

#$07

$0296

$C4B5

#$FF

$0253

$028A

$C589

$C4EC

$C594

$C4E6

$7F

$E2,X

A

$C4FE

#$40

$C4E7

#$02

$028C

$C4E7

$027A,X

$C6A6

#$03

$C51D

$0200,X

($94) ,Y

$C51B

#$3F

$C4E7

($94),Y

#$A0

$C4E7

next entry in directory

not found?

check entry

file found?

yes

no, then done

file type

same as desired file type
no

flag for data found

set pointer to data

pointer to next file

endf then done

drive number

search both drives?

yes

get length of filename

get chars out of command

same character in directo

yes

•?•

no

shift blank, end of name?

yes

increment pointer

127

Anatomy of the 1541 Disk Drive

C51D

C520

C522

C525

C527

C529

C52B

C52D

C52F

C531

C533

C535

C538

C53B

C53D

C5 3F

C542

C545

C547

C549

C54B

C54D

C54F

C550

C551

C553

C555

C556

C558

C55A

C55C

C55E

C560

C562

C564

C566

C568

C56A

C56C

C56E

C570

C572

C574

C577

C578

C57A

C57D

C580

C582

C584

C586

C589

C58B

C58E

EC

BO

BD

C9

FO

DO

CO

BO

Bl

C9

DO

AE

8E

B5

29

8D

AD

95

A5

95

AO

Bl

C8

48

29

85

68

29

30

09

29

05

85

A9

35

05

95

B5

29

05

95

Bl

9D

C8

Bl

9D

AD

DO

AO

Bl

8D

A9

8D

AD

76

09

00

2A

OC

DF

13

06

94

AO

B2

79

53

E7

80

8A

94

DD

81

D8

00

94

40

6F

DF

02

20

27

6F

6F

80

E7

6F

E7

E2

80

7F

E2

94

80

94

85

58

07

15

94

58

FF

8F

78

02

02

02

02

02

02

02

02

02

02

02

02

CPX

BCS

LDA

CMP

BEQ

BNE

CPY

BCS

LDA

CMP

BNE

LDX

STX

LDA

AND

STA

LDA

STA

LDA

STA

LDY

LDA

INY

PHA

AND

STA

PLA

AND

BMI

ORA

AND

ORA

STA

LDA

AND

ORA

STA

LDA

AND

ORA

STA

LDA

STA

INY

LDA

STA

LDA

BNE

LDY

LDA

STA

LDA

STA

LDA

$0276

$C52B

$0200,

#$2A

$C535

$C50A

#$13

$C535

($94),

#$A0

$C4E7

$0279

$0253

$E7rX

#$80

$028A

$0294

$DD,X

$81

$D8,X

#$00

($94),

#$40

$6F

#$DF

$C55C

#$20

#$27

$6F

$6F

#$80

$E7fX

$6F,X

$E7,X

$E2,X

#$80

$7F

$E2,X

($94)

$0280

($94)

$0285

$0258

$C589

#$15

($94)

$0258

#$FF

$028F

$0278

X

Y

rY

,Y

,x

rY

,x

rY

end of the name in the command?

yes

next character
t * i

yes, file found

continue search

19

reached end of name

shift blank, end of name

not found

sector number of the directory

enter in table

file type

isolate scratch-protect bit

(6) and save

erase bit 7

set bit 5

erase bits 3 and 4

get bit 6 again

isolate flag for wildcard

write in table

drive number

first track of file

get sector from directory

record length

record length

get from directory

128

Anatomy of the 1541 Disk Drive

C591

C594

C597

C599

C59A

C59D

C59F

C5A1

C5A4

C5A6

C5A8

C5AB

C5AC

C5AE

C5B1

C5B2

C5B5

C5B8

C5BA

C5BC

C4BE

C5C1

C5C4

C5C7

C5C9

C5CA

C5CC

C5CF

C5D1

C5D4

C5D7

C5DA

C5DD

C5DF

C5E1

C5E3

C5E6

C5E8

C5EB

C5ED

C5F0

C5F2

C5F5

C5F8

C5FA

C5FB

C5FD

C600

C602

8D 79 02

CE 79 02

10 01

60

AE 79 02

B5 E7

30 05

BD 80 02

DO EE

A9 00

8D 8F 02

60

A0 00

8C 91 02

88

8C 53 02

AD 85 FE

85 80

A9 01

85 81

8D 93 02

20 75 D4

AD 93 02

DO 01

60

A9 07

8D 95 02

A9 00

20 F6 D4

8D 93 02

20 E8 D4

CE 95 02

A0 00

Bl 94

DO 18

AD 91 02

DO 2F

20 3B DE

A5 81

8D 91 02

A5 94

AE 92 02

8D 92 02

FO ID

60

A2 01

EC 92 02

DO 2D

FO 13

STA $0279

DEC $0279

BPL $C59A

RTS

LDX $0279

LDA $E7fX

BMI $C5A6

LDA $0280,X

BNE $C594

LDA #$00

STA $028F

RTS

LDY #$00

STY $0291

DEY

STY $0253

LDA $FE85

STA $80

LDA #$01

STA $81

STA $0293

JSR $D475

LDA $0293

BNE $C5CA

RTS

LDA #$07

STA $0295

LDA #$00

JSR $D4F6

STA $0293

JSR $D4E8

DEC $0295

LDY #$00

LDA ($94),Y

BNE $C5FB

LDA $0291

BNE $C617

JSR $DE3B

LDA $81

STA $0291

LDA $94

LDX $0292

STA $0292

BEO $C617

RTS

LDX #$01

CPX $0292

BNE $C62F

BEO $C617

wildcard flag set?

yes

track number already set
yes

C604 AD 85 FE LDA $FE85

18, directory track

sector 1

read sector

number of directory entries (-1)

get pointer from buffer

save as track number

set buffer pointer

decrement counter

first byte from directory

get track and sector number

sector number

buffer pointer

buffer pointer to one?

18, track number of BAM

129

Anatomy of the 1541 Disk Drive

C607

C609

C60C

C60E

C611

C614

C617

C619

C61C

C61F

C621

C623

C626

C629

C62C

C62F

C631

C634

C637

C639

C63C

85 80

AD 90 02

85 81

20 75 D4

AD 94 02

20 C8 D4

AD FF

8D 53 02

AD 95 02

30 08

A9 20

20 C6 Dl

4C D7 C5

20 4D D4

4C C4 C5

A5 94

8D 94 02

20 3B DE

A5 81

8D 90 02

60

STA $80

LDA $0290

STA $81

JSR $D475

LDA $0294

JSR $D4C8

LDA #$FF

STA $0253

LDA $0295

BMI $C629

LDA #$20

JSR $D1C6

JMP $C567

JSR $D44D

JMP $C5C4

LDA $94

STA $0294

JSR $DE3B

LDA $81

STA $0290

RTS

track number

sector number

read block

set buffer pointer

erase-file found flag

all directory entries checked?

inc buffer ptr by 32, next entry

and continue

set buffer pointer

read next block

get track & sector no, from buffer

save sector number

****************************** test and initialize drive

C63D

C63F

C641

C643

C645

C647

C649

C64C

C64F

C651

C653

C655

C657

C659

C65B

C65D

C65F

C661

C662

C664

C666

C669

C66B

C66D

A5 68

DO 28

A6 7F

56 1C

90 22

A9 FF

8D 98 02

20 0E DO

A0 FF

C9 02

F0 0A

C9 03

F0 06

C9 OF

F0 02

A0 00

A6 7F

98

95 FF

DO 03

20 42 DO

A6 7F

B5 FF

60

LDA $68

BNE $C669

LDX $7F

LSR $1C,X

BCC $C669

LDA $FF

STA $0298

JSR $D00E

LDY #$FF

CMP #$02

BEQ $C65F

CMP #$03

BEQ $C65F

CMP #$0F

BEQ $C65F

LDY #$00

LDX $7F

TYA

STA $FF,X

BNE $C669

JSR $D042

LDX $7F

LDA $FF,X

RTS

drive number

disk changed?

no, then done

set error flag

read directory track

20, 'read error1?

yes

21, 'read error1?

yes

74, 'drive not ready'?

yes

drive number

save error flag

error?

load BAM

drive number

transmit error code

****************************** name of file in directory buffer

C66E

C66F

C672

C675

48

20 A6 C6

20 88 C6

68

PHA

JSR $C6A6

JSR $C688

PLA

get end of the name

write filename in buffer

130

Anatomy of the 1541 Disk Drive

C676

C677

C67A

C67B

C67D

C67F

C681

C683

C684

C685

C687

38

ED 4B 02

AA

FO OA

90 08

A9 AO

91 94

C8

CA

DO FA

60

SEC

SBC $024B

TAX

BEQ $C687

BCC $C687

LDA #$A0

STA ($94),Y

INY

DEX

BNE $C681

RTS

compare len with max length

pad with 'Shift blank1

C688

C689

C68A

C68B

C68E

C690

C693

C695

C697

C69A

C69C

C69D

C69F

C6A0

C6A3

C6A5

C6A6

C6A8

C6AB

C6AC

C6AD

C6B0

C6B2

C6B4

C6B6

C6B8

C6BB

C6BC

C6BE

C6C1

C6C3

C6C6

C6C8

C6CB

C6CC

C6CD

98

OA

A8

B9 99 00

85 94

B9 9A 00

85 95

AO 00

BD 00 02

91 94

C8

FO 06

E8

EC 76 02

90 F2

60

A9 00

8D 4B 02

8A

48

BD 00 02

C9 2C

FO 14

C9 3D

FO 10

EE 4B 02

E8

A9 OF

CD 4B 02

90 05

EC 74

90 E5

8E 76 02

68

AA

60

02

TYA

ASL A

TAY

LDA $0099fY

STA $94

LDA $009A

STA $95

LDY #$00

LDA $0200 ,X

STA ($94),Y

INY

BEQ $C6A5

INX

CPX $0276

BCC $C697

RTS

buffer number

times 2 as pointer

buffer pointer after $94/$95

transmit characters in buffer

buffer already full?

LDA

STA

TXA

PHA

LDA

CMP

BEQ

CMP

BEQ

INC

INX

LDA

CMP

BCC

CPX

BCC

STX

PLA

TAX

RTS

«r*** search for end of name in command
#$00

$024B

$0200,X get characters out of buffer
#$2C

$C6C8

#$3D

$C6C8

$024B increment length of name

#$0F 15

$024B

$C6C8 greater?

$0274 end of input line?

$C6AD

$0276

pointer to end of name

C6CE A5 83 LDA $83

C6D0 48 PHA secondary address and channel no.

Anatomy of the 1541 Disk Drive

C6D1

C6D3

C6D4

C6D7

C6D8

C6DA

C6DB

C6DD

A5

48

20

68

85

68

85

60

C6DE A9

C6E0

C6E2

C6E5

C6E8

C6EB

C6ED

C6F0

C6F2

C6F5

C6F6

C6F7

C6FA

C6FC

C6FF

C701

C704

C707

C7 0A

C708

C70E

C710

C713

C716

C719

C71A

C71B

C71D

C71F

C721

C724

C726

C728

C729

C7 2B

C72E

C7 30

C732

C7 34

C736

C737

C739

C73B

85

20

20

AD

10

AD

DO

20

18

60

AD

F0

CE

DO

CE

20

20

38

4C

A9

8D

8D

20

38

60

A2

A0

Bl

8D

F0

A2

88

Bl

8D

EO

FO

C9

90

CA

C9

90

CA

82

DE

82

83

11

83

EB

E8

53

OA

8D

OA

06

8D

IF

8D

OD

8D

8F

06

8F

00

73

8D

B7

18

ID

94

73

02

16

94

72

16

OA

OA

06

64

01

C6

LDA $82

PHA

JSR $C6DE

PLA

STA $82

PLA

STA $83

RTS

LDA #$11

DO

D4

02

02

C8

02

02

02

C3

C8

C3

02

02

C7

02

02

STA $83

JSR $D0EB

JSR $D4E8

LDA $0253

BPL $C6F7

LDA $028D

BNE $C6FC

JSR $C806

CLC

RTS

LDA $028D

BEQ $C71B

DEC $028D

BNE $C70E

DEC $028D

JSR $C38F

JSR $C806

SEC

JMP $C38F

LDA #$00

STA $0273

STA $028D

JSR $C7B7

SEC

RTS

LDX #$18

LDY #$1D

LDA ($94),Y

STA $0273

BEQ $C7 28

LDX #$16

DEY

LDA ($94)rY

STA $0272

CPX #$16

BEQ $C73C

CMP #$0A

BCC $C73C

DEX

CMP #$64

BCC SC73C

DEX

create file entry fo

get data back

17

secondary address

open channel to read

set buffer pointer

not yet last entry?

write •blocks free.1

change drive

write 'blocks free.1

change drive

drive no. for header

write header

number of blocks hi

in buffer

zero?

number of blocks lo

in buffer

10

100

132

Anatomy of the 1541 Disk Drive

C73C

C73F

C741

C742

C743

C745

C747

C74A

C74B

C74D

C74E

C751

C754

C755

C758

C75B

C75C

C75F

C762

C763

C764

C766

C768

C76B

676D

C770

C771

C773

C775

C778

C779

C77A

C77C

C77E

C780

C783

C784

C786

C788

C78B

C78D

C7BF

C791

C793

C795

C798

C799

C89B

C79D

C79F

C7A2

C7A5

C7A7

C7AA

C7AB

20 AC C7

Bl 94

48

0A

10 05

A9 3C

9D B2 02

68

29 OF

A8

B9 C5 FE

9D Bl 02

CA

B9 CO FE

9D Bl 02

CA

B9 BB FE

9D Bl 02

CA

CA

B0 05

A9 2A

9D B2 02

A9 A0

9D Bl 02

CA

AO 12

Bl 94

9D Bl 02

CA

88

CO 03

BO F5

A9 22

9D Bl 02

E8

EO 20

BO OB

BD Bl 02

C9 22

FO 04

C9 AO

DO FO

A9 22

9D Bl

E8

EO 20

BO OA

A9 7F

3D Bl

9D Bl 02

10 Fl

20 B5 C4

38

60

02

02

JSR $C7AC

LDA ($94),Y

PHA

ASL A

BPL $C74A

LDA #$3C

STA $02B2,X

PLA

AND #$OF

TAY

LDA $FEC5,Y

STA $O2B1,X

DEX

LDA $FEC0,Y

STA $O2B1,X

DEX

LDA $FEBB,Y

STA $O2B1,X

DEX

DEX

BCS $C76B

LDA #$2A

STA $02B2fX

LDA #$A0

STA $O2B1,X

DEX

LDY #$12

LDA ($94)rY

STA $O2B1,X

DEX

DEY

CPY #$03

BCS $C773

LDA #$22

STA $02BlfX

INX

CPX #$20

BCS $C793

LDA $O2B1,X

CMP #$22

BEQ $C793

CMP #$A0

BNE $C783

LDA #$22

STA $02BlrX

INX

CPX #$20

BCS $C7A7

LDA #$7F

AND $02BlfX

STA $O2B1,X

BPL $C798

JSR $C4B5

SEC

RTS

erase buffer

file type

bit 7 in carry

bit 6 not set?

'<' for protected file

write behind file type

isolate bits 0-3

as file type marker

3rd letter of the file type
in buffer

2nd letter of file type

in buffer

1st letter of file type

in buffer

file not closed?
i * i

before file type in buffer

pad with 'shift blank1

in buffer

filenames

write in buffer

write before file type

character from buffer
• = '?

•shift blank1 at end of name

fill through '='

bit 7

erase in the remaining chars

search for next directory entry

133

Anatomy of the 1541 Disk Drive

C7AC AO IB LDY #$1B

C7AE A9 20 LDA #$20

C7B0 99 BO 02 STA $02B0,Y

C7B3 88 DEY

C7B4 DO FA BNE $C7B0

C7B6 60 RTS

C7B7

C7BA

C7BD

C7C0

C7C2

C7C4

C7C6

C7C9

C7CB

C7CE

C7D0

C7D3

C7D5

C7D8

C7DA

C7DC

C7DE

C7E0

C7E2

C7E4

C7E5

C7E7

C7E9

C7EB

C7ED

C7F0

C7F1

C7F3

C7F5

C7F8

C7FA

C7FD

C800

C802

C805

C806

C809

C80B

C80E

CB11

C812

C814

20 19 Fl

20 DF F0

20 AC C7

A9 FF

85 6F

A6 7F

8E 72 02

A9 00

8D 73 02

A6 F9

BD EO FE

85 95

AD 88 FE

85 94

AO 16

Bl 94

C9 AO

DO OB

A9 31

2C

Bl 94

C9 AO

DO 02

A9 20

99 B3 02

88

10 F2

A9 12

8D Bl 02

A9 22

8D B2 02

8D C3 02

A9 20

8D C4 02

60

JSR $F119

JSR $F0DF

JSR $C7AC

LDA #$FF

STA $6F

LDX $7F

STX $0272

LDA #$00

STA $0273

LDX $F9

LDA $FEEO,X

STA $95

LDA $FE88

STA $94

LDY #$16

LDA ($94) ,Y

CMP #$A0

BNE $C7ED

LDA #$31

.BYTE $2C

LDA ($94),Y

CMP #$A0

BNE $C7ED

LDA #$20

STA $02B3

DEY

BPL $C7E5

LDA #$12

STA $O2B1

LDA #$22

STA $02B2

STA $02C3

LDA #$20

STA $02C4

RTS

20 AC C7 JSR $C7AC

AO OB

B9 17 C8

99 Bl 02

88

10 F7

LDY #$0B

LDA $C817,Y

STA $O2B1,Y

DEY

BPL $C80B

4C 4D EF JMP $EF4D

erase directory buffer

1 • blank

write in buffer

create header with disk name

initialize if needed

read disk name

erase buffer

drive number

as block no. lo in buffer

block number lo

buffer number

hi-byte of the buffer address

$90, position of disk name

save

pad buffer with 'shift blank1

character from buffer

compare with 'shift blank1

1 • blank

in buffer

'RVS ON1

in buffer

write before

and after disk name

1 • blank

behind it

create last line

erase buffer

12 characters

'blocks free.'

write in buffer

number of free blocks in front

134

Anatomy of the 1541 Disk Drive

C817 42 4C 4F 43 4B 53 20 46
C81F 52 45 45 2E

C823

C826

C829

C82C

C82E

C830

C833

C835

C838

C83A

C83C

C83E

C840

C842

C845

C847

C849

C84B

C84D

C84E

C850

C852

C855

C858

C85A

C85C

C85E

C861

C863

C866

C868

C86B

C86D

C870

C872

C874

C876

C878

C87A

20 98 C3

20 20 C3

20 CA C3

A9 00

85 86

20 9D C4

30 3D

20 B7 DD

90 33

A0 00

Bl 94

29 40

DO 2B

20 B6 C8

A0 13

Bl 94

F0 0A

85 80

C8

Bl 94

85 81

20 7D C8

AE 53 02

A9 20

35 E7

DO OD

BD 80 02

85 80

BD 85 02

85 81

20 7D C8

E6 86

20 8B C4

10 C3

A5 86

85 80

A9 01

AO 00

4C A3 Cl

JSR $C398

JSR $C320

JSR $C3CA

LDA #$00

STA $86

JSR $C49D

BMI $C872

JSR $DDB7

BCC $C86D

LDY #$00

LDA ($94)rY
AND #$40

BNE $C86D

JSR $C8B6

LDY #$13

LDA ($94),Y

BEQ $C855

STA $80

I NY

LDA ($94),Y

STA $81

JSR $C87D

LDX $0253

LDA #$20

AND $E7,X

BNE $C86B

LDA $0280,X

STA $80

LDA $0285fX

STA $81

JSR $C87D

INC $86

JSR $C48B

BPL $C835

LDA $86

STA $80

LDA #$01

LDY #$00

JMP $C1A3

C87D

C880

C883

C886

C888

C88A

C88C

C88F

C891

20 5F EF

20 75 D4

20 19 Fl

B5 A7

C9 FF

FO 08

AD F9 02

09 40

8D F9 02

JSR $EF5F

JSR $D475

JSR $F119

LDA $A7,X

CMP #$FF

BEQ $C894

LDA $02F9

ORA #$40

STA $02F9

'blocks f

•ree.1

S command 'scratch'

ascertain file type

get drive number

initialize drive if needed

counter for erased files

search for file in directory
not found?

is file open

yes

file type

scratch protect

yes

erase file and note in directory

track no. of the first side-sector
none present?

note track number

and sector number

erase side-sector

file number

bit 5 set?

yes, file not closed

get track

and sector

erase file

increment number of erased files
search for next file

if present, erase

number of erased files

save as 'track'

1 as disk status

0 as 'sector'

message 'files scratched1

erase file

free block in BAM

get buffer number in BAM

135

Anatomy of the 1541 Disk Drive

C894

C896

C899

C89C

C89E

C8A1

C8A3

C8A5

C8A7

C8AA

A9

20

20

85

20

85

A5

DO

20

4C

00

C8

56

80

56

81

80

06

F4

27

D4

Dl

Dl

EE

D2

LDA

JSR

JSR

STA

JSR

STA

LDA

BNE

JSR

JMP

#$00

$D4C8

$D156

$80

$D156

$81

$80

$C8AD

$EEF4

$D227

buffer pointer to zero

get track

get sector

track number

not equal to zero

write BAM

close channel

C8AD 20 5F EF JSR $EF5F

C8B0 20 4D D4 JSR $D44D

C8B3 4C 94 C8 JMP $C894

free block in BAM

read next block

and continue

****************************** erase directory entry

C8B6

C8B8

C8B9

C8BB

C8BE

A0 00

98

91 94

20 5E DE

4C 99 D5

LDY #$00

TYA

STA ($94),Y

JSR $DE5E

JMP $D599

C8C1

C8C3

A9 31

4C C8 Cl

LDA #$31

JMP $C1C8

C8C6

C8C8

C8CB

C8CD

C8D0

C8D2

C8D5

C8D7

C8DA

C8DC

C8DE

C8E0

C8E2

C8E4

C8E6

C8E8

C8EA

C8EC

C8EF

A9 4C

8D 00 06

A9 C7

8D 01 06

A9 FA

8D 02 06

A9 03

20 D3 D6

A5 7F

09 E0

85 03

A5 03

30 FC

C9 02

90 07

A9 03

A2 00

4C 0A E6

60

LDA

STA

LDA

STA

LDA

STA

LDA

JSR

LDA

ORA

STA

LDA

BMI

CMP

BCC

LDA

LDX

JMP

RTS

#$4C

$0600

#$C7

$0601

#$FA

$0602

#$03

$D6D3

$7F

#$E0

$03

$03

$C8E0

#$02

$C8EF

#$03

#$00

$E60A

C8F0

C8F2

C8F5

C8F8

C8FB

C8FD

C8FF

A9

8D

20

20

A9

95

A9

E0

4F 02

Dl F0

19 Fl

FF

A7

OF

LDA #$E0

STA $024F

JSR $F0Dl

JSR $F119

LDA #$FF

STA $A7rX

LDA #$0F

set file type to zero

write block

and check

D-command 'backup'

31, 'syntax error'

format diskette

JMP-command

JMP $FAC7 in $600 to $602

set track and sector number

drive number

command code for formatting

transmit

wait until formatting done

smaller than two, then ok

21, 'read error1

C-command 'copy'

get buffer number of BAM

136

Anatomy of the 1541 Disk Drive

C901

C904

C907

C909

C90C

C90F

C912

C915

C917

C919

C91C

C91F

C921

C923

C925

C9 28

C92B

C92D

C92F

C932

C934

C937

C93A

C93D

C940

C942

C944

C946

C948

C94B

C94E

C951

C952

C955

C958

C95A

C95C

C95E

C960

C962

C964

C966

C968

C96A

C96C

C96E

C971

C973

C976

C979

C97C

C97E

8D 56 02

20 E5 Cl

DO 03

4C Cl C8

20 F8 Cl

20 20 C3

AD 8B 02

29 55

DO OF

AE 7A 02

BD 00 02

C9 2A

DO 05

A9 30

4C C8 Cl

AD 8B 02

29 D9

DO F4

4C 52 C9

A9 00

8D 58 02

8D 8C 02

8D 80 02

8D 81 02

A4 E3

29 01

85 7F

09 01

8D 91 02

AD 7B 02

8D 7A 02

60

20 4F C4

AD 78 02

C9 03

90 45

A5 E2

C5 E3

DO 3F

A5 DD

C5 DE

DO 39

A5 D8

C5 D9

DO 33

20 CC CA

A9 01

8D 79 02

20 FA C9

20 25 Dl

FO 04

C9 02

STA $0256

JSR $C1E5

BNE $C90C

JMP $C8C1

JSP

JSR

LDA

AND

BNE

LDX

LDA

CMP

BNE

LDA

JMP

$C1F8

$C320

$028B

#$55

$C928

$027A

$0200,X

#$2A

$C928

#$30

$C1C8

LDA $028B

AND #$D9

BNE $C923

JMP $C952

LDA #$00

STA $0258

STA $028C

STA $0280

STA $0281

LDA $E3

AND #$01

STA $7F

ORA #$01

STA $0291

LDA $027B

STA $027A

RTS

JSR

LDA

CMP

BCC

LDA

CMP

BNE

LDA

CMP

BNE

LDA

CMP

BNE

JSR

LDA

STA

JSR

JSP

BEQ

CMP

$C44F

$0278

#$03

$C9A1

$E2

$E3

$C9A1

$DD

$DE

$C9A1

$D8

$D9

$C9A1

$CACC

#$01

$0279

$C9FA

SD125

$C982

#$02

check input line

31, 'syntax error1

check input

test drive number

flag for syntax check

character of the command
i * t

30, 'syntax error'

syntax flag

30, 'syntax error1

number of drives

track number in directory

drive number

search for file in directory

number of filenames in command

smaller than three?

yes

first drive number

second drive number

not on same drive?

directory block of the 1st file

same dir block as second file?

no

directory sector of first file

same dir sector as second file?

no

is file present

get data type

rel-file?

prg-file

137

r
-

0
>
l

S
3

8
-

■
h
o
i

•»
Jj

3
c

C
m

i-l
*
H

3
E»

6
g

•
.H

-O
J3

©
-H

2
ii

?
^

C
0

C
£

0
rH

£
g

g
Mh

H
-5

CUO-
-
H
0
4
J
4
J

*
U

•
a

°
5

0
*
"

0
^

r.
0

£
g

iJ

I
X
}
4
J
-
H
J
J
M
-
l
r
H
4
J

O
C

>
i

J-l

I

0HH4-1

>
i
0

c
u
e

0
0

•

oc0•
H

•
o

X
)E3c0•
H

T
3

0r
H

•
H

V
M04
Jc0

frt
f
l
)
-
H

-
H

C
C
M
-
I

-
U
l

■
"
^

"
^
7
^
n

*
*

l
u
i
T
^

ij
U-l

M-I
<
0
r
H

0
X
)
0
'
H
(
O

^-
m

<
D
0
W

*
O
0

0
C
T
C
Q
^
M
-
4
'
D

0
O

Q
*

>
i
0

>
i
0

>
>
0

^
-
U
.
P
O
I

CO
^

8
0
C
U
C
C
U
C
-
H
-
H
4
J

4J
.
H
-
O
W
O
J
0
r
H
4
J

O
ft

*
J

S
o
o
o
o

^
j
j
c

r-
0
0

^
c
0
O
x
:
0
0

c
o
r
n

u

u
^

-
«

n
o

r
j
-
f

o
v
-
t
.

r
^
.
^
.

r
-

v
O
"
*
r
-
<
T
k
<

c
Q
i
n
w
m

o
o

c
o
m

v
o
i
n
i
n
<
f
f
i
<
r
>

o
o
o
n

c
m

<
y
>
x

Q
m
^
S
c
M

c
o
m
b
r
o
S
c
m
S

c?
<
5

w
rH

o
o
W
r
-
r
-
C
u
r
H

ia
cm
u

in
oo

Q
<^

ro
o
<
P

cm
h

on
r-

r-ffl
cm

c
r-

*
rH

*Q
z
q
w
q
h
q
S
q
h
w
q
w
s

w
s

w
q
z
h
w
w
c
I
h
c
o
q
h
w
w
z
w
q
h
s

S
S
S
S
S
w
S
S
S
z
S
o
q
S
S

S
q
z

«
3

g
g

S
g

S
3

3
3

3
S
S
g
g
S

S
3

5
S

S
6

§
3

&
g

S
§

S
5

m
^
r
a
i
c
M
r
o
o
D
D
u
U
t
f
C
M
O
N
-
s
r

r
-
^

f
^
o
4
H
f
c
v
o
^
r
^
w
<
H
f
n
i
n
i
n
f
n
m
o
o
o
o
o
o

c
Q
i
n
o
v
o
c
n
i
n
m
c
Q
o
>

o
o
v
o
c
m
c
o
c
m

o^
n
h

o
v
o
U
r
H
O
o
r
o
r
o
c
u
r
o
c
M
O
C
Q
o
>

<
a
>

W
W
o
h
o
o
W
h
h
f
c
H
o
o
W
c
M
O
t
n
o
f
a
Q

o
^
r
o
o
o
<
C
L
4
C
M
o
o
N
r
^

^
U
h
o
c
o

r
^
w
o

*n
r
-
»
r
t
s
r
-
%
«
N
U
-
i
Q
Q
o
\
Q
o
c
M
o
u

o
u

o
^
O
N
i
n
o
o
w
w
o
o
i
t
n
o
o
o
o
o
N
i
n
u

o
o
o
>
o
o
o
o
o
w
o
o
u
o
c
r
>
i
n
u

H
i
n
o
\

Q
2

CN
2
S
S

OO
<

O
O
C
M
<
C
M
^

CM
^

CM
<

CM
00

CM
CM
<

00
CM
<

00
CM

CM
Q

CM
<

00
-tf

C>J
CM
<

CM
&u

CM
li.

CM
<
W
W

ON
<

00
^

<
CQ

CM

Id
S
S
S
o
o
o
o
S
o
o
o
n
o
n
S
S
I
S
S

<
<

<
<
<
<
§
S
S
S
c
Q
C
Q
U
U
U
U
U
U
Q
Q

S
Q
S
S
c
h
S
"
o
%
S
S
o
N
O
\
S
o
^
a
!

cy!o><*
<

u
u
u
u
u
u
u
u
u
u
u
u
u

u
u

3
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

u
u
u

Anatomy of the 1541 Disk Drive

CA01

CA03

CA06

CA08

CAOA

CAOC

CAOF

CA12

CA14

CA17

CA1A

CA1C

CA1E

CA21

CA23

CA26

CA29

CA2B

CA2E

CA30

CA31

CA32

CA35

CA37

CA39

CA3C

CA3E

CA40

CA42

CA44

CA46

CA48

CA4B

CA4D

CA4F

CA52

CA53

CA56

CA59

CA5B

CA5C

CA5E

CA5F

CA61

CA6 3

CA66

CA69

CA6C

CA6F

CA71

CA73

CA75

CA77

CA79

85

AD

85

B5

85

20

AE

B5

20

AE

B5

29

8D

A9

8D

20

AO

20

FO

C8

98

4C

A9

85

20

85

A6

B5

29

85

DO

20

FO

A9

20

60

20

20

A5

48

A5

48

A9

85

20

20

20

20

A5

85

A5

85

A9

85

7F

85

80

D8

81

75

79

DD

C8

79

E7

07

4A

00

58

AO

01

25

01

C8

11

83

9B

85

82

F2

08

F8

OA

25

05

80

97

D3

CB

D6

D5

12

83

07

D3

CB

9C

D6

87

D5

86

00

88

FE

D4

02

D4

02

02

02

D9

Dl

D4

D3

Dl

DD

Dl

El

Dl

Dl

El

E2

STA

LDA

STA

LDA

STA

JSR

LDX

LDA

JSR

LDX

LDA

AND

STA

LDA

STA

JSR

LDY

JSR

BEQ

INY

TYA

JMP

LDA

STA

JSR

STA

LDX

LDA

AND

STA

BNE

JSR

BEQ

LDA

JSR

RTS

JSR

JSR

LDA

PHA

LDA

PHA

LDA

STA

JSR

JSR

JSR

JSR

LDA

STA

LDA

STA

LDA

STA

$7F

$FE85

$80

$D8,X

$81

$D475

$0279

$DDfX

$D4C8

$0279

$E7,X

#$07

$024A

#$00

$0258

$D9A0

#$01

$D125

$CA31

$D4C8

#$11

$83

$D39B

$85

$82

$F2,X

#$08

$F8

$CA52

$D125

$CA52

#$80

$DD97

$D1D3

$E1CB

$D6

$D5

#$12

$83

$D107

$D1D3

$E1CB

$E29C

$D6

$87

$D5

$86

#$00

$88

save

18, directory track
save

directory sector

read block

pointer in block

set buffer pointer

file type

isolate

and save

get parameters for rel-fi

get file type

rel-file?

set buffer pointer

17

open channel and get byte

channel number

isolate end marker

not set?

get data type

rel-file?

set bit 7

set drive number

18

open write channel

set drive number

139

Anatomy of the 1541 Disk Drive

CA7B 85 D4

CA7D

CA7F

CA80

CA82

CA83

CA85

'********

CA88

CA8B

CA8D

CA8F

CA91

CA93

CA95

CA97

CA99

CA9C

CA9F

CAA1

CAA3

CAA5

CAA7

CAA9

CAAC

CAAF

CAB1

CAB2

CAB4

CAB7

CABA

CABB

CABE

CACO

CAC3

CAC6

CAC9

85 D7

68

85 D5

68

85 D6

4C 3B E3

STA $D4

STA $D7

PLA

STA $D5

PLA

STA $D6

JMP $E33B

CACC

CACE

CADO

CAD3

CAD6

CAD7

CADA

CADC

CADF

CAE1

CAE3

CAE6

CAE7

CAEA

20 20 C3

A5 E3

29 01

85 E3

C5 E2

F0 02

09 80

85 E2

20 4F C4

20 E7 CA

A5 E3

29 01

85 7F

A5 D9

85 81

20 57 DE

20 99 D5

A5 DE

18

69 03

20 C8 D4

20 93 DF

A8

AE 7A 02

A9 10

20 6E C6

20 5E DE

20 99 D5

4C 94 Cl

A5 E8

29 07

8D 4A 02

AE 78 02

CA

EC 77 02

90 0A

BD 80 02

DO F5

A9 62

4C C8 Cl

60

20 CC CA

8D 80 02

JSR

LDA

AND

STA

CMP

BEO

ORA

STA

JSR

JSR

LDA

AND

STA

LDA

STA

JSR

JSR

LDA

CLC

ADC

JSR

JSR

TAY

LDX

LDA

JSR

JSR

JSR

JMP

$C320

$E3

#$01

$E3

$E2

$CA97

#$80

$E2

$C44F

$CAE7

$E3

#$01

$7F

$D9

$81

$DE57

$D599

$DE

#$03

$D4C8

$DF93

$027A

#$10

$C66E

$DE5E

$D599

$C194

LDA $E8

AND #$07

STA $024A

LDX $0278

DEX

CPX $0277

BCC $CAE6

LDA $0280,X

BNE $CAD6

LDA #$62

JMP $C1C8

RTS

JSR $CACC

LDA $0280,X

R-command, ' rename•

get drive no. from command line

2nd drive number

compare with 1st drive number

same?

search for file in directory

does name exist?

drive number

sector number

read block from directory

ok?

pointer to directory entry

pointer plus 3 to file name

set buffer pointer

get buffer number

16 characters

write name in buffer

write block to directory

ok?

doner prepare disk status

check if file present

file type

track number

not zero?

62, 'file not found1

does file exist with old name?

track number of new file

140

Anatomy of the 1541 Disk Drive

CAED

CAEF

CAF1

CAF4

CAF5

CAF7

FO 05

A9 63

4C C8 Cl

CA

10 F3

60

BEQ $CAF4

LDA #$63

JMP $C1C8

DEX

BPL $CAEA

RTS

CAF8

CAFB

CAFD

CAFF

CB02

CB04

CB07

CB09

CBOB

CBOE

CB10

CB12

CB15

CB17

CB19

CB1B

CB1D

AD 01 02

C9 2D

DO 4C

AD 03 02

85 6F

AD 04 02

85 70

AO 00

AD 02 02

C9 52

FO OE

20 58 F2

C9 57

FO 37

C9 45

DO 2E

6C 6F 00

LDA $0201

CMP #$2D

BNE $CB4B

LDA $0203

STA $6F

LDA $0204

STA $70

LDY #$00

LDA $0202

CMP #$52

BEQ $CB20

JSR $F258

CMP #$57

BEQ $CB50

CMP #$45

BNE $CB4B

JMP ($006F)

CB20

CB22

CB24

CB27

CB29

CB2B

CB2E

CB2F

CB31

CB32

CB33

CB35

CB37

CB3A

CB3C

CB3E

CB40

CB42

CB45

CB48

CB4B

CB4D

Bl 6F

85 85

AD 74 02

C9 06

90 1A

AE 05 02

CA

FO 14

8A

18

65 6F

E6 6F

8D 49

A5 6F

85 A5

A5 70

85 A6

4C 43 D4

20 EB DO

4C 3A D4

A9 31

4C C8 Cl

02

LDA

STA

LDA

CMP

BCC

LDX

DEX

BEQ

TXA

CLC

ADC

INC

STA

LDA

STA

LDA

STA

JMP

($6F),Y

$85

$0274

#$06

$CB45

$0205

$CB45

$6F

$6F

$0249

$6F

$A5

$70

$A6

$D443

JSR $D0EB

JMP $D43A

LDA #$31

JMP $C1C8

CB50

CB53

B9 06 02

91 6F

LDA $0206fY

STA ($6F),Y

file erased?

63, •file exists1

M-command, 'memory1

2nd character from buffer

address in $6F/$70

3rd character from buffer

•R'

to memory read

(RTS)

'W1

to memory write

memory-execute

M-R, 'Memory-Read'

read byte

length of command line

less than 6?

yes

number

only one byte?

number of bytes

plus start address

end pointer

buffer pointer for error message

set to start address for 'M-R1

byte out

open read channel

byte out

31, 'syntax error'

M-W, 'memory-write'

read character

and save

141

Anatomy of the 1541 Disk Drive

CB55 C8

CB56 CC 05 02

CB59 90 F5

CB5B 60

INY

CPY $0205

BCC $CB50

RTS

number of characters

all characters?

CB5C AC 01 02 LDY $0201

CB5F

CB61

CB63

CB65

CB67

CB69

CB6B

CB6C

CB6F

CB72

CB73

CB74

CB76

CB77

CB78

CB7A

C87C

CB7D

CB7F

CB81

CO 30

DO 09

A9 EA

85 6B

A9 FF

85 6C

60

20 72 CB

4C 94 Cl

88

98

29 OF

0A

A8

Bl 6B

85 75

C8

Bl 6B

85 76

6C 75 00

CPY #$30

BNE $CB6C

LDA #$EA

STA $6B

LDA #$FF

STA $6C

RTS

JSR $CB72

JMP $C194

DEY

TYA

AND #$0F

ASL A

TAY

LDA ($6B),Y

STA $75

INY

LDA ($6B),Y

STA $76

JMP ($0075)

CB84

CB87

CB89

CB8B

CB8C

CB8F

CB90

CB92

CB95

CB96

CB98

CB9A

CB9D

CBA0

CBA2

CBA5

CBA7

CBAA

CBAD

CBAF

CBB1

CBB3

CBB5

AD 8E 02

85 7F

A5 83

48

20 3D C6

68

85 83

AE 74 02

CA

DO OD

A9 01

20 E2 Dl

4C Fl CB

A9 70

4C C8 Cl

AO 01

20 7C CC

AE 85 02

EO 05

BO EF

A9 00

85 6F

85 70

LDA $028E

STA $7F

LDA $83

PHA

JSR $C63D

PLA

STA $83

LDX $0274

DEX

BNE $CBA5

LDA #$01

JSR $D1E2

JMP $CBF1

LDA

JMP

LDY

JSR

LDX

CPX

BCS

LDA

STA

STA

#$70

$C1C8

#$01

$CC7C

$0285

#$05

$CBA0

#$00

$6F

$70

U-coinmand,

second char

'0'

no

'user1

ptr to table of user-addresses

$FFEA

done, prepare error message

number

times 2

as pointer in table

address at $75/$76

execute function

open direct access channel, '#■

last drive number

drive number

channel number

check drive and initialize

length of filename

greater than one?

layout buffer and channel

set flags, done

70, 'no channel'

get buffer number

buffer number

bigger than 5?

70, 'no channel'

142

Anatomy of the 1541 Disk Drive

CBB7

CBB8

CBBA

CBBC

CBBD

CBBF

CBC1

CBC4

CBC6

CBC8

CBCB

CBCD

CBCF

CBD2

CBD5

CBD7

CBDA

CBDD

CBDF

CBE2

CBE4

CBE7

CBE9

CBEA

CBEC

CBEE

CBF1

CBF3

CBF6

CBF8

CBFB

CBFD

CBFF

CCO 2

CC04

CC07

CCOA

CCOD

CCOE

CCOF

ecu

CC13

CC15

CC18

CC1B

CC1D

CC1F

CC21

CC24

CC26

CC28

38

26

26

CA

10

A5

2D

DO

A5

2D

DO

A5

OD

8D

A5

OD

8D

A9

20

A6

AD

95

AA

A5

95

9D

A6

BD

09

9D

A4

A9

99

A9

99

B9

99

OA

AA

A9

95

A9

99

4C

AO

AO

A9

20

DO

A9

4C

6F

70

F9

6F

4F

DA

70

50

D3

6F

4F

4F

70

50

50

00

E2

82

85

A7

7F

00

5B

83

2B

40

2B

82

FF

44

89

F2

A7

3E

01

99

OE

EC

94

• * * -A

00

00

2D

68

OA

31

C8

02

02

02

02

02

02

Dl

02

02

02

02

02

00

00

02

00

Cl

: * * * i

C2

Cl

SEC

ROL

ROL

DEX

BPL

LDA

AND

BNE

LDA

AND

BNE

LDA

ORA

STA

LDA

ORA

STA

LDA

JSR

LDX

LDA

STA

TAX

LDA

STA

STA

LDX

LDA

ORA

STA

LDY

LDA

STA

LDA

STA

LDA

STA

ASL

TAX

LDA

STA

LDA

STA

JMP

If * * * * it

LDY

LDX

LDA

JSR

BNE

LDA

JMP

$6F

$70

$CBB8

$6F

$024F

$CBA0

$70

$0250

$CBA0

$6F

$024F

$024F

$70

$0250

$0250

#$00

$D1E2

$82

$0285

$A7,X

$7F

$00,X

$025B,

$83

$022B,

#$40

$022B,

$82

#$FF

$0244,

#$89

$00F2,

$00A7,

$023E,

A

#$01

$99,X

#$0E

$OOEC,

$C194

#$00

#$00

#$2D

$C268

$CC30

#$31

$C1C8

X

X

X

Y

Y

Y

Y

Y

search channel

channel number

buffer number

drive number

secondary address

set READ and WRITE flags

channel number

end pointer

set READ and WRITE flags

buffer number

times 2

buffer pointer to one

flag for direct access

done

B-comroand, 'Block1

• -•

search for minus sign

found?

31, 'syntax error'

143

Anatomy of the 1541 Disk Drive

CC2B

CC2D

CC30

CC31

CC33

CC35

CC38

CC3B

CC3D

CC3E

CC40

CC42

CC43

CC45

CC48

CC4B

CC4E

CC4F

CC50

CC53

CC55

CC58

CC5A

A9

4C

8A

DO

A2

B9

DD

FO

CA

10

30

8A

09

8D

20

AD

0A

AA

BD

85

BD

85

6C

30

C8

F8

05

00

5D

05

F8

E4

80

2A

6F

2A

64

70

63

6F

6F

Cl

02

CC

02

CC

02

CC

CC

00

LDA

JMP

TXA

BNE

LDX

LDA

CMP

BEQ

DEX

BPL

BMI

TXA

ORA

STA

JSR

LDA

ASL

TAX

LDA

STA

LDA

STA

JMP

#$30

$C1C8

$CC2B

#$05

$0200

$CC5D

$CC42

$CC38

$CC26

#$80

$022A

$CC6F

$022A

A

$CC64

$70

$CC63

$6F

rY

rX

,x

fX

($006F)

CC5D

41 46 52 57 45 50

30, 'syntax error1

comma, then error

char from buffer

compare with 'AFRWEP'

found?

compare with all characters

not found, error

command number, set bit 7

get parameters

number times 2

as index

address of command hi

address lo

j ump to command

names of the various block cmds

'AFRWEP1

CC63

CC65

CC67

CC69

CC6B

CC6D

03

F5

56

73

A3

BD

CD

CC

CD

CD

CD

CD

CC6F

CC71

CC73

CC75

CC78

CC7A

CC7C

CC7F

CC81

CC83

CC85

CC87

CC89

CC8B

CC8C

CC8F

CC91

A0

A2

A9

20

DO

A0

B9

C9

F0

C9

F0

C9

DO

C8

CC

90

60

00

00

3A

68 C2

02

03

00 02

20

08

ID

04

2C

07

74 02

EB

LDY

LDX

LDA

JSR

BNE

LDY

LDA

CMP

BEQ

CMP

BEO

CMP

BNE

INY

CPY

BCC

RTS

#$00

#$00

#$3A

$C268

$CC7C

#$03

$0200,Y

#$20

$CC8B

#$1D

$CC8B

#$2C

$CC92

$0274

$CC7C

addresses of block commands

$CD03, B-A

$CCF5, B-F

$CD56, B-R

$CD73, B-W

$CDA3, B-E

$CDBD, B-P

get parameters for block co

i • i

test line to colon

found?

no, begin at 4th character

search for separating char

1 ' blank

cursor right

1,' comma

line end?

144

Anatomy of the 1541 Disk Drive

CC92

CC95

CC98

CC9B

CC9D

CC9P

CCA1

CCA3

CCA5

CCA7

CCA9

CCAB

CCAE

CCBO

CCB2

CCB4

CCB6

CCB8

CCB9

CCBB

CCBD

CCBF

CCC1

CCC2

CCC4

CCC5

CCC7

CCCA

CCCD

CCCE

CCDO

CCD1

CCD3

CCD5

CCD7

CCD8

CCDA

CCDD

CCDF

CCEO

CCE2

CCE4

CCE5

CCE8

CCEA

CCED

CCEE

CCF1

20 Al CC

EE 77 02

AC 79 02

EO 04

90 EC

BO 8A

A9 00

85 6F

85 70

85 72

A2 FF

B9 00 02

C9 40

BO 18

C9 30

90 14

29 OF

48

A5 70

85 71

A4 6F

85 70

68

85 6F

C8

CC 74 02

90 El

8C 79 02

18

A9 00

E8

EO 03

BO OF

B4 6F

88

30 F6

7D F2 CC

90 F8

18

E6 72

DO F3

48

AE 77 02

A5 72

9D 80 02

68

9D 85 02

60

JSR $CCA1

INC $0277

LDY $0279

CPX #$04

BCC $CC8B

BCS $CC2B

LDA #$00

STA $6F

STA $70

STA $72

LDX #$FF

LDA $0200,Y

CMP #$40

BCS $CCCA

CMP #$30

BCC $CCCA

AND #$0F

PHA

LDA $70

STA $71

LDA $6F

STA $70

PLA

STA $6F

INY

CPY $0274

BCC $CCAB

STY $0279

CLC

LDA #$00

INX

CPX #$03

BCS $CCE4

LDY $6FrX

DEY

BMI $CCD0

ADC $CCF2,X

BCC $CCD7

CLC

INC $72

BNE $CCD7

PHA

LDX $0277

LDA $72

STA $0280,X

PLA

STA $0285,X

RTS

CCF2 01 OA 64

k**********

CCF5 20 F5 CD

CCF8 20 5F EF

JSR $CDF5

JSR $EF5F

preserve next parameter

increment parameter counter

compare with maximum number

30, 'syntax error1

erase storage area for decimal #s

get characters from input buffer

no digits?

'0f

no digits?

convert ASCII digits to hex

and save

move digits one further

note read number

increment pointer in input buffer
line end reached

no

save pointer

convert hex digits to one byte

add decimal value

counter for parameters

hi-byte

lo-byte

decimal values

1, 10, 100

B-F command, 'Block-Free1

get track, sector and drive no.

free block

145

Anatomy of the 1541 Disk Drive

CCFB 4C 94 Cl JMP $C194

CCFE A9 01 LDA #$01

CDOO

* * * * * 4

CD03

CD06

CD08

CD09

CDOC

CDOE

CDOF

CD11

CD13

CD16

CD19

CD1A

CD1C

CD1E

CD20

CD22

CD25

CD27

CD2A

CD2C

CD2E

CD31

CD33

8D

!* * * *

20

A5

48

20

FO

68

C5

DO

20

4C

68

A9

85

E6

A5

CD

BO

20

FO

A9

20

A9

20

F9

1 * * *

F5

81

FA

OB

81

19

90

94

00

81

80

80

D7

OA

FA

EE

65

45

65

C8

02

CD

Fl

EF

Cl

FE

Fl

E6

Cl

STA

JSR

LDA

PHA

JSR

BEQ

PLA

CMP

BNE

JSR

JMP

PLA

LDA

STA

INC

LDA

CMP

BCS

JSR

BEQ

LDA

JSR

LDA

JSR

$02F9

$CDF5

$81

$F1FA

$CD19

$81

$CD2C

$EF90

$C194

#$00

$81

$80

$80

$FED7

$CD31

$F1FA

$CD1A

#$65

$E645

#$65

$C1C8

CD36 20 F2 CD JSR $CDF2

CD39 4C 60 D4 JMP $D460

CD3C 20 2F Dl JSR $D12F

CD3F Al 99 LDA ($99,X)

CD41 60 RTS

CD42

CD45

CD47

CD4A

CD4D

CD50

CD52

CD55

20 36 CD JSR $CD36

A9

20

20

99

A9

99

60

00

C8

3C

44

89

F2

D4

CD

02

00

LDA

JSR

JSR

STA

LDA

STA

RTS

#$00

$D4C8

$CD3C

$0244fY

$89

$00F2rY

done, prepare error message

B-A command, 'Block-Allocate1

get track, sector and drive no.

sector

save

find block in BAM

block allocated?

desired sector

= next free sector?

no

allocate block in BAM

done

sector 0

next track

track number

36, last track number + 1

>=, then 'no block'

find free block in next track

not found, check next track

65, 'no block1 next free block

65,'no block' no more free blocks

open channel, set parameters

read block from disk

get byte from buffer

set pointer to buffer

get byte

read block from disk

open channel, read block

set buffer pointer to zero

get a byte from the buffer

set read and write flag

CD56 20 42 CD JSR $CD42

CD59 20 EC D3 JSR $D3EC

CD5C 4C 94 Cl JMP $C194

B-R command, 'Block-Read'

read block from disk

prepare byte from buffer

prepare error message

146

Anatomy of the 1541 Disk Drive

CD5F

CD62

CD65

CD68

CD6B

CD6D

CD70

20

20

B9

99

A9

99

4C

6F

42

44

3E

FF

44

94

CC

CD

02

02

02

Cl

JSR

JSR

LDA

STA

LDA

STA

JMP

$CC6F

$CD42

$0244,Y

$023E,Y

#$FF

$0244,Y

$C194

CD7 3

CD76

CD79

CD7A

CD7B

CD7D

CD7P

CD81

CD8 3

CD86

CD87

CD8A

CD8B

CD8C

CD8F

CD90

CD91

CD94

20

20

A8

88

C9

BO

A0

A9

20

98

20

8A

48

20

68

AA

20

4C

F2

E8

02

02

01

00

C8

Fl

64

EE

94

CD

D4

D4

CF

D4

D3

Cl

JSR

JSR

TAY

DEY

CMP

BCS

LDY

LDA

JSR

TYA

JSR

TXA

PHA

JSR

PLA

TAX

JSR

JMP

$CDF2

$D4E8

#$02

$CD81

#$01

#$00

$D4C8

$CFF1

$D464

$D3EE

$C194

CD97 20 6F CC JSR $CC6F

CD9A 20 F2 CD JSR $CDF2

CD9D 20 64 D4 JSR $D464

CDAO 4C 94 Cl JMP $C194

CDA3

CDA6

CDA9

CDAB

CDAD

CDAF

CDB2

CDB4

CDB7

CDBA

20 58

20 36

A9 00

85 6F

A6 F9

BD EO

85 70

20 BA

4C 94

6C 6F

F2 JSR $F258

CD JSR $CD36

LDA #$00

STA $6F

LDX $F9

FE LDA $FEE0,X

STA $70

CD JSR $CDBA

Cl JMP $C194

00 JMP ($006F)

CDBD

CDCO

CDC2

CDC3

CDC4

CDC7

20 D2 CD

A5 F9

OA

AA

AD 86 02

95 99

JSR $CDD2

LDA $F9

ASL A

TAX

LDA $0286

STA $99,X

Ul command, sub. for 'Block-Read1

get parameters of the command

read block from disk

end pointer

save as data byte

end pointer to $FF

done, prepare error message

B-W command, 'Block-Write1

open channel

set buffer pointer

buffer pointer lo less than 2?
no

buffer pointer to zero

write byte in buffer

write block to disk

get byte from buffer

done, error message

U2, sub for 'Block-Write1

get command parameters

open channel

and write block to disk

done

'B-E' command, 'Block-Execute'
(RTS)

open channel and read block

address low

buffer number

buffer address high

execute routine

done

jump to routine

'B-P' command, 'Block-Pointer'

open channel, get buffer number

buffer number

* 2

as index

pointer value

save as buffer pointer

147

Anatomy of the 1541 Disk Drive

CDC9 20 2F Dl JSR $D12F

CDCC 20 EE D3 JSR $D3EE

CDCF 4C 94 Cl JMP $C194

CDD2

CDD4

CDD6

CDD9

CDDA

CDDB

CDDC

CDDE

CDEO

CDE2

CDE5

CDE7

CDEA

CDEC

CDEF

CDF1

A6 D3

E6 D3

BD 85 02

A8

88

88

CO 0C

90 05

A9 70

4C C8 Cl

85 83

20 EB DO

BO F4

20 93 DF

85 F9

60

CDF2

CDF5

CDF7

CDFA

CDFC

CDFE

CE01

CE03

CE06

CE08

CEOB

20 D2 CD

A6 D3

BD 85 02

29 01

7F85

BD 87

85 81

BD 86

85 80

20 5F D5

4C 00 Cl

02

02

CEOE

CE11

CE14

CE16

CE18

CE1B

CE1D

CE1F

CE21

CE23

CE25

CE26

CE27

CE29

CE2B

CE2C

20 2C CE

20 6E CE

A5 90

85 D7

20 71 CE

E6 D7

E6 D7

A5 8B

85 D5

A5 90

OA

18

69 10

85 D6

60

LDX $D3

INC $D3

LDA $0285,X

TAY

DEY

DEY

CPY #$0C

BCC $CDE5

LDA #$70

JMP $C1C8

STA $83

JSR $D0EB

BCS $CDE0

JSR $DF93

STA $F9

RTS

JSR

LDX

LDA

AND

STA

LDA

STA

LDA

STA

JSR

JMP

$CDD2

$D3

$0285,X

#$01

$7F

$0287,X

$81

$0286,X

$80

$D55F

$C100

JSR

JSR

LDA

STA

JSR

INC

INC

LDA

STA

LDA

ASL

CLC

ADC

STA

RTS

$CE2C

$CE6E

$90

$D7

$CE71

$D7

$D7

$8B

$D5

$90

A

#$10

$D6

20 D9 CE

JSR $CED9

prepare a byte in buffer

for output

done

open channel

buffer number

buffer number smaller than 14?

yes

70, 'no channel*

secondary address

open channel

already allocated,70 'no channel1

buffer number

set

check buffer no. and open channel

channel number

buffer address

drive number

sector

track

track and sector ok?

turn LED on

set pointer for rel-file

record number * record length

divide by 254

remainder = pointer in data block

data pointer

divide by 120 = side-sector #

data ptr + 2 (track/sector ptri)

result of division

equals side-sector number

remainder

times 2

plus 16

=ptr in side-sector to data block

erase work storage

148

Anatomy of the 1541 Disk Drive

CE2F

CE31

CE33

CE35

CE37

CE39

CE3B

CE3D

CE3F

CE41

CE43

CE44

CE46

CE48

CE4A

CE4C

CE4E

CE50

CE52

CE54

CE57

CE5A

CE5C

CE5E

CE60

CE61

CE63

CE65

CE67

CE69

CE6B

CE6D

85

A6

B5

85

B5

85

DO

A5

FO

A5

38

E9

85

BO

C6

B5

85

46

90

20

20

A5

DO

A5

18

65

85

90

E6

DO

E6

60

92

82

B5

90

BB

91

04

90

OB

90

01

90

02

91

C7

6F

6F

03

ED CE

E5 CE

6F

F2

D4

8B

8B

06

8C

02

8D

STA

LDX

LDA

STA

LDA

STA

BNE

LDA

BEO

LDA

SEC

SBC

STA

BCS

DEC

LDA

STA

LSR

BCC

JSR

JSR

LDA

BNE

LDA

CLC

ASC

STA

BCC

INC

BNE

INC

RTS

$92

$82

$B5,X

$90

$BB,X

$91

$CE41

$90

$CE4C

$90

#$01

$90

SCE4C

$91

$C7fX

$6F

$6F

$CE57

$CEED

$CEE5

$6F

$CE50

$D4

$8B

$8B

$CE6D

$8C

$DE6D

$8D

CE6E

CE70

A9 FE LDA #$FE

2C .BYTE $2C

CE71

CE73

CE75

CE77

CE79

CE7A

CE7C

CE7E

CE7F

CE81

CE82

CE84

CE87

CE89

CE8B

CE8D

CE8E

A9

85

A2

B5

48

B5

95

68

95

CA

DO

20

A2

B5

95

E8

EO

78

6F

03

8F

8A

8F

8A

F3

D9 CE

00

90

8F

04

LDA

STA

LDX

LDA

PHA

LDA

STA

PLA

STA

DEX

BNE

JSP

LDX

LDA

STA

INX

CPX

#$78

$6F

#$03

$8F,X

$8A,X

$8F,X

$8AfX

$CE77

$CED9

#$00

$90,X

$8F,X

#$04

channel number

record number lo

record number hi

record number not zero?

then subtract one

record length

record number * record length

shift register left

result in $8B/$8C/$8D

divide by 254, calculate block #

254

divide by 120, calculate

side-sector number

divisor

erase work storage

149

Anatomy of the 1541 Disk Drive

CE90

CE92

CE94

CE96

CE98

CE9A

CE9C

CE9D

CE9F

CEAO

CEA3

CEA6

CEA9

CEAB

CEAD

CEBO

CEB2

CEB3

CEB5

CEB7

CEB9

CEBB

CEBD

CEBF

CEC1

CEC3

CEC5

CEC7

CEC8

CECA

CECC

CECE

CEDO

CED2

CED4

CED8

CED9

CEDB

CEDD

CEDF

CEE1

90

A9

85

24

30

06

08

46

28

20

20

20

24

30

20

A5

18

65

85

90

E6

DO

E6

A5

05

DO

A5

38

E5

90

E6

DO

E6

DO

85

60

fc***:

A9

85

85

85

60

F7

00

92

6F

09

8F

8F

E6

ED

E5

6F

03

E2

8F

90

90

06

91

02

92

92

91

C2

90

6F

OC

8B

06

8C

02

90

It**:

00

8B

8C

8D

CE

CE

CE

CE

BCC

LDA

STA

BIT

BMI

ASL

PHP

LSR

PLP

JSR

JSR

JSR

BIT

BMI

JSR

LDA

CLC

ADC

STA

BCC

INC

BNE

INC

LDA

ORA

BNE

LDA

SEC

SBC

BCC

INC

BNE

INC

BNE

STA

RTS

LDA

STA

STA

STA

RTS

$CE89

#$00

$92

$6F

$CEA3

$8F

$8F

$CEE6

$CEED

$CEE5

$6F

$CEB0

$CEE2

$8F

$90

$90

$CEBF

$91

$CEBF

$92

$92

$91

$CE87

$90

$6F

$CED8

$8B

$CED6

$8C

$CED6

$90

#$00

$8B

$8C

$8D

shift register 1 left

add register 0 to register 1

shift register 1 left

left-shift register 1 twice

quotient in $8B/$8C/$8D

remainder in $90

erase work storage

****************************** left-shift 3-byte register twice

CEE2 20 E5 CE JSR $CEE5

****************************** left-shift 3-byte register once

CEE5 18 CLC

CEE6 29 90 ROL $90

CEE8 26 91 ROL $91

CEEA 26 92 ROL $92

CEEC 60 RTS

150

Anatomy of the 1541 Disk Drive

CEED

CEEE

CEFO

CEF2

CEF4

CEF6

CEF7

CEF9

CEFA

CEFC

CEFD

CEFF

CFOO

CF02

CF04

CF06

CF08

CF09

CFOB

CFOD

CF10

CF12

CF14

CF16

CF17

CF19

CF1A

CF1D

CF1E

CF21

CF24

CF26

CF29

CF2C

CF2E

CF31

CF33

CF34

CF36

CF37

CF39

CF3C

CF3E

CF40

CF43

CF45

CF47

CF4A

CF4C

CF4F

CF51

CF54

18

A2

B5

75

95

E8

DO

60

A2

8A

95

E8

EO

DO

A9

95

60

AO

A6

B9

96

C5

FO

88

30

AA

4C

60

20

20

DO

20

20

30

20

A5

48

A5

48

A9

20

85

A9

20

85

FO

20

FO

20

DO

20

4C

FD

8E

93

8E

F7

00

FA

04

F8

06

FA

04

82

FA

FA

82

07

El

OD

09

B7

46

D3

8E

48

C2

80

81

01

F6

81

00

F6

80

IF

25

OB

AB

06

8C

5D

00

CF

CF

DF

Dl

D2

DF

D4

D4

Dl

DD

CF

CF

CLC

LDX

LDA

ADC

STA

I NX

BNE

RTS

LDX

TXA

STA

INX

CPX

BNE

LDA

STA

RTS

LDY

LDX

LDA

STX

CMP

BEO
DEY

BMI

TAX

JMP

RTS

JSR

JSR

BNE

JSR

JSR

BMI

JSR

LDA

PHA

LDA

PHA

LDA

JSR

STA

LDA

JSR

STA

BEO
JSR

BEO

JSR

BNE

JSR

JMP

#$FD

$8E,X

$93,X

$8E,X

$CEF0

#$00

$FAfX

#$04

$CEFC

#$06

$FAfX

#$04

$82

$00FArY

$FA,Y

$82

$CF1D

$CEFA

$CF0D

$CF09

$DFB7

$CF6C

$D1D3

$D28E

$CF76

$DFC2

$80

$81

#$01

$D4F6

$81

#$00

$D4F6

$80

$CF66

$D125

$CF57

$DDAB

$CF57

$CF8C

$CF5D

register $90/$91/$92

add to register $8B/$8

channel number

channel number

set drive number

track

sector

get byte 1 from buffer

sector

get byte 0 from buffer

track

check file type

rel-file?

151

Anatomy of the 1541 Disk Drive

CF57

CF5A

CF5D

CF5E

CF60

CF61

CF63

CF66

CF67

CF69

CF6A

CF6C

CF6F

CF72

CF73

CF76

CF78

CF7B

CF7E

CF81

CF83

CF86

CF88

CF8B

CF8C

CF8E

CF90

CF92

CF94

CF96

CF98

CF9A

20

20

68

85

68

85

4C

68

85

68

85

20

20

AA

4C

A9

4C

20

20

DO

20

30

20

60

A6

B5

49

95

B5

49

95

60

8C

57

81

80

6F

81

80

8C

93

99

70

C8

09

B7

08

8E

EE

C2

82

A7

80

A7

AE

80

AE

CF

DE

CF

CF

DF

D5

Cl

CF

DF

D2

DF

CF9B

CF9D

CF9F

CFA2

CFA5

CFA8

CFAA

CFAC

CFAF

CFB1

CFB3

CFB5

CFB7

CFB9

A2

86

20

20

20

90

A9

20

A5

C9

FO

DO

A5

29

12

83

07

00

25

05

20

9D

83

OF

23

08

84

8F

Dl

Cl

Dl

DD

JSR

JSR

PLA

STA

PLA

STA

JMP

PLA

STA

PLA

STA

JSR

JSR

TAX

JMP

LDA

JMP

JSR

JSR

BNE

JSR

BMI

JSR

RTS

LDX

LDA

EOR

STA

LDA

EOR

STA

RTS

LDX

STX

JSR

JSR

JSR

BCC

LDA

JSR

LDA

CMP

BEO

BNE

LDA

AND

$CF8C

$DE57

$81

$80

$CF6F

$81

$80

$CF8C

$DF93

$D599

#$70

$C1C8

$CF09

$DFB7

$CF8B

$D28E

$CF76

$DFC2

$82

$A7fX

#$80

$A7,X

$AE,X

#$80

$AE,X

#$12

$83

$D107

$C100

$D125

$CFAF

#$20

$DD9D

$83

#$0F

$CFD8

$CFBF

$84

#$8F

get sector

and track number

get back sector

and track number

and verify

70, 'no channel1

** change buffer

channel number

rotate bit 7 in ta

** write data byte in

channel 18

open write channel

turn LED on

check file type

no rel-file

change buffer

secondary address

15?

yes

no

secondary address

152

Anatomy of the 1541 Disk Drive

CFBB

CFBD

CFBF

CFC2

CFC4

CFC6

CFC9

CFCB

CFCE

CFDO

CFD3

CFD5

CFD8

CFDA

CFDC

CFDF

CFE1

CFE3

CFE5

CFE8

CFEA

CFEC

CFED

CFFO

CFF1

CFF2

CFF5

CFF7

CFF8

CFFA

CFFD

CFFE

CFFF

D000

D002

D004

C9

BO

20

BO

A5

4C

DO

4C

A5

20

A4

4C

A9

85

20

C9

FO

A5

20

A5

FO

60

EE

60

OF

19

25

05

85

9D

03

AB

85

Fl

82

EE

04

82

E8

2A

05

85

Fl

F8

01

55

Dl

Dl

EO

CF

D3

D4

CF

02

48

20

10

68

A9

4C

OA

AA

68

81

F6

60

93

06

61

C8

99

99

DF

Cl

CMP

BCS

JSR

BCS

LDA

JMP

BNE

JMP

LDA

JSR

LDY

JMP

LDA

STA

JSP

CMP

BEQ

LDA

JSR

LDA

BEO
RTS

INC

RTS

#$0F

$CFD8

$D125

$CFC9

$85

$D19D

$CFCE

$E0AB

$85

$CFF1

$82

$D3EE

#$04

$82

$D4E8

#$2A

$CFE8

$85

$CFF1

$F8

$CFED

$0255

PHA

JSR

BPL

PLA

LDA

JMP

ASL

TAX

PLA

STA

INC

RTS

$DF93

$CFFD

#$61

$C1C8

A

($99fX)

$99fX

D005 20 Dl Cl JSR $C1D1

D008 20 42 DO JSR $D042

DOOB 4C 94 Cl JMP $C194

DOOE

D011

D012

D014

D016

D019

20 OF Fl

A8

B6 A7

EO FF

48

20 8E D2

JSR $F10F

TAY

LDX $A7fY

CPX #$FF

PHA

JSR $D28E

greater than 15?

then input buffer

check file type

rel-file or direct access?

data byte

write in buffer

direct access file?

write data byte in rel-file

write data byte in buffer

channel number

prepare next byte for output

channel 4

corresponding input buffer

set buffer pointer

40

buffer end?

write data byte in buffer

end flag set?

yes

set command flag

write data byte in buffer

save data byte

get buffer number

associated buffer?

61, 'file not open1

buffer number times 2

as index

data byte

write in buffer

increment buffer pointer

I-commandf Initialize

find drive number

load BAM

prepare disk status

153

Anatomy of the 1541 Disk Drive

D01C

D01D

D021

D024

DO 25

D026

DO 27

D029

D02C

D02D

D02F

D031

D033

D035

DO 38

D03A

D03D

D03F

D042

D045

D048

D04B

D04D

D04F

D052

D053

D054

D055

D057

D059

D05B

D05D

D060

D062

D063

D064

D066

D068

DO 6A

D06C

D06F

D071

D073

D075

D078

DO 7A

D07C

D07D

D07E

D080

D08 2

AA

A9 70

20 48 E6

68

A8

8A

09 80

99 A7 00

8A

29 OF

85 F9

A2 00

86 81

AE 85 FE

86 80

20 D3 D6

A9 BO

4C 8C D5

20 Dl FO

20 13 D3

20 OE DO

A6 7F

A9 00

9D 51 02

8A

OA

AA

A5 16

95 12

A4 17

95 13

20 86 D5

A5 F9

OA

AA

A9 02

95 99

Al 99

A6 7F

9D 01 01

A9 00

95 1C

95 FF

TAX

LDA

JSR

PLA

TAY

TXA

ORA

STA

TXA

AND

STA

LDA

STX

LDX

STX

JSR

LDA

JMP

JSR

JSR

JSR

LDX

LDA

STA

TXA

ASL

TAX

LDA

STA

LDA

STA

JSR

LDA

ASL

TAX

LDA

STA

LDA

LDX

STA

LDA

STA

STA

#$70

$E648

#$80

$00A7,Y

#$0F

$F9

#$00

$81

$FE85

$80

$D6D3

#$B0

$D58C

$FOD1

$D313

$D00E

$7F

#$00

$0251fX

$16

$12,X

$17

$13,X

$D586

$F9

A

#$02

$99,X

($99,X)

$7F

$0101,X

#$00

$1C,X

$FF,X

70, 'no channel1

20 3A EF

A0 04

A9 00

AA

18

71 6D

90 01

E8

JSR $EF3A

LDY #$04

LDA #$00

TAX

CLC

ADC ($6D),Y

BCC $D083

INX

sector 0

18

track 18

transmit param to disk controller

command code 'read block header'

transmit to disk controller

load BAM

read block

drive number

reset flag for 'BAM changed1

save ID

buffer number

buffer pointer to $200

get character from buffer

drive number

flag for write protect

flag for read error

calculate blocks free

buffer address to $6D/$6E

begin at position 4

add no. of free blocks per track

X as hi-byte

154

Anatomy of the 1541 Disk Drive

D083

D084

D085

D086

D087

D089

D08B

D08D

D08F

D090

D091

D093

D096

D097

D09A

* it 1t 1e it i

D09B

D09E

D0A1

D0A4

D0A7

D0A9

DOAC

DOAE

DOAF

D0B2

D0B4

D0B6

D0B7

DOBA

DOBD

DOCO

DOC3

D0C5

D0C7

D0C9

DOCC

DOCF

DODO

DOD3

D0D4

D0D5

D0D6

D0D7

D0D9

DODB

DODE

DOEO

D0E2

C8

C8

C8

C8

CO

FO

CO

DO

48

8A

A6

9D

68

9D

60

fc * * ie i

20

20

20

20

85

20

85

60

20

A5

DO

60

20

20

20

4C

A9

DO

A9

8D

20

AA

20

8A

48

OA

AA

A9

95

20

C9

BO

F6

48

F8

90

EE

7F

FC

FA

DO

C3

99

37

80

37

81

9B

80

01

IE

DO

C3

IE

80

02

02

02

D6

DO

D5

Dl

Dl

DO

CF

D6

DO

CF

r » w w -k

90

4D

93

06

00

99

25

04

06

B5

02

DF

D5

Dl

INY

INY

INY

INY

CPY #$48

BEQ $D083

CPY #$90

BNE $D07D

PHA

TXA

LDX $7F

STA $02FC,X

PLA

STA $02FArX

RTS

JSR $D6D0

JSR $D0C3

JSR $D599

JSR $D137

STA $80

JSR $D137

STA $81

RTS

JSR $D09B

LDA $80

BNE $D0B7

RTS

JSR $CF1E

JSR $D6D0

JSR $D0C3

JMP $CF1E

_l _l _L j_ j_ j_ j_ j_ j. j. j^ j. j.

xxxxxxxxxxxxx

LDA #$80

BNE $D0C9

LDA #$90

STA $024D

JSR $DF9 3

TAX

JSR $D506

TXA

PHA

ASL A

TAX

LDA #$00

STA $99,X

JSR $D125

CMP #$04

BCS $D0E8

INC $B5fX

plus 4

track 18?

then skip

last track number?

no

lo-byte

hi-byte

drive number

hi-byte to $2FC

lo-byte

to $2FA

parameters to disk controller

read block

ok?

get byte from buffer

track

next byte from buffer

sector

track

change buffer

parameters to disk controller

read block

change buffer

read block

code for 'read'

write block

code for 'write'

save

get buffer number

get track/sector, read/write

buffer pointer times 2

pointer in buffer to zero

get file type

rel-file or direct access?

yes

155

Anatomy of the 1541 Disk Drive

D0E4

D0E6

D0E8

D0E9

DOEA

DOEB

DO ED

DOEF

DOF1

D0F3

D0F5

D0F7

D0F9

DO FA

DOFB

DOFE

D1OO

D102

D104

D105

D106

D107

D109

D10B

D1OD

D10F

DUO

D113

D114

D115

D117

D119

D11A

D11C

DUE

D11F

D120

D121

D123

D124

D125

D127

D129

D12A

D12C

D12E

DO

F6

68

AA

60

r **

A5

C9

90

29

C9

DO

A9

AA

38

BD

30

29

85

AA

18

60

A4

C9

90

29

AA

BD

A8

OA

90

30

98

29

85

AA

18

60

30

38

60

A6

B5

4A

29

C9

60

02

BB

83

13

02

OF

OF

02

10

2B 02

06

OF

82

83

13

02

OF

2B 02

OA

OA

OF

82

F6

82

EC

07

04

BNE

INC

PLA

TAX

RTS

LDA

CMP

BCC

AND

CMP

BNE

LDA

TAX

SEC

LDA

BMI

AND

STA

TAX

CLC

RTS

$D0E8

$BB,X

$83

#$13

$D0F3

#$0F

#$0F

$D0F9

#$10

$022B,X

$D106

#$0F

$82

LDA

CMP

BCC

AND

TAX

LDA

TAY

ASL

BCC

BMI

TYA

AND

STA

TAX

CLC

RTS

BMI

SEC

RTS

LDX

LDA

LSR

AND

CMP

$83

#$13

$D10F

#$0F

$022BrX

A

$D121

$D123

#$0F

$82

$D119

$82

$EC,X

A

#$07

#$04

RTS

increment block counter

open channel for reading

secondary address

19

smaller?

16

flag for ok

open channel for writing

secondary address

19

smaller?.

channel number

flag for ok

flag for channel allocat

check for file type 'REL

•REL1?

156

Anatomy of the 1541 Disk Drive

D12F

D132

D133

D134

D136

20 93 DF

0A

AA

A4 82

60

JSR $DF93

ASL A

TAX

LDY $82

RTS

D137

D13A

D13D

D13F

D141

D142

D144

D147

D149

D14B

D14D

D14E

D150

D151

D153

D155

20 2F Dl

B9 44 02

F0 12

Al 99

48

B5 99

D9 44 02

DO 04

A9 FF

95 99

68

F6 99

60

Al 99

F6 99

60

JSR $D12F

LDA $0244,Y

BEQ $D151
LDA ($99,X)

PHA

LDA $99,X

CMP $0244,Y

BNE $D14D

LDA #$FF

STA $99,X

PLA

INC $99,X

RTS

LDA ($99,X)

INC $99,Y

RTS

D156

D159

D15B

D15D

D160

D162

D164

D167

D169

D16A

D16D

D16F

D172

D175

D177

D179

D17B

D17E

D180

D183

D186

D189

D18C

D18F

D191

20 37 Dl

DO 36

85 85

B9 44 02

F0 08

A9 80

99 F2 00

A5 85

60

20 IE CF

A9 00

20 C8 D4

20 37 Dl

C9 00

FO 19

85 80

20 37 Dl

85 81

20 IE CF

20 D3 Dl

20 DO D6

20 C3 DO

20 IE CF

A5 85

60

D192 20 37 Dl

D195 A4 82

D197 99 44 02

JSR $D137

BNE $D191

STA $85

LDA $0244,Y

BEQ $D16A

LDA #$80

STA $00F2,Y

LDA $85

RTS

JSR $CF1E

LDA #$00

JSR $D4C8

JSR $D137

CMP #$00

BEQ $D192

STA $80

JSR $D137

STA $81

JSR $CF1E

JSR $D1D3

JSR $D6D0

JSR $D0C3

JSR $CF1E

LDA $85

RTS

JSR $D137

LDY $8 2
STA $0244,Y

get buffer number

get a byte from buffer

get buffer and channel number
end pointer

get byte from buffer

buffer pointer

equal end pointer?

no

buffer pointer to -1

data byte

increment buffer pointer

get character from buffer

increment buffer pointer

get byte and read next block

get byte from buffer

not last character?

save data byte

end pointer

yes

READ-flag

data byte

change buffer and read next block

set buffer pointer to zero

get first byte from buffer

track number zero

yes, then last block

save last track number

get next byte

save as following track

change buffer and read next block

save drive number

param to disk controller

transmit read command

change buffer and read block

get data byte

get next byte from buffer

save as end pointer

157

Anatomy of the 1541 Disk Drive

D19A A5 85 LDA $85

D19C 60 RTS

D19D 20 Fl CF JSR $CFF1

D1A0 F0 01 BEO $D1A3

D1A2 60 RTS

get data byte back

byte in buffer and write block

byte in buffer

buffer full?

D1A3

D1A6

D1A9

D1AB

D1AE

D1B0

D1B3

D1B5

D1B8

D1BB

D1BE

D1C1

D1C3

20

20

A9

20

A5

20

A5

20

20

20

20

A9

4C

D3

IE

00

C8

80

Fl

81

Fl

C7

IE

DO

02

C8

Dl

Fl

D4

CF

CF

DO

CF

D6

D4

JSR $D1D3

JSR $F11E

LDA #$00

JSR $D4C8

LDA $80

JSR $CFF1

LDA $81

JSR $CFF1

JSR $D0C7

JSR $CF1E

JSR $D6D0

LDA #$02

JMP $D4C8

D1C6

D1C8

D1CB

D1CC

DICE

DIDO

D1D2

D1D3

D1D6

D1D7

D1DA

D1DC

D1DE

D1DF

D1E0

85

20

18

65

95

85

60

20

AA

BD

29

85

60

38

BO

6F

E8

6F

99

94

93

5B

01

7F

01

D4

STA $6F

JSR $D4E8

CLC

ADC $6F

STA $99 fX

STA $94

RTS

DF JSR $DF93

02

TAX

LDA $025B,X

AND #$01

STA $7F

RTS

SEC

BCS $D1E3

D1E2

D1E3

D1E4

D1E6

D1E9

D1EC

D1EE

D1F0

D1F1

D1F3

D1F5

D1F8

18

08

85

20

20

85

A6

28

90

09

9D

29

6F

27

7F

82

83

02

80

2B

3F

D2

D3

02

CLC

PHP

STA $6F

JSR $D227

JSR $D37F

STA $82

LDX $83

PLP

BCC $D1F5

ORA #$80

STA $022B,X

AND #$3F

get drive number

find free block in BAM

buffer pointer to zero

track number as first byte

sector number as second byte

write block

change buffer

param to disk controller

buffer pointer to 2

increment buffer pointer

get buffer pointer

and increment

get drive number

get drive number

isolate drive number

and save

find write channel and buffe

flag for writing

find read channel and buffer

flag for reading

save

buffer number

close channel

allocate free channel

channel number

secondary address

read channel?

flag for writing

set

158

Anatomy of the 1541 Disk Drive

D1FA

D1FB

D1FD

D200

D203

D206

D208

D20A

D20D

D20F

D212

D214

D217

D21A

D21C

D21E

D221

D223

D226

A8

A9 FF

99 A7 00

99 AE 00

99 CD 00

C6 6F

30 1C

20 8E D2

10 08

20 5A D2

A9 70

4C C8 Cl

99 A7

C6 6F

30 08

20 8E

30 EC

99 AE 00

60

00

D2

TAY

LDA

STA

STA

STA

DEC

BMI

JSR

BPL

JSR

LDA

JMP

STA

DEC

BMI

JSR

BMI

STA

RTS

#$FF

$00A7fY

$00AE,Y

$00CD,Y

$6F

$D226

$D28E

$D217

$D25A

#$70

$C1C8

$00A7,Y

$6F

$D226

$D28E

$D20F

$00AE,Y

D227 A5 83

D229 C9 OF

D22B DO 01

D22D 60

D22E

D230

D233

D235

D237

D239

D23B

D23D

D240

D242

D244

D246

D249

D24B

D24D

D24E

D250

D251

D253

D256

D259

A6 83

BD 2B 02

C9 FF

F0 22

29 3F

85 82

A9 FF

9D 2B 02

A6 82

A9 00

95 F2

20 5A D2

A6 82

A9 01

CA

30 03

0A

DO FA

OD 56 02

8D 56 02

60

LDA $83

CMP #$0F

BNE $D22E

RTS

LDX $83

LDA $022B,X

CMP #$FF

BEQ $D259

AND #$3F

STA $82

LDA #$FF

STA $022B,X

LDX $82

LDA #$00

STA $F2fX

JSR $D25A

LDX $82

LDA #$01

DEX

BMI $D253

ASL A

BNE $D24D

ORA $0256

STA $0256

RTS

D25A A6 82 LDX $82

D25C B5 A7 LDA $A7,X

D25E C9 FF CMP #$FF

FO 09 BEQ SD26B

PHA

D260

D262

D263

default value

write in associated table

decrement buffer number
done already?

find buffer

found?

erase flags in table

70, 'no channel1

buffer number in table

buffer number

already done?

find buffer

not found?

buffer number in table

close channel

secondary address

15?

no

else done already

channel number

not associated?

then done

channel number

erase association in table

erase READ and WRITE flag

free buffer

channel number

set bit 0

shift to correct position

free in allocation register

free buffer

channel number

buffer number

not associated?

48

A9 FF LDA #$FF

159

Anatomy of the 1541 Disk Drive

D265

D267

D268

D26B

D26D

D26F

D271

D273

D274

D276

D278

D279

D27C

D27E

D280

D282

D284

D285

D287

D289

D28A

D28D

95 A7

68

20 F3 D2

A6 82

B5 AE

C9 FF

F0 09

48

A9 FF

95 AE

68

20 F3

A6 82

B5 CD

C9 FF

F0 09

48

A9 FF

95 CD

68

20 F3 D2

60

D2

STA $A7,X

PLA

JSR $D2F3

LDX $82

LDA $AE,X

CMP #$FF

BEQ $D27C

PHA

LDA #$FF

STA $AEfX

PLA

JSR $D2F3

LDX $82

LDA $CD,X

CMP #$FF

BEO $D28D

PHA

LDA #$FF

STA $CD,X

PLA

JSR $D2F3

RTS

erase buffer association

erase buffer allocation register

channel number

associated in second table?

no

erase association

erase buffer in allocation reg.

channel number

associated in 3rd table?

no

erase association

erase buffer in allocation reg

****************************** find buffer

D28E

D28F

D290

D292

D295

D297

D298

D29B

D29D

D2A0

D2A1

D2A3

D2A5

D2A7

D2A9

D2AB

D2AE

D2AF

D2B0

D2B1

D2B3

D2B6

D2B7

D2B8

D2B9

D2BA

D2BC

D2BF

D2C2

D2C4

98

48

A0 01

20 BA D2

10 0C

88

20 BA D2

10 06

20 39 D3

AA

30 13

B5 00

30 FC

A5 7F

95 00

9D 5B 02

8A

0A

A8

A9 02

99 99 00

68

A8

8A

60

A2 07

B9 4F 02

3D E9 EF

F0 04

CA

TYA

PHA

LDY

JSR

BPL

DEY

JSR

BPL

JSR

TAX

BMI

LDA

BMI

LDA

STA

STA

TXA

ASL

TAY

LDA

STA

PLA

TAY

TXA

RTS

LDX #$07

LDA $024F,Y

AND $EFE9,Y

BEO $D2C8

DEX

#$01

$D2BA

$D2A3

$D2BA

$D2A3

$D339

$D2B6

$00,X

$D2A3

$7F

$00rX

$025B,X

#$02

$0099,Y

erase bit

160

Anatomy of the 1541 Disk Drive

D2C5

D2C7

D2C8

D2CB

D2CE

D2D1

D2D2

D2D3

D2D5

D2D6

D2D8

D2D9

D2DA

D2DC

D2DE

D2E0

D2E1

D2E2

D2E4

D2E5

D2E7

D2E9

D2EB

D2ED

D2EE

D2F0

D2F2

D2F3

D2F5

D2F6

D2F7

D2F9

D2FC

D2FF

D300

D302

D303

D304

D306

D307

D309

D30B

D30E

D310

D312

D313

D315

D317

D319

D31C

10

60

B9

5D

99

8A

88

30

18

69

AA

60

A6

B5

30

8A

18

69

AA

B5

10

C9

F0

48

A9

95

68

29

A8

C8

A2

6E

6E

88

DO

18

CA

10

60

A9

85

20

C6

DO

60

F5

4F

E9

4F

03

08

82

A7

09

07

A7

FO

FF

EC

FF

A7

OF

10

50

4F

01

F3

OE

83

27

83

F9

A9

85

A6

BD

C9

OE

83

83

2B

FF

02

EF

02

02

02

D2

02

BPL

RTS

LDA

EOR

STA

TXA

DEY

BMI

CLC

ADC

TAX

RTS

LDX

LDA

BMI

TXA

CLC

ADC

TAX

LDA

BPL

CMP

BEQ

PHA

LDA

STA

PLA

AND

TAY

INY

LDX

ROR

ROR

DEY

BNE

CLC

DEX

BPL

RTS

LDA

STA

JSR

DEC

BNE

RTS

LDA

STA

LDX

LDA

CMP

$D2BC

$024F,Y

$EFE9fX

$024F,Y

$D2D8

#$08

$82

$A7,X

$D2E9

#$07

$A7,X

$D2D9

#$FF

$D2D9

#$FF

$A7,X

#$0F

#$10

$0250

$024F

SD303

$D2F9

#$0E

$83

$D227

$83

$D30B

#$0E

$83

$83

$022B,X

#$FF

rotate bit

buffer number

buffer number

buffer number

16

rotate 16-bit allocation reg.

erase bit for buffer

close all channels

14

secondary address

close channel

next secondary address

close channels of other drives

14

secondary address

association table

channel associated?

161

Anatomy of the 1541 Disk Drive

D31E

D320

D322

D324

D327

D328

D32B

D32D

D32F

D331

D334

D336

D338

FO 14

29 3F

85 82

20 93 DF

AA

BD 5B 02

29 01

C5 7F

DO 03

20 27 D2

C6 83

10 DF

60

BEO $D334

AND #$3F

STA $82

JSR $DF93

TAX

LDA $025B,X

AND #$01

CMP $7F

BNE $D334

JSR $D227

DEC $83

BPL $D317

RTS

D339

D33B

D33C

D33E

D340

D342

D344

D346

D348

D349

D34A

D34C

D34-D

D34F

D351

D353

D355

D356

D358

D35A

D35C

D35E

D360

D362

D363

D365

D367

D369

D36B

D36D

D36F

D371

D373

D375

D377

D37A

D37B

D37D

D37E

A5 6F

48

A0 00

B6 FA

B5 A7

10 04

C9 FF

DO 16

8A

18

69 07

AA

B5 A7

10 04

C9 FF

DO 09

C8

CO 05

90 E4

A2 FF

DO 1C

86 6F

29 3F

AA

B5 00

30 FC

C9 02

90 08

A6 6F

EO 07

90 D7

BO E2

LDA

PHA

LDY

LDX

LDA

BPL

CMP

BNE

TXA

CLC

ADC

TAX

LDA

BPL

CMP

BNE

INY

CPY

BCC

LDX

BNE

STX

AND

TAX

LDA

BMI

CMP

BCC

LDX

CPX

BCC

BCS

$6F

#$00

$FAfY

$A7,X

$D348

#$FF

$D35E

#$07

$A7,X

$D355

#$FF

$D35E

#$05

$D33E

#$FF

$D37A

$6F

#$3F

$00fX

$D363

#$02

$D373

$6F

#$07

$D348

$D355

A4 6F LDY $6F

A9 FF LDA #$FF

99 A7 00 STA $00A7,Y

68 PLA

85 6F STA $6F

8A TXA

60 RTS

channel number

get buffer number

drive number

isolate

equal to actual drive number

no

close channel

next channel

162

Anatomy of the 1541 Disk Drive

D37F

D381

D383

D386

D388

D389

D38A

D38C

D38E

D391

D393

D396

D399

D39A

D39B

D39E

D3A1

D3A4

D3A6

D3A9

D3AA

D3AC

D3AF

D3B1

D3B4

D3B6

D3B8

D3BA

D3BC

D3BE

D3C0

D3C3

D3C5

D3C7

D3C9

D3CB

D3CE

D3D0

D3D2

D3D3

D3D5

D3D7

D3DA

D3DC

D3DE

D3E1

AO

A9

2C

DO

C8

OA

DO

A9

4C

49

2D

8D

98

60

fe*** 4

20

20

20

A6

BD

60

A6

20

DO

4C

A5

C9

FO

B5

29

DO

20

C9

DO

A9

95

4C

A9

95

60

A5

FO

20

C9

90

20

B5

00

01

56

09

F7

70

C8

FF

56

56

lr**i

EB

00

AA

82

3E

82

25

03

20

83

OF

5A

F2

08

13

25

07

07

89

F2

DE

00

F2

83

32

25

04

22

2F

99

02

Cl

02

02

DO

Cl

D3

02

Dl

El

Dl

D3

Dl

Dl

LDY

LDA

BIT

BNE

INY

ASL

BNE

LDA

JMP

EOR

AND

STA

TYA

RTS

*****!

JSR

JSR

JSR

LDX

LDA

RTS

LDX

JSR

BNE

JMP

LDA

CMP

BEO

LDA

AND

BNE

JSR

CMP

BNE

LDA

STA

JMP

LDA

STA

RTS

LDA

BEO

JSR

CMP

BCC

JSR

LDA

#$00

#$01

$0256

$D391

A

$D383

#$70

$C1C8

#$FF

$0256

$0256

$D0EB

$C100

$D3AA

$82

$023E,X

$82

$D125

$D3B4

$E120

$83

#$0F

$D414

$F2,X

#$08

$D3D3

$D125

#$07

$D3CE

#$89

$F2,X

$D3DE

#$00

$F2,X

$83

$D409

$D125

#$04

$D400

$D12F

$99,X

find channel and allocate

set bit 0

channel free?

rotate bit to left

all channels checked?

70, 'no channel1

rotate bit model

erase bit

allocate channel

get byte for output

open channel for reading

turn LED on

get byte in output register

channel number

get byte

channel number

check file type

no rel-file?

get byte from rel-file

secondary address

15

yes, read error channel

end flag set?

no

check file type

direct access file?

no

set READ and WRITE flag

erase READ and WRITE flag

secondary address

zero, LOAD?

check file type

rel-file or direct access?
no

get buffer and channel number

buffer pointer

163

Anatomy of the 1541 Disk Drive

D3E3

D3E6

D3E8

D3EA

D3EC

D3EE

D3F0

D3F3

D3F5

D3F8

D3FA

D3FC

D3FF

D400

D403

D405

D408

D409

D40C

D40E

D411

D414

D417

D419

D41B

D41D

D41F

D421

D423

D425

D428

D42A

D42D

D42F

D431

D433

D436

D438

D43A

D43C

D4 3F

D441

D443

D445

D447

D449

D44C

D44D

D450

D9

DO

A9

95

F6

Al

99

B5

D9

DO

A9

99

60

20

A6

9D

60

AD

F0

20

4C

20

C9

DO

A5

C9

DO

A9

85

20

A9

20

C6

A9

DO

20

85

DO

A9

20

A9

95

A9

85

A5

8D

60

20

OA

44

04

00

99

99

99

3E

99

44

05

81

F2

56

82

3E

54

F2

67

03

E8

D4

18

95

02

12

OD

85

23

00

Cl

A5

80

12

37

85

09

D4

C8

02

9A

88

F7

85

43

93

02

02

02

00

Dl

02

02

ED

D4

D4

Cl

E6

Dl

D4

02

DF

CMP

BNE

LDA

STA

INC

LDA

STA

LDA

CMP

BNE

LDA

STA

RTS

JSP

LDX

STA

RTS

LDA

BEQ

JSR

JMP

JSR

CMP

BNE

LDA

CMP

BNE

LDA

STA

JSR

LDA

JSR

DEC

LDA

BNE

JSR

STA

BNE

LDA

JSR

LDA

STA

LDA

STA

LDA

STA

RTS

JSR

ASL

$0244,

$D3EC

#$00

$99,X

$99,X

Y

($99,X)

$023E,

$99,X

$0244,

$D3FF

#$81

$00F2,

$D156

$82

$023E,

$0254

$D400

$ED67

$D403

$D4E8

#$D4

SD433

$95

#$02

$D433

#$0D

$85

$C123

#$00

$E6C1

$A5

#$80

$D445

$D137

$85

$D443

#$D4

$D4C8

#$02

$9A,X

#$88

$F7

$85

$0243

$DF93

A

Y

Y

Y

X

equal end pointer?

no

buffer pointer to zero

increment buffer pointer

get byte from buffer

into output register

buffer pointer

equal end pointer?

no

set flags

get byte from buffer

channel number

byte in output register

flag for directory?

no

create directory line

set buffer pointer

CR

in output register

erase error flags

create 'ok1 message

set buffer pointer back

set READ flag

get byte from buffer

into output register

set buf ptr in front of

hi-address

set READ flag

data byte

into output register

read next block

get buffer number

times 2

164

Anatomy of the 1541 Disk Drive

D451

D452

D454

D456

D458

D45A

D45C

D45F

AA

A9

95

Al

FO

D6

4C

60

00

99

99

05

99

56 Dl

TAX

LDA

STA

LDA

BEO

DEC

JMP

RTS

#$00

$99,X

($99,X)

$D45F

$99,X

$D156

D460 A9 80 LDA #$80

D462 DO 02 BNE $D466

D464

D466

D468

D46B

D46D

D470

A9 90

05 7F

8D 4D 02

A5 F9

20 D3

A6 F9

D6

LDA #$90

ORA $7F

STA $024D

LDA $F9

JSR $D6D3

LDX $F9

D472 4C 93 D5 JMP $D593

D475

D477

D47A

D47C

D47E

D481

D483

A9 01

8D 4A 02

A9 11

85 83

20 46 DC

A9 02

4C C8 D4

LDA #$01

STA $024A

LDA #$11

STA $83

JSR $DC46

LDA #$02

JMP $D4C8

D486 A9 12 LDA #$12

D488 85 83 STA $83

D48A 4C DA DC JMP $DCDA

D48D

D490

D492

D494

D496

D497

D499

D49B

D49E

D49F

D4A1

D4A3

D4A6

D4A8

D4AB

D4AD

D4B0

D4B3

20 3B DE

A9 01

85 6F

A5 69

48

A9 03

85 69

20 2D Fl

68

85 69

A9 00

20 C8 D4

A5 80

20 Fl CF

A5 81

20 Fl CF

20 C7 DO

20 99 D5

JSR $DE3B

LDA #$01

STA $6F

LDA $69

PHA

LDA #$03

STA $69

JSR $F12D

PLA

STA $69

LDA #$00

JSR $D4C8

LDA $80

JSR $CFF1

LDA $81

JSR $CFF1

JSR $D0C7

JSR $D599

buffer pointer to zero

get first byte from buffer

no block following?

buffer pointer to -1

read next block

read block

command code for reading

write block

command code for writing

drive number

save code

param to disk controller

execute command

allocate buffer and read block

file type to sequential
17

secondary address

allocate buffer and read block

buffer pointer to 2

allocate new block
18

secondary address

allocate new block

write directory block

get track and sector number

a block

save step width 10 for block

allocation

find free block in BAM

get step width back

buffer pointer to zero

track number in buffer

sector number in buffer

write block to disk

and verify

165

Anatomy of the 1541 Disk Drive

D4B6

D4B8

D4BB

D4BE

D4C0

D4C3

D4C5

A9 00

20 C8 D4

20 Fl CF

DO FB

20 Fl CF

A9 FF

4C Fl CF

LDA #$00

JSR $D4C8

JSR $CFF1

BNE $D4BB

JSR $CFF1

LDA #$FF

JMP $CFF1

D4C8

D4CA

D4CD

D4CE

D4CF

D4D1

D4D3

D4D5

D4D7

D4D9

85 6F

20 93

0A

AA

B5 9A

85 95

A5 6F

95 99

85 94

60

DF

STA $6F

JSR $DF93

ASL A

TAX

LDA $9AfX

STA $95

LDA $6F

STA $99rX

STA $94

RTS

D4DA

D4DC

D4DE

D4E1

D4E3

D4E5

A9 11

85 83

20 27 D2

A9 12

85 83

LDA #$11

STA $83

JSR $D227

LDA #$12

STA $83

4C 27 D2 JMP $D227

D4E8

D4EB

D4EC

D4ED

D4EF

D4F1

D4F3

D4F5

20 93 DF

0A

AA

B5 9A

85 95

B5 99

85 94

60

JSR $DF93

ASL A

TAX

LDA $9A,X

STA $95

LDA $99,X

STA $94

RTS

buffer pointer to zero

fill buffer with zeroes

zero as following track

$FF as number of bytes

set buffer pointer

save pointer

get buffer number

times 2

buffer pointer hi

buffer pointer lo, new value

close internal channel

17

close channel

18

close channel

set buffer pointer

get buffer number

buffer pointer hi

buffer pointer lo

********** it***********

D4F6

D4F8

D4FB

D4FC

D4FF

D501

D503

D505

DF

85 71

20 93

AA

BD E0 FE

85 72

A0 00

Bl 71

60

STA $71

JSR $DF9 3

TAX

LDA $FEE0,X

STA $72

LDY #$00

LDA ($71),Y

RTS

D506

D509

D50B

D50E

D50F

D511

BD 5B 02

29 01

0D 4D 02

A8

86 F9

8A

LDA $025B,X

AND #$01

ORA $024D

PHA

STX $F9

TXA

get byte from buffer

pointer lo

get buffer number

hi-byte buffer address

pointer hi

get byte from buffer

check track and sector numbers

command code for disk controller

drive number

plus command code

save

buffer number

166

Anatomy of the 1541 Disk Drive

D512

D513

D514

D516

D519

D51B

D51D

D520

D522

D523

D524

D525

D527

D529

D52B

D52C

D52D

D52E

D530

D533

D535

D538

D53A

D53D

D53F

D540

D543

D546

D548

D54A

D54D

D54F

OA

AA

B5 07

8D 4D 02

B5 06

F0 2D

CD D7 FE

BO 28

AA

68

48

29 F0

C9 90

DO 4F

68

48

4A

BO 05

AD 01 01

90 03

AD 02 01

FO 05

CD D5 FE

DO 33

8A

20 4B F2

CD 4D 02

FO 02

BO 30

20 52 D5

A9 66

4C 45 E6

ASL A

TAX

LDA $07,X

STA $024D

LDA $06,X

BEQ $D54A

CMP $FED7

BCS $D54A

TAX

PLA

PHA

AND #$F0

CMP #$90

BNE $D57A

PLA

PHA

LSR A

BCS $D535

LDA $0101

BCC $D538

LDA $0102

BEQ $D53F

CMP $FED5

BNE $D572

TXA

JSR $F24B

CMP $024D

BEQ $D54A

BCS $D57A

JSR $D552

LDA #$66

JMP $E645

D552

D554

D555

D556

D558

D55A

D55C

D5 5E

D55F

D561

D563

D566

D568

D56B

D56D

D56F

D571

D572

D575

A5 F9

OA

AA

B5 06

85 80

B5 07

85 81

60

A5 80

FO EA

CD D7 FE

BO E5

20 4B F2

C5 81

FO DE

90 DC

60

20 52 D5

A9 73

LDA $F9

ASL A

TAX

LDA $06,X

STA $80

LDA $07,X

STA $81

RTS

LDA $80

BEQ $D54D

CMP $FED7

BCS $D54D

JSR $F24B

CMP $81

BEQ $D54D

BCC $D54D

RTS

JSR $D552

LDA #$73

times 2

sector

save

track

66, 'illegal track or sector1

36, highest track number + 1

66, 'illegal track or sector1

command code

code for writing?

no

'A', format marker

73, 'cbm dos v2,6 1541*

track number

get maximum sector number

compare with sector number

equal, then error

smaller?

get track and sector number

66, 'illegal track or sector1

get track and sector number

buffer number

*2

as index

track

sector

track

zero, then error

36, maximum track number + 1

66, 'illegal track or sector'

get maximum sector number

sector

error

get track and sector number

167

Anatomy of the 1541 Disk Drive

D577 4C 45 E6 JMP $E645

D57A A6 F9 LDX $F9

D57C 68 PLA

D57D 8D 4D 02 STA $024D

D580 95 00 STA $00,X

D582 9D 5B 02 STA $025BfX

D585 60 RTS

D586 A9 80 LDA #$80

D588 DO 02 BNE $D58C

D58A

D58C

D58E

D590

D593

D596

A9 90

05 7F

A6 F9

8D 4D 02

AD 4D 02

20 0E D5

LDA #$90

ORA $7F

LDX $F9

STA $024D

LDA $024D

JSP $D50E

D599

D59C

D59E

D59F

D5A1

D5A4

D5A5

D5A6

D5A8

D5AA

D5AC

D5AE

D5B0

D5B2

D5B4

D5B6

D5B8

D5BA

D5BD

D5BF

D5C2

D5C3

D5C4

D5C5

D5C6

D5C7

D5C8

D5CA

D5CB

20 A6 D5 JSR $D5A6

B0 FB BCS $D599

48 PHA

A9 00 LDA #$00

8D 98 02 STA $0298

68 PLA

60 RTS

B5 00

30 1A

C9 02

90 14

C9 08

F0 08

C9 0B

F0 04

C9 OF

DO OC

2C 98 02

30 03

4C 3F D6

18

60

38

60

98

48

A5 7F

48

BD 5B 02

$00,X

$D5C4

#$02

$D5C2

#$08

$D5BA

#$0B

$D5BA

#$0F

$D5C6

$0298

$D5C2

$D63F

LDA

BMI

CMP

BCC

CMP

BEO

CMP

BEO

CMP

BNE

BIT

BMI

JMP

CLC

RTS

SEC

RTS

TYA

PHA

LDA $7F

PHA

LDA $025B,X

73, 'cbm dos v2.6 1541f

buffer number

command code for disk controller

in command register

and write in table

read block

code for read

write block

code for write

drive number

buffer number

command code

check track and sector

verify execution

verify execution

wait for end

erase error flag

cmd code (bit 7) still in reg?

yes

error-free execution

8

write protect

11

ID mismatch

15

create error message

execution ended

execution not yet ended

drive number

168

Anatomy of the 1541 Disk Drive

D5CE

D5D0

D5D2

D5D3

D5D6

D5D9

D5DC

D5DE

D5E0

D5E3

D5E6

D5E8

D5E9

D5EB

D5ED

D5EF

D5F1

D5F4

D5F6

D5F8

D5FA

D5FD

D600

D603

D606

D607

D60A

D60D

D610

D613

D616

D619

D61B

D61D

D620

D623

D625

D628

D62B

D62D

D62F

D631

D633

D635

D636

D638

D63A

D6 3C

D63F

D641

D644

D645

D648

D64A

D64B

29

85

A8

B9

8D

20

C9

BO

4C

BD

29

48

C9

DO

A5

09

9D

24

70

A9

8D

8D

AC

AD

38

F9

8D

B9

20

EE

20

C9

90

AC

B9

DO

AD

20

B5

C9

90

24

10

68

C9

DO

05

9D

B5

20

68

2C

30

48

A9

01

7F

CA

6D

A6

02

03

6D

5B

FO

90

07

7F

B8

5B

6A

39

00

99

9A

99

9A

DB

9A

DB

76

99

A6

02

08

99

DB

DB

9A

76

00

02

2B

6A

OF

90

05

7F

5B

00

OA

98

23

CO

FE

02

D6

D6

02

02

02

02

02

02

FE

02

FE

D6

02

D6

02

FE

02

D6

02

E6

02

AND

STA

TAY

LDA

STA

JSR

CMP

BCS

JMP

LDA

AND

PHA

CMP

BNE

LDA

ORA

STA

BIT

BVS

LDA

STA

STA

LDY

LDA

SEC

SBC

STA

LDA

JSR

INC

JSR

CMP

BCC

LDY

LDA

BNE

LDA

JSR

LDA

CMP

BCC

BIT

BPL

PLA

CMP

BNE

ORA

STA

LDA

JSR

PLA

BIT

BMI

PHA

LDA

#$01

$7F

$FECA,Y

$026D

$D6A6

#$02

$D5E3

$D66D

$025B,X

#$FO

#$90

$D5F4

$7F

#$B8

$025BfX

$6A

$D631

#$00

$0299

$029A

$0299

$029A

$FEDB,Y

$029A

$FEDBrY

$D676

$0299

$D6A6

#$02

$D625

$0299

$FEDB,Y

$D600

$029A

$D676

$00,X

#$02

$D65C

$6A

$D644

#$90

$D63F

$7F

$025B,X

$00,X

$E60A

$0298

$D66D

#$C0

drive number

bit model for drive

read attempt

not ok?

done

command code

isolate

code for write

no

drive number

cntr for searches next to t

counter

constants for read attempts

position head next to track

increment counter

read atempt

return message

smaller than 2, ok?

load counter

get constants

not yet zero (table end)?

position head

return message

ok?

command code

for writing?

no

drive number

command code in table

return message

set error message

command rnHp fnr hoaH r\r\e> A *-

169

Anatomy of the 1541 Disk Drive

D64D

D64F

D651

D653

D655

D658

D6 5A

D65C

D65D

D65F

D661

D663

D666

D669

D66B

D66D

D66E

D670

D671

D672

D674

D675

D676

D678

D67A

D67C

D67E

D681

D682

D684

D686

D688

D68A

D68D

D68E

D690

D692

D693

D694

D695

D697

D69A

D69D

D69F

D6A1

D6A4

D6A5

D6A6

D6A8

D6AA

D6AB

05 7F

95 00

B5 00

30 FC

20 A6 D6

C9 02

BO D9

68

C9 90

DO 0C

05 7F

9D 5B 02

20 A6 D6

C9 02

B0 D2

68

85 7F

68

A8

B5 00

18

60

C9 00

F0 18

30 OC

AO 01

20 93

38

E9 01

DO F6

FO OA

D6

D6

AO FF

20 93

18

69 01

DO F6

60

48

98

A4 7F

99 FE 02

D9 FE 02

FO FB

A9 00

99 FE 02

68

60

A5 6A

29 3F

A8

AD 6D 02

ORA $7F

STA $00,X

LDA $00rX

BMI $D651

JSR $D6A6

CMP #$02

BCS $D635

PLA

CMP #$90

BNE $D66D

ORA $7F

STA $025BrX

JSR $D6A6

CMP #$02

BCS $D63F

PLA

STA $7F

PLA

TAY

LDA $00,X

CLC

RTS

CMP #$00

BEQ $D692

BMI $D688

LDY #$01

JSR $D693

SEC

SBC #$01

BNE $D67C

BED $D692

LDY #$FF

JSR $D693

CLC

ADC #$01

BNE $D688

RTS

PHA

TYA

LDY $7F

STA $02FE,Y

CMP $02FE,Y

BEO $D69A

LDA #$00

STA $02FE,Y

PLA

RTS

LDA $6A

AND #$3F

TAY

LDA $026D

drive number

in command register

wait for execution

attempt command execution again

return message

incorrect?

command code for writing

no

drive number

in table

attempt execution again

return message

error?

get drive number back

error code

end-of-execution flag

transmit data for head position

transmit data for head position

drive number

wait for return message from

disk controller

maximum number of repetitions

bit for LED

170

Anatomy of the 1541 Disk Drive

D6AE

D6B1

D6B4

D6B7

D6B9

D6BB

D6BD

D6BF

D6C1

D6C2

D6C4

D6C5

D6C8

D6CB

D6CE

D6CF

D6D0

D6D3

D6D4

D6D5

D6D7

D6DA

D6DC

D6DF

D6E1

D6E2

D6E3

D6E4

D6E6

D6E7

D6E9

D6EA

D6EC

D6ED

D6EF

D6F0

D6F2

D6F4

D6F7

D6FA

D6FB

D6FD

D6FF

D701

D703

D706

D707

D709

D70B

D70E

D711

4D 00 1C

8D 00 1C

BD 5B 02

95 00

B5 00

30 FC

C9 02

90 03

88

DO E7

48

AD 6D 02

0D 00 1C

8D 00 1C

68

60

EOR $lC00

STA $lC00

LDA $025B,X

STA $00,X

LDA $00,X

BMI $D6B9

CMP #$02

BCC $D6C4

DEY

BNE $D6AB

PHA

LDA $026D

ORA $lC00

STA $lC00

PLA

RTS

20 93 DF JSR $DF93

0A

A8

A5 80

99 06 00

A5 81

99 07 00

A5 7F

0A

AA

60

ASL A

TAY

LDA $80

STA $0006 ,Y

LDA $81

STA $0007,Y

LDA $7F

ASL

TAX

RTS

A5 83

48

A5 82

48

A5 81

48

A5 80

48

A9 11

85 83

20 3B DE

AD 4A 02

48

A4 E2

29 01

85 7F

A6 F9

5D 5B 02

4A

90 0C

A2 01

8E 92 02

20 AC C5

FO ID

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

STA

JSR

LDA

PHA

LDA

AND

STA

LDX

EOR

LSR

BCC

LDX

STX

JSR

BEQ

$83

$82

$81

$80

#$11

$83

$DE3B

$024A

$E2

#$01

$7F

$F9

$025B,X

A

$D715

#$01

$0292

$C5AC

$D730

command

transmit to disk controller

and return message

wait

ok?

yes

decrement counter

attempt again

LED off

transmit param to disk controller

get buffer number

track number

transmit

sector number

transmit

drive number

times 2

enter file in directory

secondary address

channel number

sector number

track number

save

secondary address 17

get track and sector number

file type

save

drive number

set

buffer number

equal drive number?

pointer in directory

load dir and find first entry
not found?

171

Anatomy of the 1541 Disk Drive

D713

D715

D718

D71A

D71C

D71E

D720

D723

D726

D728

D72B

D72E

D730

D733

D7 35

D738

D73A

D73D

D740

D743

D744

D747

D749

D74B

D74D

D750

D751

D754

D757

D758

D75B

D75E

D761

D762

D765

D766

D768

D76B

D76D

D76F

D771

D77 2

D774

D776

D779

D77B

D77D

D77F

D782

D784

D785

D788

D78A

DO

AD

FO

C5

FO

85

20

4C

A9

8D

20

DO

20

A5

8D

A9

8D

AD

20

68

8D

C9

DO

09

20

68

8D

20

68

8D

20

20

A8

AD

AA

A9

20

A0

A9

91

C8

CO

90

AD

C9

DO

AO

AD

91

C8

AD

91

C8

28

91

OC

81

IF

81

60

3D

01

92

17

OD

8D

81

91

02

92

92

C8

4A

04

02

80

Fl

80

Fl

85

Fl

93

7A

10

6E

10

00

94

IB

F9

4A

04

13

10

59

94

5A

94

02

D4

D7

02

C6

D4

02

02

02

D4

02

CF

02

CF

02

CF

DF

02

C6

02

02

02

BNE

LDA

BE0

CMP

BEQ

STA

JSR

JMP

LDA

STA

JSR

BNE

JSR

LDA

STA

LDA

STA

LDA

JSR

PLA

STA

CMP

BNE

ORA

JSR

PLA

STA

JSR

PLA

STA

JSR

JSR

TAY

LDA

TAX

LDA

JSR

LDY

LDA

STA

INY

CPY

BCC

LDA

CMP

BNE

LDY

LDA

STA

INY

LDA

STA

INY

$D73D

$0291

$D7 26

$81

$D73D

$81

SD460

$D73D

#$01

$0292

$C617

$D73D

$D48D

$81

$0291

#$02

$0292

$0292

$D4C8

$024A

#$04

$D74D

#$80

$CFF1

$0280

$CFF1

$0285

$CFF1

$DF93

$027A

#$10

$C66E

#$10

#$00

($94),Y

#$1B

$D76F

$024A

#$04

$D790

#$10

$0259

($94),Y

$025A

($94) ,Y

found?

sector number in directory

equal zero

equal sector number?

yes

save sector number

read block

pointer to one

find next entry in directory

found?

write directory block

sector number

pointer to 2

set buffer pointer

file type

rel-file?

no

set bit 7

and write in buffer

following track

in buffer

following sector

in buffer

get buffer number

pointer to drive number

16, length of filename

write filename in buffer

fill with zeroes at pos 16

position 27 already?

no

file type

rel-file

no

track

and sector

the side-sectors in dir enti

172

Anatomy of the 1541 Disk Drive

D78B

D78E

D790

D793

D794

D796

D797

D798

D79A

D79D

D79F

D7A2

D7A5

D7A7

D7AA

D7AD

D7AF

D7B1

D7B3

AD 58 02

91 94

20 64 D4

68

85 82

AA

68

85 83

AD 91 02

85 D8

9D 60 02

AD 92 02

85 DD

9D 66 02

AD 4A 02

85 E7

A5 7F

85 E2

60

LDA

STA

JSR

PLA

STA

TAX

PLA

STA

LDA

STA

STA

LDA

STA

STA

LDA

STA

LDA

STA

PTS

$0258

($94),Y

$D464

$82

$83

$0291

$D8

$0260,X

$0292

$DD

$0266fX

$024A

$E7

$7F

$E2

D7B4

D7B6

D7B9

D7BC

D7BF

D7C2

D7C5

D7C7

D7C9

D7CB

D7CD

D7CF

D7D1

D7D4

D7D6

D7D8

D7DA

D7DC

D7DF

D7E1

D7E4

D7E7

D7E9

D7EB

D7ED

D7F0

D7F3

D7F5

D7F7

D7FA

D7FC

D7FF

A5 83

8D 4C 02

20 B3 C2

8E 2A 02

AE 00 02

AD 4C 02

DO 2C

E0 2A

DO 28

A5 7E

F0 4D

85 80

AD 6E 02

85 7F

85 E2

A9 02

85 E7

AD 6F 02

85 81

20 00 Cl

20 46 DC

A9 04

05 7F

A6 82

99 EC 00

4C 94 Cl

LDA

STA

JSR

STX

LDX

LDA

BNE

CPX

BNE

LDA

BEO

STA

LDA

STA

STA

LDA

STA

LDA

STA

JSR

JSR

LDA

ORA

LDX

STA

JMP

$83

$024C

$C283

$022A

$0200

$024C

$D7F3

#$2A

$D7F3

$7E

$D81C

$80

$026E

$7F

$E2

#$02

$E7

$026F

$81

$C100

$DC46

#$04

$7F

$82

$00EC,Y

$C194

E0 24 CPX #$24

DO IE BNE $D815

AD 4C 02 LDA $024C

DO 03 BNE $D7FF

4C 55 DA JMP $DA55

20 Dl Cl JSR $C1D1

record length

in directory

write block

channel number

secondary address

file type

drive number

OPEN command, secondary adr <> 15

secondary address

get line length, erase flags

first character from buffer
secondary address

not equal 0 (LOAD)?

last track number

track number

last drive number

drive number

set data type to program

last sector number

sector

turn.LED on

allocate buffer, read block

file type

drive number

channel number

set flag

done

secondary address

not equal to zero?

OPEN $

analyze line to end

173

Anatomy of the 1541 Disk Drive

D802

D805

D807

D809

D80B

D80E

D810

D812

D815

D817

D819

D81C

D81E

D821

D823

D825

D828

D8 2B

D82E

D830

D832

D834

D835

D837

D8 39

D83C

D83D

D8 3F

D840

D843

D845

D848

D849

D84C

D84F

D852

D855

D857

D85A

D85D

D860

D861

D864

D866

D869

D86A

D86D

D86F

D871

D873

D876

D879

AD 85 FE

85 80

A9 00

85 81

20 46 DC

A5 7F

09 02

4C EB D7

E0 23

DO 12

4C 84 CB

A9 02

8D 96 02

A9 00

85 7F

8D 8E 02

20 42 DO

20 E5 Cl

DO 04

A2 00

FO OC

8A

FO 05

A9 30

4C C8 Cl

88

FO 01

88

8C 7A 02

A9 8D

20 68 C2

E8

8E 78 02

20 12 C3

20 CA C3

20 9D C4

A2 00

8E 58 02

8E 97 02

8E 4A 02

E8

EC 77 02

BO 10

20 09

E8

EC 77

BO 07

CO 04

FO 3E

20 09 DA

AE 4C 02

86 83

DA

02

LDA $FE85

STA $80

LDA #$00

STA $81

JSR $DC46

LDA $7F

ORA #$02

JMP $D7EB

CPX #$23

BNE $D82B

JMP $CB84

LDA #$02

STA $0296

LDA #$00

STA $7F

STA $028E

JSR $D042

JSR $C1E5

BNE $D834

LDX #$00

BEQ $D840

TXA

BEQ $D83C

LDA #$30

JMP $C1C8

DEY

BEQ $D840

DEY

STY $027A

LDA #$8D

JSR $C268

INX

STX $0278

JSR $C312

JSR $C3CA

JSR $C49D

LDX #$00

STX $0258

STX $0297

STX $024A

INX

CPX $0277

BCS $D876

JSR $DA09

I NX

CPX $0277

BCS $D876

CPY #$04

BEQ $D8B1

JSR $DA09

LDX $024C

STX $8 3

18, directory track

track

sector 0

allocate buffer, read block

drive number

continue as above

'#'

open direct access file

file type program

drive 0

load BAM

analyze line

colon found?

comma found?

no

30, 'syntax error'

pointer to drive number

shift CR

analyze line to end

comma counter

get drive number

check drive number

find file entry in directory

default values

record length

file type

comma before equal sign?

no

get file type and control mode

additional comma?

no

get file type and control method

secondary address

174

Anatomy of the 1541 Disk Drive

D87B

D87D

D87F

D882

D884

D887

D88A

D88C

D88E

D891

D894

D896

D898

D89A

D89D

D8A0

D8A2

D8A4

D8A7

DBAA

DBAC

D8AE

D8B1

D8B4

D8B7

D8BA

D8BD

D8BF

D8C1

D8C4

D8C6

D8C8

D8CA

D8CB

D8CD

D8CF

D8D1

D8D3

D8D6

D8D9

D8DC

D8DE

D8E1

D8E4

D8E6

D8E8

D8E9

D8EB

D8ED

D8F0

D8F2

EO

BO

8E

A9

8D

AD

DO

A9

8D

AD

DO

A5

29

8D

AD

DO

A9

8D

AD

C9

FO

4C

BC

B9

8D

AD

DO

A9

8D

DO

A5

29

AA

DO

A9

24

FO

20

4C

A9

DO

4C

AD

C9

FO

8A

DO

A9

4C

A9

4C

02

12

97

40

F9

4A

IB

02

4A

4A

11

E7

07

4A

80

05

01

4A

97

01

18

40

7A

00

5B

80

B7

01

97

BO

E7

80

14

20

E7

06

B6

E3

80

03

E3

00

40

OD

05

63

C8

33

C8

02

02

02

02

02

02

02

02

02

D9

02

02

02

02

02

C8

D9

02

D9

02

Cl

Cl

CPX

BCS

STX

LDA

STA

LDA

BNE

LDA

STA

LDA

BNE

LDA

AND

STA

LDA

BNE

LDA

STA

LDA

CMP

BEQ

JMP

LDY

LDA

STA

LDA

BNE

LDA

STA

BNE

LDA

AND

TAX

BNE

LDA

BIT

BEQ

JSR

JMP

LDA

BNE

JMP

LDA

CMP

BEQ

TXA

BNE

LDA

JMP

LDA

JMP

#$02

$D891

$0297

#$40

$02F9

$024A

$D8A7

#$02

$024A

$024A

$D8A7

$E7

#$07

$024A

$0280

$D8A7

#$01

$024A

$0297

#$01

$D8C6

$D940

$027A,X

$0200,Y

$025B

$0280

$D876

#$01

$0297

$D876

$E7

#$80

$D8E1

#$20

$E7

$D8D9

$C8B6

$D9E3

$0280

$D8E1

$D9E3

$0200

#$40

$D8F5

$D8F0

#$63

$C1C8

#$33

$C1C8

greater than 2?

yes

0 or 1 (LOAD or SAVE)

file type

not deleted

PRG

as file type

get file type and command line

track number

not equal zero?

file type sequential
control method

yes

pointer behind second comma
get value

record length

track number

'W

as control method

file type

isolate wildcard flag

wildcard in name

was file closed?

yes

byte 0 in buffer and write block

track number of the first block

already existing

first character from input buffer
1 @'?

yes

wildcard set?

63, 'file exists1

33, 'syntax error1

175

Anatomy of the 1541 Disk Drive

****************************** open a file with overwriting

D8F5

D8F7

D8F9

D8FC

D8FE

D900

D902

D905

D907

D90A

D90C

D911

D914

D917

D919

D91B

D91D

D91F

D921

D923

D925

D926

D9 28

D92A

D92D

D92F

D932

D934

D937

D93A

D93D

D940

D943

D945

D947

D9 4A

D94D

D94F

D951

D953

D955

D957

D959

D9 5C

D95E

D960

D963

D965

D967

D9 6A

D96C

D9 6F

D972

A5

29

CD

DO

C9

FO

20

A5

8D

A9

20

AD

20

A0

Bl

09

91

A0

A5

91

C8

A5

91

AE

A5

9D

A5

9D

20

20

4C

AD

DO

A9

4C

AD

C9

F0

A9

24

F0

A9

4C

A5

29

CD

F0

A9

4C

A0

8C

AE

EO

E7

07

4A

67

04

63

DA

82

70

11

EB

94

C8

00

94

20

94

1A

80

94

81

94

70

D8

60

DD

66

3B

64

EF

80

05

62

C8

97

03

OB

20

E7

05

60

C8

E7

07

4A

05

64

C8

00

79

97

02

02

DC

02

DO

02

D4

02

02

02

DE

D4

D9

02

Cl

02

Cl

02

Cl

02

02

LDA

AND

CMP

BNE

CMP

BEQ

JSR

LDA

STA

LDA

JSR

LDA

JSR

LDY

LDA

ORA

STA

LDY

LDA

STA

INY

LDA

STA

LDX

LDA

STA

LDA

STA

JSR

JSR

JMP

LDA

BNE

LDA

JMP

LDA

CMP

BEQ

LDA

BIT

BEO

LDA

JMP

LDA

AND

CMP

BEQ

LDA

JMP

LDY

STY

LDX

CPX

$E7

#$07

$024A

$D965

#$04

$D965

$DCDA

$82

$0270

#$11
$D0EB

$0294

$D4C8

#$00

($94),Y

#$20

($94),Y

#$1A

$80

($94) ,Y

$81

($94) ,Y

$0270

$D8

$0260,X

$DD

$0266,X

$DE3B

$D464

$D9EF

$0280

$D94A

#$62

$C1C8

$0297

#$03

$D95C

#$20

$E7

$D95C

#$60

#$C1C8

$E7

#$07

$024A

$D96A

#$64

$C1C8

#$00

$0279

$0297

#$02

file type

isolate

file type different?

rel-file?

64, 'file type mismatch1

save channel number

open read channel

set buffer pointer for directory

file type

set bit 5, open file

track

and sector

for open with at-sign

channel number

pointer to directory block

get track and sector number

write block

prepare trk, sector, and drive #

first track number

file not erased?

62, 'file not found1

control mode

•M1

yes,then no test of unclosed file

bit 5

test in file type

not set, ok

60, 'write file open'

isolate file type

64, 'file type mismatch'

control mode

'A', append

176

Anatomy of the 1541 Disk Drive

D974

D976

D978

D97A

D97C

D97E

D980

D982

D983

D985

D987

D98A

D98D

D98E

D990

D99 3

D996

D998

D99A

D99D

D9A0

D9A2

D9A4

D9A7

D9A8

D9AA

D9AD

D9AE

D9B0

D9B3

D9B6

D9B7

D9B9

D9BC

D9BE

D9C0

D9C3

D9C6

D9C9

D9CB

D9CE

D9D0

D9D3

D9D5

D9D8

D9DA

D9DD

D9DF

D9E2

D9E3

D9E5

D9E7

D9E9

DO

C9

FO

Bl

29

91

A5

48

A9

85

20

20

68

85

20

AD

C9

DO

20

4C

A0

Bl

8D

C8

Bl

8D

C8

Bl

AE

8D

8A

FO

CD

FO

A9

20

AE

BD

85

BD

85

20

A4

AE

B5

99

B5

99

60

A5

29

85

20

1A

04

EB

94

4F

94

83

11

83

3B

64

83

AO

97

02

55

2A

94

13

94

59

94

5A

94

58

58

OA

58

05

50

C8

79

80

80

85

81

46

82

79

D8

60

DD

66

E2

01

7F

DA

DE

D4

D9

02

DA

Cl

02

02

02

02

02

Cl

02

02

02

DC

02

02

02

DC

BNE

CMP

BEQ

LDA

AND

STA

LDA

PHA

LDA

STA

JSR

JSR

PLA

STA

JSR

LDA

CMP

BNE

JSR

JMP

LDA

LDA

STA

INY

LDA

STA

INY

LDA

LDX

STA

TXA

BEQ

CMP

BEO

LDA

JSR

LDX

LDA

STA

LDA

STA

JSR

LDY

LDX

LDA

STA

LDA

STA

RTS

LDA

AND

STA

JSR

$D990

#$04

$D965

($94),

#$4F

($94),

$83

#$11

$83

$DE3B

$D464

$83

$D9A0

$0297

#$02

$D9EF

$DA2A

$C194

#$13

($94),

$0259

($94),

$025A

($94),

$0258

$0258

SD9C3

#$0258

$D9C3

#$50

$C1C8

$0279

$0280,

$80

$0285,

$81

$DC46

$82

$0279

$D8,X

$0260,

$DD,X

$0266,

$E2

#$01

$7F

$DCDA

rY

,Y

Y

Y

Y

X

X

Y

Y

no

rel-file?

channel 17

get track and sector number

write block

get channel # back

control mode

done

track

record length

last record len

50, 'record not present1

track

sector

drive #

177

Anatomy of the 1541 Disk Drive

D9EC

D9EF

D9F1

D9F3

D9F5

D9F8

D9FA

D9FC

D9FE

DA01

DA03

DA06

20 E4 D6

A5 83

C9 02

BO 11

20 3E DE

A5 80

85 7E

A5 7F

8D 6E 02

A5 81

8D 6F 02

4C 99 Cl

JSR $D6E4

LDA $83

CMP #$02

BCS $DA06

JSR $DE3E

LDA $80

STA $7E

LDA $7F

STA $026E

LDA $81

STA $026F

JMP $C199

channel #

DA09

DAOC

DA0F

DA11

DAI 2

DAI 4

DA17

DAI 9

DA1C

DA1E

DA1F

DA21

DA24

DA26

DA29

BC 7A 02

B9 00 02

AO 04

88

30 08

D9 B2

DO F8

8C 97

AO 05

88

30 08

D9 B6

DO F8

8C 4A 02

60

FE

02

FE

LDY $027A,X

LDA $0200,Y

LDY #$04

DEY

BMI $DA1C

CMP $FEB2,Y

BNE $DA11

STY $0297

LDY #$05

DEY

BMI $DA29

CMP $FEB6,Y

BNE $DA1E

STY $024A

RTS

DA2A

DA2D

DA2F

DA32

DA34

DA37

DA39

DA3A

DA3B

DA3D

DA40

DA4 2

DA45

DA47

DA49

DA4B

DA4D

DA4F

DA51

DA54

20 39 CA

A9 80

20 A6 DD

FO F6

20 95 DE

A6 81

E8

8A

DO 05

20 A3 Dl

A9 02

20 C8 D4

A6 82

A9 01

95 F2

A9 80

05 82

A6 83

9D 2B 02

60

JSR

LDA

JSR

BEQ

JSR

LDX

I NX

TXA

BNE

JSR

LDA

JSR

LDX

LDA

STA

LDA

ORA

LDX

STA

RTS

$CA39

#$80

$DDA6

$DA 2A

$DE95

$81

$DA42

$D1A3

#$02

$D4C8

$82

#$01

$F2fX

#$80

$82

$83

$022B,X

DA55 A9 OC LDA #$0C

DA57 8D 2A 02 STA $022A

check file type and control mode

pointer in command line

get characters from line

control modes 'R'

file types 'D' ,'S1 ,'P1 ,'U1 ,'L1

preparation for Append

open channel to read, get byte

last byte?

no

get track and sector number

sector number

not $FF?

close buffer, write block

buffer pointer to 2

channel number

set flag for WRITE

channel number in table

OPEN "$"

command number 12

178

Anatomy of the 1541 Disk Drive

DA5A

DA5C

DA5F

DA60

DA62

DA63

DA65

DA68

DA6B

DA6D

DA6F

DA72

DA75

DA78

DA7A

DA7C

DA7E

DA81

DA84

DA86

DA89

DA8B

DA8E

DA90

DA91

DA92

DA95

DA98

DA9B

DA9E

DAA1

DAA4

DAA7

DAAA

DAAD

DAAF

DAB2

DAB4

DAB7

DAB9

DABB

DABD

DABF

02

02

A9 00

AE 74

CA

F0 OB

CA

DO 21

AD 01

20 BD C3

30 19

85 E2

EE 77 02

EE 78 02

EE 7A 02

A9 80

85 E7

A9 2A

8D 00 02

8D 01 02

DO 18

20 E5 Cl

DO 05

20 DC C2

A0 03

88

88

8C 7A 02

20 00 C2

20 98 C3

20 20 C3

20 CA C3

20 B7 C7

20 9D C4

20 9E EC

20 37 Dl

A6 82

9D 3E 02

A4 7F

8D 8E 02

09 04

95 EC

A9 00

85 A3

60

LDA #$00

LDX $0274

DEX

BEO $DA6D

DEX

BNE $DA86

LDA $0201

JSR $C3BD

BMI SDA86

STA $E2

INC $0277

INC $0278

INC $027A

LDA #$80

STA $E7

LDA #$2A

STA $0200

STA $0201

BNE $DA9E

JSR $C1E5

BNE $DA90

JSR $C2DC

LDY #$03

DEY

DEY

STY $027A

JSR $C200

JSR $C398

JSR $C320

JSR $C3CA

JSR $C7B7

JSR SC49D

JSR $EC9E

JSR $D137

LDX $82

STA $023E

LDA $7F

STA $028E

ORA #$04

STA $EC,X

LDA #$00

STA $A3

RTS

DACO

DAC2

DAC5

DAC7

DAC9

DACB

DACE

DAD1

DAD4

A9 00

8D F9

A5 83

DO 08

A9 00

8D 54

02

02

20 27 D2

4C DA D4

C9 OF

LDA #$00

STA $02F9

LDA $83

BNE $DAD4

LDA #$00

STA $0254

JSR $D227

JMP $D4DA

CMP #$0F

second character

get drive number

not a plain number?

set wildcard flag
i* i

as file name in command buffer

absolute jump

test input line to ':'

found?

erase flags

pointer to drive no. in command

analyze line

ascertain file type

get drive number

initialize drive if necessary
prepare disk title

load directory

create and prepare directory

get byte from buffer

channel number

byte in output register

drive number

save as last drive number

PRG-flag

set pointer back in input buffer

CLOSE-routine

secondary address

not zero?

secondary address 0, LOAD

close channel

close internal channels 17 & 18

15

179

Anatomy of the 1541 Disk Drive

DAD6

DAD8

DADB

DADD

DADF

DAE1

DAE4

DAE6

DAE9

DAEC

DAEE

DAFO

DAF3

DAF5

DAF7

DAFA

DAFC

DAFF

DB02

DB04

DB07

DB09

DBOB

DBOC

DBOE

DB10

DB13

DB15

DB17

DB19

DB1B

DB1E

DB20

DB23

DB26

DB29

DB2C

DB2F

DB32

DB35

DB37

DB39

DB3B

DB3D

DB3F

DB41

DB43

DB44

CB46

DB48

FO 14

20 02 DB

A5 83

C9 02

90 FO

AD 6C 02

DO 03

4C 94 Cl

4C AD Cl

A9 OE

85 83

20 02 DB

C6 83

10 F9

AD 6C 02

DO 03

4C 94 Cl

4C AD Cl

BEQ $DAEC

JSR $DB02

LDA $83

CMP #$02

BCC $DAD1

LDA $026C

BNE $DAE9

JMP $C194

JMP $C1AD

LDA #$0E

STA $83

JSR $DB02

DEC $83

BPL $DAF0

LDA $026C

BNE $DAFF

JMP $C194

JMP $C1AD

A6 83

BD 2B 02

C9 FF

DO 01

60

29 OF

85 82

20 25 Dl

C9 07

FO OF

C9 04

FO 11

20 07 Dl

BO 09

20 62 DB

20 A5 DB

20 F4 EE

4C 27 D2

20 Fl DD

20 IE CF

20 CB El

A6 D5

86 73

E6 73

A9 00

85 70

85 71

A5 D6

38

E9 OE

85 72

20 51 DF

LDX $83

LDA $022B,X

CMP #$FF

BNE $DB0C

RTS

AND #$0F

STA $82

JSR $D125

CMP #$07

BEQ $DB26

CMP #$04

BEQ $DB2C

JSR $D107

BCS $DB29

JSR $DB62

JSR $DBA5

JSR $EEF4

JMP $D227

JSR $DDF1

JSR $CF1E

JSR $E1CB

LDX $D5

STX $73

INC $73

LDA #$00

STA $70

LDA $D6

SEC

SBC #$0E

STA $72

JSR $DF51

yes, close all channels

close file

secondary address

smaller than 2?

termination

14

secondary address

close file

next secondary address

termination

close file

secondary address

get channel number

no channel associated?

no, then done

isolate channel number

check data type

direct access?

yes

rel-file?

yes

channel for writing open

no file for writing?

write last block

write entry in dir and block

write BAM

close channel

get buffer number, write block

change buffer

get last side-sector

side-sector number

minus 14 for pointer

calculate block number of file

180

Anatomy of the 1541 Disk Drive

DB4B

DB4D

DB4F

DB51

DB53

DB55

DB57

DB5A

DB5C

DB5F

DB6 2

DB64

DB66

DB68

DB6A

DB6D

DB6F

DB71

DB73

DB76

DB79

DB7B

DB7D

DB80

DB8 2

DB84

DB86

DB88

DB8A

DB8C

DB8D

DB8F

DB90

DB92.

DB95

DB98

DB99

DB9C

DB9F

DBA2

DBA5

DBA7

DBAA

DBAC

DBAD

DBBO

DBB2

DBB5

DBB8

DBBA

DBBC

D4

A6 82

A5 70

95 B5

A5 71

95 BB

A9 40

20 A6 DD

F0 03

20 A5 DB

AC 27 D2

A6 82

B5 B5

15 BB

DO 0C

20 E8

C9 02

DO 05

A9 OD

20 Fl CF

20 E8 D4

C9 02

DO OF

20 IE CF

A6 82

B5 B5

DO 02

D6 BB

D6 B5

A9 00

38

E9 01

48

A9 00

20 C8 D4

20 Fl CF

68

20 Fl CF

20 C7 DO

20 99 D5

4C IE CF

A6 82

8E 70 02

A5 83

48

BD 60 02

85 81

BD 66 02

8D 94 02

B5 EC

29 01

85 7F

LDX

LDA

STA

LDA

STA

LDA

JSR

BEO

JSR

JMP

LDX

LDA

ORA

BNE

JSR

CMP

BNE

LDA

JSR

JSR

CMP

BNE

JSR

LDX

LDA

BNE

DEC

DEC

LDA

SEC

SBC

PHA

LDA

JSR

JSR

PLA

JSR

JSR

JSR

JMP

$82

$70

$B5rX

$71

$BBrX

#$40

$DDA6

$DB5F

$DBA5

$D227

$82

$B5fX

$BB,X

$DB76

$D4E8

#$02

$DB76

#$0D

$CFF1

$D4E8

#$02

$DB8C

$CF1E

$82

$B5,X

$DB88

$BB,X

$B5,X

#$00

#$01

#$00

$D4C8

$CFF1

$CFF1

$D0C7

$D599

$CF1E

LDX $8 2

STX $0270

LDA $83

PHA

LDA $0260,X

STA $81

LDA $0266,X

STA $0294

LDA $ECrX

AND #$01

STA $7F

channel number

record number lo

record number hi

bit 6 set?

no

enter in dirctory

close channel

write last block

channel number

record number lo

record number hi

not zero?

set buffer pointer

not 2

CR

in buffer

set buffer pointer

now equal to 2?

no

change buffer

channel number

record number lo

decrement block number hi

and block number lo

set pointer to end

buffer pointer to zero

write zero in buffer

second byte = pointer to end

write in buffer

write block to disk

and verify

change buffer

directory entry

channel number

save

secondary address

save

sector number in directory

set

pointer in directory

drive number

181

Anatomy of the 1541 Disk Drive

DBBE

DBC1

DBC3

DBC6

DBC7

DBC9

DBCC

DBCE

DBD1

DBD3

DBD6

DBD8

DBDA

DBDC

DBDE

DBE1

DBE3

DBE5

DBE7

DBE9

DBEB

DBEC

DBEE

DBFO

DBF2

DBF4

DBF6

DBF7

DBF8

DBFA

DBFC

DBFE

DBFF

DC01

DC03

DC06

DC07

DC09

DCOB

DCOC

DCOE

DCOF

DC11

DC13

DC14

DC16

DC18

DC19

DC1B

DC1E

DC21

DC23

DC25

DC27

AD

85

20

48

85

20

AO

BD

85

AD

85

Bl

29

FO

20

C9

FO

Bl

29

91

C8

Bl

85

84

AO

Bl

48

88

Bl

DO

85

68

85

A9

20

48

A9

91

C8

91

68

A4

91

C8

Bl

85

68

91

20

4C

Bl

29

09

91

85

80

93

F9

60

00

EO

87

94

86

86

20

43

25

04

44

86

8F

86

86

80

71

IB

86

86

OA

80

81

67

45

00

86

86

71

86

86

81

86

7D

29

86

OF

80

86

FE

DF

D4

FE

02

Dl

E6

C8

DC

LDA

STA

JSR

PHA

STA

JSR

LDY

LDA

STA

LDA

STA

LDA

AND

BEO

JSR

CMP

BEO
LDA

AND

STA

INY

LDA

STA

STY

LDY

LDA

PHA

DEY

LDA

BNE

STA

PLA

STA

LDA

JSR

PHA

LDA

STA

INY

STA

PLA

LDY

STA

INY

LDA

STA

PLA

STA

JSR

JMP

LDA

AND

ORA

STA

$FE85

$80

$DF93

$F9

$D460

#$00

$FEEO,

$87

$0294

$86

(S86),

#$20

$DC21

$D125

#$04

$DC29

($86),

#$8F

($86),

($86),

$80

$71

#$1B

($86),

($86),

$DC06

$80

$81

#$67

$E645

#$00

($86)

($86)

$71

($86)

($86)

$81

($86)

$C87D

$DC29

($86)

#$0F

#$80

($86)

X

Y

Y

Y

Y

Y

,Y

,Y

,Y

,Y

,Y

,Y

,Y

,Y

18, directory track

set

increment buffer number

read directory block

buffer address

buffer pointer

file type

file closed?

yes

check file type

rel-file?

yes

erase bits 4,5, and 6

in file type

track number

sector # of the file for

overwriting

track # for overwriting

set?

set track number

sector number

67, 'illegal track or sector1

erase track number

and sector number of the

substitute file

set track & sec # of the new file

erase all files

get file type

isolate bits 0-3

set bit 7 for closed file

182

Anatomy of the 1541 Disk Drive

DC29

DC2C

DC2E

DC30

DC32

DC33

DC35

DC37

DC38

DC39

DC3B

DC40

DC41

DC43

AE

AO

B5

91

C8

B5

91

68

AA

A9

20

68

85

4C

70

1C

B5

86

BB

86

90

90

83

07

02

D5

Dl

LDX

LDY

LDA

STA

INY

LDA

STA

PLA

TAX

LDA

JSR

PLA

STA

JMP

$0270

#$1C

$B5,X

($86)

$BB,Y

($86)

#$90

$D590

$83

$D107

fY

,Y

DC46

DC48

DC4B

DC4E

DC51

DC52

DC53

DC55

DC57

DC5A

DC5C

DC5E

DC60

DC62

DC65

DC66

DC68

DC6A

DC6C

DC6F

DC71

DC74

DC77

DC79

DC7C

DC7E

DC81

DC8 3

DC85

DC88

DC8A

DC8D

DC8F

DC92

DC95

DC98'

DC9A

DC9C

A9

20

20

AD

48

0A

05

95

20

A6

A5

DO

A5

9D

68

C9

DO

A4

B9

09

99

AD

95

20

10

4C

A6

95

AC

84

AC

84

20

20

20

A6

A9

95

01

E2

B6

4A

7F

EC

9B

82

80

05

81

44

04

3F

83

2B

40

2B

58

C7

8E

03

OF

82

CD

59

80

5A

81

D3

73

99

82

02

Cl

Dl

DC

02

DO

02

02

02

02

D2

D2

02

02

D6

DE

D5

LDA

JSR

JSR

LDA

PHA

ASL

ORA

STA

JSR

LDX

LDA

BNE

LDA

STA

PLA

CMP

BNE

LDA

LDA

ORA

STA

LDA

STA

JSR

BPL

JMP

LDX

STA

LDY

STY

LDA

STY

JSR

JSR

JSR

LDX

LDA

STA

#$01

$D1E2

$DCB6

$024A

A

$7F

$EC,X

$D09B

$82

$80

$DC65

$81

$0244,

#$04

$DCA9

$83

$022B,

#$40

$022B,

$0258

$C7,X

$D28E

$DC81

$D20F

$82

$CD,X

$0259

$80

$025A

$81

$D6D3

$DE73

$D599

$82

#$02

$C1,X

X

Y

Y

channel number

block number lo

in directory entry

and block number hi

write

buffer number

code for 'writing1

write block

secondary address

open channel for writing

read block, layout buffer

find channel and buffer for read
set pointer

file type

save

drive number

read block in buffer

channel number

track

following track?

sector

as end pointer

file type

rel-file?

no

secondary address

channel number

set flag for READ and WRITE

record length

find buffer for side-sector
found?

70, 'no channel1

channel number

track for side-sector

sector for side-sector

transmit parameters to disk cont.
read block

and verify

channel number

pointer for writing

183

Anatomy of the 1541 Disk Drive

DC9E A9 00

DCAO 20 C8 D4

DCA3 20 53 El

DCA6 4C 3E DE

DCA9

DCAC

DCAE

DCB1

DCB3

DCB5

20 56 Dl

A6 82

9D 3E 02

A9 88

95 F2

60

LDA #$00

JSR $D4C8

JSR $E153

JMP $DE3E

JSR $D156

LDX $82

STA $023EfX

LDA #$88

STA $F2,X

RTS

DCB6

DCB8

DCBA

DCBB

DCBC

DCBE

DCC1

DCC3

DCC5

DCC7

DCC8

DCC9

DCCB

DCCE

DCDO

DCD2

DCD4

DCD6

DCD9

A6 82

B5 A7

0A

A8

A9 02

99 99 00

B5 AE

09 80

95 AE

OA

A8

A9 02

99 99 00

A9 00

95 B5

95 BB

A9 00

9D 44 02

60

LDX

LDA

ASL

TAY

LDA

STA

LDA

ORA

STA

ASL

TAY

LDA

STA

LDA

STA

STA

LDA

STA

RTS

$82

$A7,X

A

#$02

$0099,Y

$AE,X

#$80

$AE,X

A

#$02

$0099rY

#$00

$B5rX

$BB,X

#$00

$0244,X

DCDA

DCDD

DCDF

DCE2

DCE5

DCE8

DCEA

DCED

DCEE

DCEF

DCF1

DCF3

DCF4

DCF6

DCF8

DCFA

DCFC

20 A9 Fl

A9 01

20 DF Dl

20 DO D6

20 B6 DC

A6 82

AD 4A 02

48

OA

05 7F

95 EC

68

C9 04

FO 05

A9 01

95 F2

60

JSR

LDA

JSR

JSR

JSR

LDX

LDA

PHA

ASL

ORA

STA

PLA

CMP

BEO

LDA

STA

PTS

$F1A9

#$01

$D1DF

$D6D0

$DCB6

$82

$024A

A

$7F

$ECrX

#$04

$DCFD

#$01

$F2,X

DCFD A4 83

DCFF B9 2B 02

DD02 29 3F

LDY $83

LDA $022B,Y

AND #$3F

buffer pointer to zero

find next record

get track and sector number

get byte from buffer

channel number

byte in output register

set flag for READ

reset pointer

channel number

buffer number

times 2

buffer pointer lo

set bit 7

buffer pointer lo

block number lo

block number hi

end pointer

construct a new block

find free sector in BAM

open channel

transmit param to disk controller

reset pointer

channel number

file type

drive number

save as flag

rel-file?

yes

set WRITE flag

secondary address

channel number in table

erase the top two bits

184

Anatomy of the 1541 Disk Drive

DD04

DD06

DD09

DDOC

DDOE

DD11

DD13

DD16

DD18

DD1A

DD1D

DD20

DD22

DD25

DD27

DD2A

DD2C

DD2E

DD31

DD33

DD36

DD38

DD3B

DD3D

DD40

DD42

DD45

DD48

DD4B

DD4D

DD50

DD52

DD55

DD57

DD5A

DD5D

DD5F

DD6 2

DD64

DD67

DD6A

DD6D

DD6F

DD72

DD7 4

DD75

DD77

DD79

DD7B

DD7E

DD81

DD84

DD87

DD8A

09

99

AD

95

20

10

4C

A6

95

20

20

A5

8D

A5

8D

A6

B5

20

A9

20

A9

20

A9

20

A9

20

AD

20

A5

20

A5

20

A9

20

20

A5

20

A5

20

20

20

A9

20

A6

38

A9

F5

95

20

20

20

20

20

4C

40

2B

58

C7

8E

03

OF

82

CD

Cl

IE

80

59

81

5A

82

CD

D3

00

E9

00

8D

11

8D

00

8D

58

8D

80

8D

81

8D

10

E9

3E

80

8D

81

8D

6C

99

02

C8

82

00

C7

Cl

E2

19

5E

99

F4

98

02

02

D2

D2

DE

Fl

02

02

D6

DE

DD

DD

DD

02

DD

DD

DD

DE

DE

DD

DD

DE

D5

D4

E2

DE

DE

D5

BE

DC

ORA

STA

LDA

STA

JSR

BPL

JMP

LDX

STA

JSR

JSR

LDA

STA

LDA

STA

LDX

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

LDA

JSR

JSR

LDA

JSR

LDA

JSR

JSR

JSR

LDA

JSR

LDX

SEC

LDA

SBC

STA

JSR

JSR

JSR

JSR

JSR

JMP

#$40

$022B,Y

$0258

$C7,X

$D28E

$DD16

$D20F

$82

$CDrX

$DEC1

$F11E

$80

$0259

$81

$025A

$82

$CD,X

$D6D3

#$00

$DEE9

#$00

$DD8D

#$11
$DD8D

#$00

$DD8D

$0258

$DD8D

$80

$DD8D

$81

$DD8D

#$10

$DEE9

$DE3E

$80

$DD8D

$81

$DD8D

$DE6C

$D599

#$02

$D4C8

$82

#$00

$C7,X

$C1,X

$E2E2

$DE19

$DE5E

$D599

$EEF4

$DC98

set bit 6

READ and WRITE flag

record length

in table

find buffer

found?

70, 'no channel1

channel number

buffer number for side-sector

erase buffer

find free block in BAM

track

for side-sector

sector

for side-sector

channel number

buffer number

transmit param to disk controller

buffer pointer to zero

17

as end pointer in buffer

zero

as side-sector number in buffer

record length

in buffer

track number of this block

in buffer

sector number

in buffer

16

buffer pointer to 16

get track and sector number

track # of the first data block

in buffer

sector # of the first data block

in buffer

write block to disk

and check

buffer pointer to 2

channel number

record length

pointer for writing

erase buffer

write link bytes in buffer

write block to disk

and check

write BAM

and done

185

Anatomy of the 1541 Disk Drive

DD8D 48 PHA

DD8E A6 82 LDX $82

DD90 B5 CD LDA $CD,X

DD9 2 4C FD CF JMP SCFFD

DD95

DD97

DD99

DD9B

DD9D

DD9F

DDA1

DDA3

DDA5

DDA6

DDA8

DDAA

90 06

A6 82

15 EC

DO 06

A6 82

49 FF

35 EC

95 EC

60

A6 82

35 EC

60

BCC $DD9D

LDX $82

OPA $EC,X

BNE $DDA3

LDX $8 2

EOR #$FF

AND $EC,X

STA $ECrX

RTS

LDX $82

AND $EC,X

RTS

DDAB 20 93 DF JSR $DF93

DDAE AA TAX

DDAF BD 5B 02 LDA $025BfX

DDB2 29 F0 AND #$F0

DDB4 C9 90 CMP #$90

DDB6 60 RTS

DDB7

DDB9

DDBB

DDBE

DDC0

DDC2

DDC4

DDC5

DDC7

DDC9

DDCA

DDCC

DDCE

DDCF

DDD2

DDD4

DDD6

DDD9

DDDB

DDDD

DDDF

DDE1

DDE4

DDE6

A2 00

86 71

BD 2B 02

C9 FF

DO 08

A6 71

E8

EO 10

90 FO

60

86 71

29 3F

A8

B9 EC 00

29 01

85 70

AE 53 02

B5 E2

29 01

C5 70

DO El

B9 60 02

D5 D8

DO DA

LDX #$00

STX $71

LDA $022BfX

CMP #$FF

BNE $DDCA

LDX $71

INX

CPX #$10

BCC $DDB9

RTS

STX $71

AND #$3F

TAY

LDA $00EC,Y

AND #$01

STA $70

LDX $0253

LDA $E2,X

AND #$01

CMP $70

BNE $DDC2

LDA $0260fY

CMP $D8,X

BNE $DDC2

write byte in side-sector block

save byte

channel number

buffer # of the side-sector

write byte in buffer

manipulate flags

channel number

set flag

channel number

erase flag

channel number

test flag

check command code for writing

get buffer number

isolate command code

code for writing?

counter for secondary address

get channel number from table

file open?

increment counter

smaller than 16?

isolate channel number

isolate drive number

isolate drive number

same drive?

no

sector number in directory

same as file?

no

186

Anatomy of the 1541 Disk Drive

DDE8

DDEB

DDED

DDEF

DDFO

DDF1

DDF4

DDF6

DDF9

DDFC

B9 66 02 LDA $0266 ,Y

D5 DD CMP $DD,X

DO D3 BNE $DDC2

18 CLC

60 RTS

20 9E DF

50 06

20 5E DE

20 99 D5

60

JSR $DF9E

BVC $DDFC

JSR $DE5E

JSR $D599

RTS

DDFD 20 2B DE JSR $DE2B

DE00

DE02

DEO 4

DE05

DE07

DE09

A5 80

91 94

C8

A5 81

91 94

4C 05 El

LDA $80

STA ($94) ,Y

INY

LDA $81

STA ($94)fY

JMP $E105

DEOC 20 2B DE JSR $DE2B

DEOF

DE11

DE13

DEI 4

DE16

DEI 8

Bl 94

85 80

C8

Bl 94

85 81

RTS

LDA ($94)rY

STA $80

INY

LDA ($94),Y

STA $81

DE19

DE1C

DE1E

DE20

DE21

DE23

DE25

DE26

DE27

DE28

DE2A

20 2B DE

A9 00

91 94

C8

A6 82

B5 Cl

AA

CA

8A

91 94

60

JSR $DE2B

LDA #$00

STA ($94)rY

INY

LDX $82

LDA $C1,X

TAX

DEX

TXA

STA ($94),Y

RTS

DE2B 20 93 DF JSR $DF93

DE2E

DE2F

DE30

DE32

DE34

DE36

DE38

DE3A

OA

AA

B5 9A

85 95

A9 00

85 94

AO 00

60

ASL A

TAX

LDA $9A,X

STA $95

LDA #$00

STA $94

LDY #$00

RTS

pointer same?

no

write a block of a rel-file

get buffer number

no rel-file?

write block

and verify

write bytes for following track

set buffer pointer

track number

in buffer

sector number

in buffer

set rel-flag

get following track and sector #

set buffer pointer

following track number

and get sector number

following track for last block

set buffer pointer

zero

as track number

channel number

pointer in block

minus 1

as pointer in block

buffer pointer to zero

get buffer number

times 2

buffer pointer hi

buffer pointer lo

187

Anatomy of the 1541 Disk Drive

DE3B

DE3E

DE41

DE43

DE44

DE45

DE48

DE4A

DE4D

DE4F

20

20

85

0A

A8

B9

85

B9

85

60

EB

93

F9

06

80

07

81

DO

DF

00

00

JSR

JSR

STA

ASL

TAY

LDA

STA

LDA

STA

RTS

$D0EB

$DF93

$F9

A

$0006rY

$80

$0007fY

$81

DE50

DE52

DE55

DE57

DE59

DE5C

DE5E

DE60

DE63

DE65

DE67

DE6A

DE6C

DE6E

DE71

DE73

DE75

DE78

DE7A

DE7C

DE7D

DE7F

DE82

DE85

DE86

DE88

DE8B

DE8E

DE91

DE92

A9

8D

DO

A9

8D

DO

A9

8D

DO

A9

8D

DO

A9

8D

DO

A9

8D

A6

B5

AA

10

20

20

AA

A5

9D

20

20

AA

4C

DE95

DE97

DE9A

DE9D

DE9F

DEA2

A9

20

20

85

20

85

90

4D

28

80

4D

21

90

4D

26

80

4D

IF

90

4D

02

80

4D

82

CD

13

DO

93

7F

5B

15

93

06

02

02

02

02

02

02

D6

DF

02

El

DF

D5

LDA

STA

BNE

LDA

STA

BNE

LDA

STA

BNE

LDA

STA

BNE

LDA

STA

BNE

LDA

STA

LDX

LDA

TAX

BPL

JSR

JSR

TAX

LDA

STA

JSR

JSR

TAX

JMP

#$90

$024D

$DE7F

#$80

$024D

$DE7F

#$90

$024D

$DE8B

#$80

$024D

$DE8B

#$90

$024D

$DE75

#$80

$024D

$82

$CD,X

$DE92

$D6D0

$DF93

$7F

$025B,X

$E115

$DF93

$D506

00

C8

37

80

37

81

D4

Dl

Dl

LDA

JSR

JSR

STA

JSR

STA

#$00

$D4C8

$D137

$80

$D137

$81

get track and sector

get channel number

get buffer number

save

times 2

get track

and sector # from disk controller

command code for writing

command code for reading

command code for writing

command code for reading

command code for writing

command code for reading

channel number

side-sector buffer number

buffer associated?

generate header for disk cont.

get buffer number

drive number

buffer number

get buffer number

write block

get following track & sector from

buffer

buffer pointer to zero

get byte

save as track

get byte

as sector

188

Anatomy of the 1541 Disk Drive

DEA4 60 RTS

DEA5

DEA6

DEA8

DEAA

DEAC

DEAF

DFB1

DEB4

DEB6

DEB7

DEB8

DEB9

DEBB

DEBD

DEBE

DECO

48

A9 00

85 6F

85 71

B9 E0 FE

85 70

BD E0 FE

85 72

68

A8

88

Bl 6F

91 71

88

10 F9

60

PHA

LDA #$00

STA $6F

STA $71

LDA $FEE0,Y

STA $70

LDA $FEE0,X

STA $72

PLA

TAY

DEY

LDA ($6F),Y

STA ($71),Y

DEY

BPL $DEB9

RTS

DEC1

DEC2

DEC5

DEC7

DEC9

DECB

DECC

DECE

DECF

DED1

DED2

DED4

DED7

DED9

DEDB

A8

B9 E0 FE

85 70

A9 00

85 6F

A8

91 6F

C8

DO FB

60

TAY

LDA $FEE0,Y

STA $70

LDA #$00

STA $6F

TAY

STA ($6F)rY

INY

BNE $DECC

RTS

A9 00

20 DC DE

AO 02

Bl 94

60

LDA #$00

JSR $DEDC

LDY #$02

LDA ($94),Y

RTS

DEDC

DEDE

DEEO

DEE2

DEE3

DEE6

DEE8

85 94

A6 82

B5 CD

AA

BD EO FE

85 95

60

STA $94

LDX $82

LDA $CDfX

TAX

LDA $FEEO,X

STA $95

RTS

DEE9 48 PHA

DEEA 20 DC DE JSR $DEDC

DEED 48 PHA

DEEE 8A TXA

DEEF OA ASL A

DEFO AA TAX

copy buffer contents

buffer address Y, hi

buffer address X, hi

copy contents of buffer Y

to buffer X

erase buffer Y

buffer number

get hi-address

lo-address

erase buffer

get side-sector number

buffer pointer to zero

byte 2 contains the side-sector

set buffer ptr to side-sector

pointer lo

channel number

buffer number

buffer address hi

set

buffer pointer for side-sector

pointer in side-sector

set buffer pointer

buffer number

times 2

189

Anatomy of the 1541 Disk Drive

DEF1

DEF2

DEF4

DEF5

DEF7

DEF8

DEFB

DEFD

DEFF

DF01

DF03

DF06

DF09

DFOB

DFOE

DF11

DF12

DF14

DF17

DF1A

68

95

68

95

60

!****

20

30

50

A6

B5

20

20

10

20

2C

60

A5

20

2C

60

9A

99

:***

66

0E

13

82

CD

IB

66

07

CB

CE

D6

E9

CD

:***i

DF

DF

DF

El

FE

DE

DE

PLA

STA

PLA

STA

RTS

JSR

BMI

BVC

LDX

LDA

JSR

JSR

BPL

JSR

BIT

RTS

LDA

JSR

BIT

RTS

$9A,X

$99rX

r*****

$DF66

$DF0B

$DF12

$82

$CD,X

$DF1B

$DF66

$DF12

$E1CB

$FECE

$D6

$DEE9

$FECD

DF1B 85 F9 STA $F9

DF1D A9 80 LDA #$80

DF1F DO 04 BNE $DF25

DF21

DF23

DF25

DF26

DF28

DF2A

DF2C

DF2D

DF2F

DF32

DF34

DF36

DF37

DF39

DF3B

DF3D

DF40

DF42

85

A9

48

B5

29

85

,68

05

8D

Bl

85

C8

Bl

85

A5

20

A6

4C

F9

90

EC

01

7F

7F

4D 02

94

80

94

81

F9

D3 D6

F9 -

93 D5

STA

LDA

PHA

LDA

AND

STA

PLA

ORA

STA

LDA

STA

INY

LDA

STA

LDA

JSR

LDX

JMP

$F9

#$90

$EC,X

#$01

$7F

$7F

$024D

($94)fY

$80

($94)rY

$81

$F9

$D6D3

$F9

$D593

DF45 A6 82 LDX $82

DF47 B5 CD LDA $CD,X

DF49 4C EB D4 JMP $D4EB

DF4C A9 78 LDA #$78

buffer pointer hi

buffer pointer lo

get side-sector and buffer ptr

is side-sector in buffer

no

ok

channel number

buffer number

read side-sector

and check if in buffer

yes?

get last side-sector

set V bit

side-sector end pointer

set pointer in side-sector

erase V bit

read side-sector

buffer number

command code for reading

write side-sector

buffer number

command code for writing

isolate drive number

command code plus drive number

save

track number

sector number

buffer number

transmit param to disk controller

buffer number

tranmit cmd to disk controller

set buffer pointer in side-sector

channel number

buffer number

set buffer pointer

calculate block # of a rel-file

120 block ptrs per side-sector

190

Anatomy of the 1541 Disk Drive

DF4E

DF51

DF52

DF54

DF56

DF57

DF5A

DF5C

DF5D

DF5F

DF61

DF63

DF65

20 5C DF

CA

10 F8

A5 72

4A

20 5C DF

A5 73

18

65 70

85 70

90 02

E6 71

60

JSR $DF5C

DEX

BPL $DF4C

LDA $72

LSP A

JSR $DF5C

LDA $73

CLC

ADC $70

STA $70

BCC $DF65

INC $71

RTS

DF66

DF69

DF6B

DF6D

DF6F

DF71

DF73

DF76

DF77

DF7A

DF7B

DF7D

DF7F

DF81

DF82

DF83

DF85

DF87

DF89

DF8B

DF8E

DF8F

DF92

20 D2 DE

C5 D5

DO 0E

A4 D6

Bl 94

F0 04

2C CD FE

60

2C CF FE

60

A5 D5

C9 06

B0 OA

OA

A8

A9 04

85 94

Bl 94

DO 04

2C DO FE

60

2C CE FE

60

JSR $DED2

CMP $D5

BNE $DF7B

LDY $D6

LDA ($94),Y

BEQ $DF77

BIT $FECD

RTS

BIT $FECF

RTS

LDA $D5

CMP #$06

BCS $DF8B

ASL A

TAY

LDA #$04

STA $94

LDA ($94) ,Y

BNE $DF8F

BIT $FEDO

RTS

BIT $FECE

RTS

DF93

DF95

DF97

DF99

DF9B

DF9D

DF9E

DFAO

DFA3

DFA5

DFA7

DFA8

A6 82

B5 A7

10 02

B5 AE

29 BF

60

A6 82

8E 57 02

B5 A7

10 09

8A

18

LDX $82

LDA $A7,X

BPL $DF9B

LDA $AEfX

AND #$BF

RTS

LDX $8 2

STX $0257

LDA $A7fX

BPL $DFB0

TXA

CLC

add to $70/$71

side-sector number

next side-sector?

pointer value in last block

divided by 2

add to previous sum

number of the side-sector block

add

verify side-sector in buffer

get side-sector number

= number of necessary block?
no

pointer in side-sector

track number

erase bits

set N-bit

side-sector number
6 or greater?

yes

track number

set N and V bits

set V bit

get buffer number

channel number

buffer number

buffer number from second table

erase V bit

channel number

save

get buffer number

buffer allocated

191

Anatomy of the 1541 Disk Drive

DFA9

DFAB

DFAE

DFBO

DFB2

DFB4

DFB6

DFB7

DFB9

DFBB

DFBD

DFBF

DFC1

DFC2

DFC4

DFC6

DFC8

DFCA

DFCC

DFCD

DFCF

69

8D

B5

85

29

24

60

AD

B5

30

B5

C9

60

A6

09

B4

10

95

60

95

60

07

57

AE

70

IF

70

82

A7

02

AE

FF

82

80

A7

03

A7

AE

02

ADC

STA

LDA

STA

AND

BIT

RTS

LDX

LDA

BMI

LDA

CMP

RTS

LDX

ORA

LDY

BPL

STA

RTS

STA

RTS

#$07

$0257

$AEfX

$70

#$1F

$70

$82

$A7,X

$DFBF

$AE,X

#$FF

$82

#$80

$A7,X

$DFCD

$A7rX

$AE,X

DFDO

DFD2

DFD5

DFD7

DFDA

DFDC

DFDE

DFEO

DFE2

DFE4

DFE6

DFE8

DFEA

DFED

DFEF

DFF1

DFF3

DFF6

DFF8

DFFA

DFFD

DFFF

E001

E003

E006

E009

EOOA

EOOC

EOOE

E011

A9

20

A9

20

DO

A6

F6

DO

F6

A6

B5

FO

20

A6

D5

90

20

A6

B5

20

Al

85

A9

20

20

48

90

A9

20

DO

20

9D

80

A6

41

82

B5

02

BB

82

Cl

2E

E8

82

Cl

03

3C

82

Cl

C8

99

85

20

9D

04

28

00

F6

21

DD

DD

D4

EO

D4

DD

E3

D4

LDA

JSR

LDA

JSR

BNE

LDX

INC

BNE

INC

LDX

LDA

BEO

JSR

LDX

CMP

BCC

JSR

LDX

LDA

JSR

LDA

STA

LDA

JSR

JSR

PHA

BCC

LDA

JSR

BNE

#$20

$DD9D

#$80

$DDA6

$EO1D

$82

$B5fX

$DFE4

$BB,X

$82

$C1,X

$E018

$D4E8

$82

$C1,X

$DFF6

$E03C

$82

$ClrX

$D4C8

($99),X
$85

#$20

$DD9D

$E304

$E034

#$00

$D4F6

$E034

increment number by 7

and save

buffer number from table 2

erase the highest 3 bits

channel number

buffer number

buffer free?

buffer number from table 2

free?

get next record in rel-file

erase bit 5

test bit 7

set?

channel number

increment record number

record number hi

channel number

write pointer

zero?

set buffer pointer

channel number

buffer ptr smaller than write ptr

yes

write block, read next block

channel number

write pointer

set buffer pointer = write ptr

byte from buffer

put in output register

erase bit 5

add record length to write ptr

and save

not yet in last block?

get track number

does block exist?

192

Anatomy of the 1541 Disk Drive

E013

E014

E016

E018

E01A

E01D

E020

E022

E025

E027

E029

E02A

E02D

E02F

E031

E033

68

C9 02

F0 12

A9 80

20 97 DD

20 2F Dl

B5 99

99 44 02

A9 0D

85 85

60

20 35 E0

A6 82

A9 00

95 Cl

60

E034 68

E035 A6 82

E037 95 Cl

E039 4C 6E El

PLA

CMP #$02

BEQ $E02A

LDA #$80

JSR $DD97

JSR $D12F

LDA $99fX

STA $0244 ,Y

LDA #$0D

STA $85

RTS

JSR $E035

LDX $82

LDA #$00

STA $C1,X

RTS

PLA

LDX $82

STA $C1,X

JMP $E16E

E03C

E03F

E042

E045

E047

E04A

E04D

E04F

E052

E055

E057

E05A

E05D

E060

E063

E065

E068

E06B

E06E

E070

E072

E075

E078

E07B

20 D3

20 95

Dl

DE

20 9E DF

50 16

20 5E DE

20 IE CF

A9 02

20 C8 D4

20 AB DD

DO 24

20 57 DE

4C 99 D5

20 IE CF

20 AB DD

DO 06

20 57

20 99

20 95 DE

A5 80

FO 09

20 IE CF

20 57 DE

20 IE CF

60

JSR $D1D3

JSR SDE95

JSR $DF9E

BVC $E05D

JSR $DE5E

JSR $CF1E

LDA #$02

JSR $D4C8

JSR $DDAB

BNE $E078

JSR $DE57

JMP $D599

DE

D5

JSR

JSR

BNE

JSR

JSR

JSR

LDA

BEO

JSR

JSR

JSR

RTS

$CF1E

$DDAB

$E068

$DE57

$D599

$DE95

$80

SE07B

$CF1E

$DE57

$CF1E

E07C 20 05 El

E07F 20 93 DF

E082 OA

E083 AA

JSR $E105

JSR $DF93

ASL A

TAX

pointer

= 2

yes

set bit 7

get byte from buffer

buffer pointer

as end pointer

CR

in output register

channel number

write pointer to zero

channel number

set write pointer

write block and read next block

get drive number

get track and sector number

get buffer number

no rel-file?

write block

change buffer

buffer pointer to 2

command code for writing?

no

read block

and verify

change buffer

command code for writing?

no

read block

and verify

get track and sector number

track

no following track

change buffer

read block

change buffer

write a byte in a record

get buffer number

times 2

193

Anatomy of the 1541 Disk Drive

E084

E086

E088

E08A

E08B

E08D

E08F

E092

E094

E096

E097

E099

E09C

E09E

EOAO

E0A3

E0A5

E0A7

EOAA

EOAB

EOAD

EOBO

E0B2

E0B4

E0B7

E0B9

EOBB

EOBC

EOBE

. EOC1

E0C3

E0C5

E0C8

EOCB

EOCE

E0D1

E0D3

E0D6

E0D9

EODB

EODD

EODF

EOE1

E0E2

E0E4

E0E5

E0E8

E0E9

EOEB

A5 85

81 99

B4 99

C8

DO 09

A4 82

B9 Cl

FO OA

AO 02

98

A5 82

D9 Cl

DO 05

A9 20

4C 97 DD

00

00

LDA $85

STA ($99,X)

LDY $99fX

INY

BNE $E096

LDY $82

LDA $OOC1,Y

BEQ $E09E

LDY #$02

TYA

LDY $82

CMP $OOC1,Y

BNE $E043

LDA #$20

JMP $DD97

data byte

write in buffer

buffer pointer

increment

not equal zero?

channel number

write pointer

equal zero?

buffer pointer to 2

channel number

buffer pointer

set bit 5

write pointer?

F6 99 INC $99fX

DO 03 BNE $E0AA

20 3C EO JSR $E03C

60 RTS

increment buffer pointer

not zero?

else write block, read next one

******************** write byte in rel-file

A9 A0

20 A6 DD

DO 27

A5 85

20 7C E0

A5 F8

FO OD

60

A9 20

20 A6 DD

FO 05

A9 51

8D 6C 02

20 F3 EO

20 53 El

AD 6C 02

FO 03

4C C8 Cl

4C BC E6

29 80

DO 05

A5 F8

FO DB

60

A5 85

48

20 1C E3

68

85 85

A9 80

LDA #$A0

JSR $DDA6

BNE $E0D9

LDA $85

JSP $E07C

LDA $F8

BEQ $E0C8

RTS

LDA #$20

JSR $DDA6

BEQ $E0C8

LDA #$51

STA $026C

JSR $E0F3

JSR $E153

LDA $026C

BEQ $E0D6

JMP $C1C8

JMP $E6BC

AND #$80

BNE $E0E2

LDA $F8

BEQ $E0BC

RTS

LDA $85 .

PHA

JSR $E31C

PLA

STA $85

LDA #$80

test bits 6 & 7

set?

data byte

write in record

end?

yes

test bit 5

not set

51, 'overflow in record1

set error flag

fill remainder with zeroes

error flag set?

no

set error message

error free execution

bit 7 set?

yes

end?

data byte

expand side-sector

194

Anatomy of the 1541 Disk Drive

EOED 20 9D DD

EOFO 4C B2 E0
JSR $DD9D

JMP $E0B2

E0F3

E0F5

E0F8

EOFA

EOFC

EOFE

E101

E104

A9 20

20 A6 DD

DO OA

A9 00

85 85

20 7C

4C F3

EO

EO

60

LDA #$20

JSR $DDA6

BNE $E104

LDA #$00

STA $85

JSR $E07C

JMP $E0F3

RTS

E105

E107

E10A

E10D

E10F

E112

E114

E115

E118

E11A

E11D

E11F

A9

20

20

09

AE

95

60

20

29

AE

95

60

40

97

9E

40

57

A7

9E

BF

57

A7

DD

DF

02

DF

02

E120

E122

E125

E127

E12A

E12C

E12F

E131

E133

E135

E138

E13B

E13D

E140

E142

E145

E147

E14A

E14C

E14D

E14F

E152

E153

A9

20

DO

20

B5

D9

FO

F6

DO

20

20

Al

99

A9

99

B5

D9

FO

60

A9

99

60

20

80

A6

37

2F

99

44

22

99

06

3C

2F

99

3E

89

F2

99

44

01

81

F2

DO

DD

Dl

02

EO

Dl

02

00

02

00

DF

LDA

JSR

JSR

ORA

LDX

STA

RTS

JSR

AND

LDX

STA

RTS

#$40

$DD97

$DF9E

#$40

$0257

$A7,X

$DF9E

#$BF

$0257

$A7,X

LDA

JSR

BNE

JSR

LDA

CMP

BEQ

INC

BNE

JSR

JSR

LDA

STA

LDA

STA

LDA

CMP

BEQ

RTS

LDA

STA

RTS

JSR

#$80

$DDA6

$E15E

$D12F

$99,X

$0244,Y

$E135

$99,X

$E13B

$E03C

$D12F

($99,X)

$023E,Y

#$89

$00F2,Y

$99,Y

$0244,Y

$E14D

#$81

$00F2,Y

$DFD0

erase bit 7

write byte in file

fill record with zeroes

test bit 5

set?

zero as data byte

write in record

until record full

write buffer number in table

set bit 6

get buffer number

set bit 6

channel number + 7

write in table

get buffer number

erase bit 6

channel number

write in table

get byte from rel-file

test bit 7

set?

get byte from buffer

buffer pointer

compare to end pointer

equal?

increment buffer pointer
not zero?

write block, read next one

get byte from buffer

in output register

set READ and WRITE flag

buffer pointer

compare to end pointer

same?

set flag for end

find next record

195

Anatomy of the 1541 Disk Drive

E156

E159

E15B

E15E

E160

E162

E165

E167

E169

E16B

E16E

E170

E172

E174

E176

E178

E17A

E17C

E17E

E180

E182

E185

E187

E189

E18B

E18D

E190

E193

E195

E197

E19A

E19D

E1A0

E1A2

E1A4

E1A7

E1A9

ElAC

E1AE

E1B1

E1B2

E1B5

E1B7

E1B9

E1BB

E1BC

E1BE

E1C0

E1C2

E1C4

E1C6

20

A5

4C

A6

A9

9D

A9

95

A9

20

A6

B5

85

C6

C9

DO

A9

85

B5

85

20

A6

C5

90

FO

20

20

90

A6

9D

4C

20

A9

85

20

BO

20

A6

9D

60

20

A4

Bl

DO

88

CO

90

C6

DO

C6

18

2F

85

3D

82

OD

3E

81

F2

50

C8

82

Cl

87

87

02

04

FF

87

C7

88

E8

82

87

19

17

IE

B2

08

82

44

IE

IE

FF

87

B2

03

E8

82

44

2B

87

94

OD

02

04

88

F3

88

Dl

El

02

Cl

D4

CF

El

02

CF

CF

El

D4

02

DE

JSR

LDA

JMP

LDX

LDA

STA

LDA

STA

LDA

JSR

LDX

LDA

STA

DEC

CMP

BNE

LDA

STA

LDA

STA

JSR

LDX

CMP

BCC

BEQ

JSR

JSR

BCC

LDX

STA

JMP

JSR

LDA

STA

JSR

BCS

JSR

LDX

STA

RTS

JSR

LDY

LDA

BNE

DEY

CPY

BCC

DEC

BNE

DEC

CLC

$D12F

$85

$E13D

$82

#$0D

$023EfX

#$81

$F2,X

#$50

$C1C8

$82

$C1,X

$87

$87

#$02

$E17E

#$FF

$87

$C7rX

$88

$D4E8

$82

$87

$E1A4

$E1A4

$CF1E

$E1B2

$E19D

$82

$0244fX

$CF1E

$CF1E

#$FF

$87

$E1B2

$E1AC

$D4E8

$82

$0244,X

$DE2B

$87

($94),Y

$E1C8

#$02

$E1C4

$88

$E1B7

388

get buffer and channel number

data byte

into output register

channel number

CR

into output register

set flag for end

50, 'record not present1

channel number

write pointer

save

equal 2?

no

record length

set buffer pointer

channel number

buffer pointer > write pointe

no

change buffer

channel number

change buffer

change buffer

set buffer pointer

channel number

end pointer

buffer pointer to zero

byte from buffer

not zero?

196

Anatomy of the 1541 Disk Drive

E1C7 60 RTS

E1C8

E1C9

E1CA

98

38

60

TYA

SEC

RTS

E1CB

ElCE

El DO

E1D2

E1D4

E1D6

E1D8

E1D9

El DA

El DC

E1DE

E1E0

E1E1

E1E2

E1E4

E1E6

E1E8

E1EA

E1EC

E1EF

E1F1

E1F3

E1F5

E1F7

E1F8

E1FA

E1FB

E1FC

E1FE

E1FF

E202

E204

20

85

A9

85

A0

DO

88

88

30

Bl

FO

98

4A

C5

FO

85

A6

B5

20

AO

84

Bl

DO

C8

Bl

A8

88

84

98

4C

A9

20

D2

D5

0-4

94

OA

04

26

94

F8

D5

09

D5

82

CD

IB

00

94

94

OB

94

D6

E9

67

45

DE

DF

DE

E6

E207

E20A

E20D

E20F

E212

E214

20

AD

85

20

90

A9

B3

01

83

EB

05

70

C2

02

DO

JSR

STA

LDA

STA

LDY

BNE

DEY

DEY

BMI

LDA

BEQ

TYA

LSR

CMP

BEQ

STA

LDX

LDA

JSR

LDY

STY

LDA

BNE

INY

LDA

TAY

DEY

STY

TYA

JMP

#$67

JSR

$DED2

$D5

#$04

$94

#$0A

$E1DC

$E202

($94),Y

$E1D8

A

$D5

$E1EF

$D5

$82

$CD,X

$DF1B

#$00

$94

($94),Y

$E202

($94),Y

$D6

$DEE9

$E645

JSR

LDA

STA

JSR

BCC

LDA

$C2B3

$0201

$83

$D0EB

$E219

#$70

E216 20 C8 Cl JSR $C1C8

E219 A9 AO LDA #$A0

E21B 20 9D DD JSR $DD9D

E21E 20 25 Dl JSR $D125

E221 FO 05 BEQ $E228

get last side-sector

get number of the side-sector
save

pointer to side-sectors

track # of the previous block

divide by 2

= number of the actual block?

yes

else save all numbers

channel number

buffer number

read block

buffer pointer

track number

another block?

sector number = end pointer

save end pointer

set buffer pointer

67, 'illegal track or sector1

P-command, 'Record'

verify lines

secondary address

find channel number

found?

70, 'no block'

erase bits 6 & 7

verify if 'REL'-file

yes

197

Anatomy of the 1541 Disk Drive

E223

E225

E228

E22A

E22C

E22E

E231

E233

E236

E238

E23A

E23C

E23E

E241

E243

E244

E246

E248

E24A

E24C

E24E

E251

E253

E255

E258

E25B

E25D

E25F

E262

E265

E268

E26A

E26D

E26F

E272

E275

E278

E27A

E27D

E27F

E281

E282

E284

E286

E289

E28A

E28C

E28E

E290

E291

E294

A9

20

B5

29

85

AD

95

AD

95

A6

A9

95

AD

F0

38

E9

F0

D5

90

A9

8D

A9

85

20

20

50

A9

20

4C

20

A9

20

F0

4C

4C

20

A5

20

A6

B5

38

E5

B0

4C

18

65

90

69

38

20

4C

64

C8

EC

01

7F

02

B5

03

BB

B2

89

F2

04

10

01

0B

C7

07

51

6C

00

D4

OE

F8

08

80

97

5E

75

80

A6

03

5E

94

9C

D7

C8

82

C7

D4

03

02

D7

03

01

09

38

Cl

02

02

02

02

CE

DE

DD

El

E2

DD

El

Cl

E2

D4

E2

EO

El

LDA

JSP

LDA

AND

STA

LDA

STA

LDA

STA

LDA

LDA

STA

LDA

BEO
SEC

SBC

BEQ

CMP

BCC

LDA

STA

LDA

STA

JSR

JSR

BVC

LDA

JSP

JMP

JSR

LDA

JSR

BEO

JMP

JMP

JSR

LDA

JSR

LDX

LDA

SEC

SBC

BCS

JMP

CLC

ADC

BCC

ADC

SEC

JSR

JMP

#$64

$C1C8

$ECfX

#$01

$7F

$0202

$B5rX

$0203

$BB,X

$82

#$89

$F2fX

$0204

$E253

#$01

$E253

$C7fX

$E253

#$51

$026C

#$00

$D4

$CEOE

$DEF8

$E265

#$80

$DD97

$E15E

$E275

#$80

$DDA6

$E272

$E15E

$C194

$E29C

$D7

$D4C8

$82

$C7,X

$D4

$E289

$E202

$D7

$E291

#$01

$E009

$E138

64, 'file type mismatch1

drive number

record number lo

record number hi

channel number

READ and WRITE flag

byte-pointer

zero?

compare with record length

51, 'overflow in record1

calculate pointer in rel-fiL

and read appropriate side-se

does block exist?

set bit 7

and 50, 'record not present1

test bit 7

not set

50, 'record not present1

done

pointer in rel-file

set buffer pointer

channel number

record length

minus position

positive?

67, 'illegal track or sector

add pointer in data block

no overflow

plus 2

set pointer

aet bvte from buffer

198

Anatomy of the 1541 Disk Drive

E297

E299

E29C

E29E

E2A0

E2A2

E2A4

E2A7

E2A9

E2AA

E2AD

E2B0

E2B2

E2B4

E2B7

E2B9

E2BC

E2BF

E2C2

E2C4

E2C6

E2C8

E2C9

E2CB

E2CD

E2D0

E2D3

E2D5

E2D7

E2D9

E2DB

E2DC

E2DD

E2DF

E2E1

E2E2

E2E5

E2E7

E2E9

E2EB

E2EC

E2EE

E2F1

E2F3

E2F4

E2F6

E2F8

E2FB

E2FD

A9

20

A5

85

A5

85

20

DO

60

20

20

A5

F0

20

DO

20

4C

20

A0

Bl

85

C8

Bl

85

4C

20

A0

Bl

C5

FO

60

C8

Bl

C5

60

r***i

20

AO

A9

91

C8

DO

20

95

A8

A9

91

20

90

DO

51

C8

94

89

95

8A

DO

01

Fl

OC

80

OE

D3

06

IE

DA

DA

00

89

80

89

81

AF

3E

00

89

80

01

89

81

2B

02

00

94

FB

04

Cl

FF

94

04

F4

04

Cl

E2

DD

DE

E2

CF

D2

D2

DO

DE

DE

E3

E3

LDA

JSR

LDA

STA

LDA

STA

JSR

BNE

RTS

JSR

JSR

LDA

BEQ
JSR

BNE

JSR

JMP

JSR

LDY

LDA

STA

INY

LDA

STA

JMP

JSR

LDY

LDA

CMP

BEQ

RTS

INY

LDA

CMP

RTS

JSR

LDY

LDA

;STA

INY

BNE

JSR

STA

TAY

LDA

STA

JSR

BCC

BNE

#$51

$C1C8

$94

$89

$95

$8A

$E2D0

$E2AA

$DDF1

$DE0C

$80

$E2C2

$E2D3

$E2BF

$CF1E

$D2DA

$D2DA

#$00

($89),

$80

($89),

$81

$D0AF

$DE3E

#$00

($89) ,

$80

$E2DC

($89),

$81

r******

$DE2B

#$02

#$00

($94),

$E2E9

$E304

$C1,X

#$FF

($94),

$E304

$E2F1

$E303

Y

Y

Y

Y

**

Y

Y

51, 'overflow in record1

buffer pointer lo

buffer pointer hi

compare track and sector

not equal?

track

no block following?

compare track and sector number

not equal?

change buffer

track

and sector of the next block

read block

track number

compare

sector number

compare

subdivide records in data block
set buffer pointer

erase buffer

set pointer to next record

$FF as 1st character in record

set pointer to next record

done in this block?

block full?

199

Anatcany of the 1541 Disk Drive

E2FF A9 00

E301 95 Cl

E303 60

LDA #$00

STA $C1,X

RTS

E304

E306

E308

E309

E30B

E30C

E30E

E310

E312

E314

E317

A6 82

B5 Cl

38

F0 0D

18

75 C7

90 OB

DO 06

A9 02

2C CC FE

60

E318 69 01

E31A 38

E31B 60

E31C

E31F

E322

E325

E328

E32A

E32C

E32E

E330

E332

E334

E336

E338

E33B

E33E

E340

E342

E343

E344

E345

E347

E349

E34B

E34D

E34F

E351

E353

E355

E357

E358

E35A

E35D

E35F

20 D3 Dl

20 CB El

20 9C E2

20 7B CF

A5 D6

85 87

A5 D5

85 86

A9 00

85 88

A9 00

85 D4

20 OE CE

20 4D EF

A4 82

B6 C7

CA

8A

18

65 D7

90 OC

E6 D6

E6 D6

DO 06

E6 D5

A9 10

85 D6

A5 87

18

69 02

20 E9 DE

A5 D5

C9 06

LDX $8 2

LDA $C1,X

SEC

BEO $E318
CLC

ADC $C7,X

BCC $E31B

BNE $E318

LDA #$02

BIT $FECC

RTS

ADC #$01

SEC

RTS

JSR

JSR

JSR

JSR

LDA

STA

LDA

STA

LDA

STA

LDA

STA

JSR

JSR

LDY

LDX

DEX

TXA

CLC

ADC

BCC

INC

INC

BNE

INC

LDA

STA

LDA

CLC

ADC

JSR

LDA

CMP

$D1D3

$E1CB

$E29C

$CF7B

$D6

$87

$D5

$86

#$00

$88

#$00

$D4

$CEOE

$EF4D

$82

$C7,Y

$D7

$E355

$D6

$D6

$E355

$D5

#$10

#D6

$87

#$02

SDEE9

$D5

#$06

write pointer to zero

set pointer to next record

channel number

write pointer

equal zero?

add record length

smaller than 256?

equal 256?

add two

expand side-sector

get drive number

get last side-sector

side-sector number

calculate side-sector no, and ptr

number of free blocks

channel number

record length

plus pointer in data block

increment ptr to end by 2

increment side-sector number

set pointer to 16

set buffer ptr for side-sector

side-sector number

200

Anatomy of the 1541 Disk Drive

E361

E363

E365

E368

E36A

E36B

E36D

E36F

E371

E372

E374

E376

E378

E37A

E37C

E37E

E380

E381

E384

E386

E388

E38A

E38B

E38D

E38F

E392

E394

E396

E399

E39B

E39D

E39F

E3A2

E3A3

E3A5

E3A7

E3A9

E3AC

E3AF

E3B1

E3B3

E3B6

E3B9

E3BC

E3BF

E3C2

E3C5

E3C8

E3CB

E3CE

E3D1

E3D4

E3D7

E3DA

90

A9

20

A5

38

E5

BO

E9

18

85

A5

E5

85

A2

86

86

AA

20

A5

DO

A6

CA

DO

E6

CD

90

DO

AD

C5

90

A9

20

18

69

A6

95

20

20

A5

DO

20

20

20

20

20

20

4C

20

20

20

20

20

20

A5

05

52

C8

D6

87

03

OF

72

D5

86

73

00

70

71

51

71

07

70

02

88

73

09

CD

72

70

C6

01

F6

01

82

Cl

IE

FD

88

15

5E

IE

DO*

IE

FD

E2

D4

IE

DO

E2

19

5E

OC

80

Cl

DF

02

02

D4

Fl

DD

DE

CF

D6

Fl

DD

E2

E3

CF

D6

E2

DE

DE

DE

BCC

LDA

JSR

LDA

SEC

SBC

BCS

SBC

CLC

STA

LDA

SBC

STA

LDX

STX

STX

TAX

JSR

LDA

BNE

LDX

DEX

BNE

INC

CMP

BCC

BNE

LDA

CMP

BCC

LDA

JSR

CLC

ADC

LDX

STA

JSP

JSR

LDA

BNE

JSR

JSR

JSR

JSR

JSR

JSR

JMP

JSR

JSR

JSR

JSR

JSR

JSR

LDA

$E368

#$52

$C1C8

$D6

$87

$E372

#$0F

$72

$D5

$86

$73

#$00

$70

$71

$DF51

$71

$E38F

$70

$E38F

$88

$0273

$E39D

$E363

$0272

$70

$E363

#$01

$D4F6

#$01

$82

$C1,X

$F11E

$DDFD

$88

$E3C8

$DE5E

$CF1E

$D6D0

$F11E

$DDFD

$E2E2

$E3D4

$CF1E

$D6D0

$E2E2

$DE19

$DE5E

$DE0C

$80

smaller than 6?

52, 'file too large1

end pointer

minus last end pointer

minus 16

side-sector number

minus last side-sector number

save

erase sum for calculation

calculate block # of rel-file

block number of rel-file

greater than free blocks on disk?

52, 'file too large1

52, 'file too large1

get byte from buffer

plus 1

as write pointer

find free block in BAM

track and sector in buffer

only one block needed?

write block

change buffer

transmit param to disk controller

find free block in BAM

track and sector in buffer

erase buffer

change buffer

transmit param to disk controller

erase buffer

zero byte and end ptr in buffer

write block

get track and sector

track

201

Anatomy of the 1541 Disk Drive

E3DC

E3DD

E3DF

E3E0

E3E3

E3E5

E3E6

E3E8

E3E9

E3EC

E3ED

E3EF

E3F2

E3F4

E3F7

E3F9

E3FA

E3FD

E3FE

E401

E402

E404

E405

E407

E409

E40B

E40D

E40F

E412

E414

E416

E418

E41B

E41C

E41E

E421

E423

E424

E426

E427

E428

E429

E42B

E42D

E430

E433

E436

E439

E43C

E43F

E441

E444

E446

E449

48

A4

48

20

A5

48

A5

48

20

AA

DO

20

A9

20

E6

68

20

68

20

68

85

68

85

F0

A5

C5

DO

20

C5

90

F0

20

48

A9

20

A9

A8

91

C8

68

38

E9

91

20

20

20

20

20

20

70

4C

A9

20

A9

81

3E

81

80

45

0A

4E

10

E9

86

8D

8D

81

80

OF

86

D5

A7

45

D6

AO

BO

45

00

DC

00

94

01

94

6C

99

F4

OE

IE

F8

03

75

80

97

50

DE

DF

E4

DE

DD

DD

DF

DF

DE

DE

D5

EE

CE

CF

DE

E2

DD

PHA

LDA

PHA

JSR

LDA

PHA

LDA

PHA

JSR

TAX

BNE

JSR

LDA

JSR

INC

PLA

JSR

PLA

JSR

PLA

STA

PLA

STA

BEO

LDA

CMP

BNE

JSR

CMP

BCC

BEQ

JSR

PHA

LDA

JSR

LDA

TAY

STA

INY

PLA

SEC

SBC

STA

JSR

JSR

JSR

JSR

JSR

JSR

BVS

JMP

LDA

JSR

LDA

$81

$DE3E

$81

$80

$DF45

$E3F9

$E44E

#$10

$DEE9

$86

$DD8D

$DD8D

$81

$80

$E418

$86

$D5

$E3B6

SDF45

$D6

$E3B6

$E3C8

$DF45

#$00

$DEDC

#$00

($94),Y

#$01

($94),Y

$DE6C

$D599

$EEF4

$CEOE

$CF1E

$DEF8

$E444

$E275

#$80

$DD97

#$50

and sector

save

get track and sector from disk

controller

save track and sector

set buffer ptr for side-sector

pointer not zero?

write side-sector

buffer pointer to 16

increment side-sector number

track in side sector

sector in side-sector

sector

and get track back

no more blocks?

side-sector number

changed?

yes

set buffer ptr in side-sector

end pointer

smaller?

same

set buffer ptr in side-sector

buffer pointer to zero

zero as track number

end pointer

minus one

as sector

write block

and verify

update BAM

update pointer for rel-flie

change buffer

right side-sector?

no

set bit 7

202

Anatomy of the 1541 Disk Drive

50, 'record not present1

E44E

E451

E454

E457

E45A

E45B

E45E

E460

E462

E463

E464

E465

E467

E46A

E46C

E46F

E471

E473

E474

E476

E479

E47A

E47B

E47D

E47F

E480

E482

E484

E485

E486

E488

E48A

E48C

E48E

E490

E491

E493

E495

E497

E499

E49A

E49C

E49D

E49F

E4A1

E4A3

E4A6

E4A9

E4AC

E4AE

E4B0

20

20

20

20

48

20

A6

B5

A8

68

AA

A9

20

A9

20

A0

Bl

48

A9

20

68

18

69

91

0A

69

85

A8

38

E9

85

A5

85

91

C8

A5

85

91

A0

98

91

C8

A9

91

A9

20

20

20

A6

B5

48

IE

IE

Fl

93

Cl

82

CD

10

A5

00

DC

02

94

00

C8

01

94

04

89

02

8A

80

87

94

81

88

94

00

94

11

94

10

C8

50

99

82

CD

Fl

CF

DD

DF

DE

DE

DE

D4

D4

DE

D5

JSR

JSR

JSR

JSR

PHA

JSR

LDX

LDA

TAY

PLA

TAX

LDA

JSR

LDA

JSR

LDY

LDA

PHA

LDA

JSR

PLA

CLC

ADC

STA

ASL

ADC

STA

TAY

SEC

SBC

STA

LDA

STA

STA

INY

LDA

STA

STA

LDY

TYA

STA

INY

LDA

STA

LDA

JSR

JSR

JSR

LDX

LDA

PHA

$F11E

$CF1E

$DDF1

$DF93

$DEC1

$82

$CD,X

#$10

$DEA5

#$00

$DEDC

#$02

($94),

#$00

$D4C8

#$01

($94),

A

#$04

$89

#$02

$8A

$80

$87

($94),

$81

$88

($9.4),

#$00

($94),

#$11

($94),

#$10

$D4C8

$DE50

$D599

$82

$CD,X

Y

Y

Y

Y

Y

Y

write side-sector and allocate

new one

find free block in BAM

change buffer

write block

get buffer number

erase buffer

channel number

buffer number

16 bytes of the side-sector

copy in buffer

buffer ptr to 0, old side-sector

side-sector number

buffer ptr to 0, new side-sector

increment side-sector number

and in buffer

times 2

plus 4

minus 2

same pointer to old side-sector
track

in buffer

sector

in buffer

zero in buffer

17
number of bytes in block

16 .

buffer pointer to 16

write block

and verify

channel number

buffer number of the side-sector

203

Anatomy of the 1541 Disk Drive

E4B1

E4B4

E4B6

E4B8

E4B9

E4BC

E4BE

E4C0

E4C3

E4C5

E4C7

E4C9

E4CA

E4CC

E4CE

E4D1

E4D4

E4D6

E4D9

E4DB

EFDE

E4E0

E4E2

E4E4

E4E6

E4E8

E4E9

E4EB

E4ED

E4F0

E4F3

E4F5

E4F7

E4F9

E4FC

E4FD

E500

E506

E50A

E50B

E50C

E50D

E517

E518

E51A

E522

E523

E52E

E5 2F

E531

E533

E534

20

A6

95

68

AE

95

A9

20

A0

A5

91

C8

A5

91

4C

20

A6

20

A9

20

C6

C6

A4

A5

91

C8

A5

91

20

20

A4

CO

BO

4C

00

9E DF

82

CD

57 02

A7

00

C8 D4

00

80

94

81

94

DE E4

93 DF

82

IB DF

00

C8 D4

8A

8A

89

87

94

88

94

5E DE

99 D5

8A

03

D8

IE CF

JSP

LDX

STA

PLA

LDX

STA

LDA

JSR

LDY

LDA

STA

INY

LDA

STA

JMP

JSR

LDX

JSR

LDA

JSR

DEC

DEC

LDY

LDA

STA

INY

LDA

STA

JSR

JSR

LDY

CPY

BCS

JMP

**** »KW«

A0 4F CB

20 21 22 23

D2 45 41 44

89

52

83

20 54 4F 4F

50

8B 06

20 50 52 45

51

CF 56 45 52

8B

25 28

8A 89

26

8A

$DF9E

$82

$CD,X

$0257

$A7rX

#$00

$D4C8

#$00

$80

($94),Y

$81

($94),Y

$E4DE

$DF93

$82

$DF1B

#$00

$D4C8

$8A

$8A

$89

$87

($94) ,Y

$88

($94),Y
$DE5E

$D599

$8A

#$03

$E4D1

$CF1E

24 27

20 AC 4A 52

53 45 4E D4

46 4C 4F 57

get buffer number

channel number

write in table

channel number + 7

in table

buffer pointer to zero

track

in buffer

sector

in buffer

get buffer number

channel number

read block

buffer pointer to zero

counter for side-sector blocks

track number .

in buffer

sector number

in buffer

write block

and verify

counter for side-sector blocks

greater than or equal to 3?

change buffer

* table of error messages

00

1 OK1

error numbers of 'read error1

'Read'

pointer to 'error'

52

pointer to 'file'

47 C5 f too largE1

50

pointer to 'record ' and 'not '

' presenT1

51

20 'Overflow in'

pointer to 'record'

error numbers of 'write error'

pointer to 'write' and 'error '

26

pointer to 'write'

204

Anatomy of the 1541 Disk Drive

E535

E540

E541

E542

E545

E546

E54B

E551

E552

E553

E556

E557

E558

E55F

E560

E561

E566

E567

E568

E570

E572

E57A

E582

E589

E58A

E58D

E590

E593

E594

E594

E59F

E5A0

E5AA

E5AB

E5AE

E5AF

E5B0

E5B1

E5B6

E5B7

E5BF

E5C4

E5C5

E5CA

E5CB

E5D5

E5D6

E5DB

E5DC

E5E1

E5E2

E5E6

E6E7

E5EB

E5EC

20

29

88

20

85

30

D3

89

60

8A

63

83

20

64

83

20

85

65

CE

66

C9

54

20

61

83

39

83

01

83

53

70

CE

71

C4

89

72

88

20

73

C3

56

74

C4

06

20

09

C5

0A

D7

03

C6

04

CF

05

CD

50

49

31

59

03

45

54

4F

67

4C

52

53

06

62

06

20

4F

49

46

42

32

42

52

52

52

49

50

49

52

85

32

4E

84

58

59

20

4C

41

45

84

87

53

20

52

55

4D

2E

49

45

52

49

4C

45

53

4F

33

54

49

50

42

45

43

43

43

43

4C

20

36

56

41

4F

54

C5

CE

4D

54

34

41

53

45

4C

47

4B

54

52

48

CC

44

20

45

44

D2

C5

41

45

58

54

4F

41

20

4F

41

41

4F

31

D9

54

43

D3

43

4C

4F

D2

54

4E

53

35

43

54

CB

20

52

43

4E

20

34

C8

20 4F CE ' protect oN»

29

pointer to 'disk1

1 id'

pointer to ' mismatch'

error numbers for 'syntax error'

1 Syntax1

pointer to ' error1

60

ptrs to 'write1, 'file' & 'open'
CO
O j

pointer to 'file'

1 exists'

64

pointer to 'file'

' type'

pointer to 'mismatch'

65

•No block'

'illegal track or sector'
'Illegal '

•track or'

'sectoR'

61

pointer to 'file', 'not' & 'open'

error nos. for 'file not found'

ptrs to 'file', 'not' & 'found'

01

pointer to 'file1

48 45 C4 's scratcheD1

70

45 CC 'No channeL1

71

'Dir'

pointer to 'error'

72

pointer to 'disk'

' fulL'

73

'Cbm dos •

Bl 'v2.6 1541'

74

'Drive'

pointer to 'not'

' ready1

'ErroR'

'WritE'

•FilE1

'OpeN1

•MismatcH1

205

Anatomy of the 1541 Disk Drive

E5F4 06

E5F5 CE 4F D4

E5F8 07

E5F9 C6 4F 55 4E C4

E5FE 08

E5FF C4 49 53 CB

E603 OB

E604 D2 45 43 4F 52 C4

'NoT1

1FounD1

'DisK'

'RecorD'

prepare error number and message

E60A

E60B

E60D

E60E

E60F

E610

E612

E614

E616

E618

E619

E61B

E61D

E61F

E621

E623

E625

E627

E629

E62A

E62B

E62C

E62D

E62E

E631

E633

E635

E637

E63A

E6 3B

E63E

E641

E644

E645

E648

E64B

E64D

E650

E653

E656

E658

E65A

E65C

E65D

48

86

8A

0A

AA

B5

85

B5

85

68

29

F0

C9

DO

A9

DO

A9

09

AA

CA

CA

8A

48

AD

C9

DO

A9

8D

68

20

20

4C

68

20

20

A9

8D

20

20

A9

85

A2

9A

A5

F9

06

80

07

81

OF

08

OF

06

74

08

06

20

2A

00

OF

FF

2A

C7

42

48

C7

BD

00

F9

2C

DA

00

A3

45

84

02

02

E6

DO

E6

E6

Cl

02

Cl

D4

PHA

STX

TXA

ASL

TAX

LDA

STA

LDA

STA

PLA

AND

BEQ

CMP

BNE

LDA

BNE

LDA

ORA

TAX

DEX

DEX

TXA

PHA

LDA

CMP

BNE

LDA

STA

PLA

JSR

JSR

JMP

PLA

JSR

JSR

LDA

STA

JSR

JSR

LDA

STA

LDX

TXS

LDA

$F9

A

$06rX

$80

$07,X

$81

#$0F

$E625

#$0F

$E627

#$74

$E62D

#$06

#$20

$022A

#$00

$E644

#$FF

$022A

$E6C7

$D042

$E648

$E6C7

$C1BD

#$00

$02F9

$C12C

$D4DA

#$00

$A3

#$45

$84

save error code

drive number

times 2

as pointer

get track

and sector number

get error code back

isolate bits 0-3

zero, then 24, 'read error

15?

74, 'drive not ready'

6

add $20

subtract two

save error number

number of the disk command

OPEN or VALIDATE?

no

get error number back

generate error message

load BAM

set error message

set error message

erase input buffer

erase error flag

turn LED off

close channels 17 and 18

input buffer pointer to ze

initialize stack pointer

secondary address

206

Anatomy of the 1541 Disk Drive

E65F

E661

E663

E665

E667

E668

E66A

E66C

E66E

E670

E672

E675

E677

E679

E67B

E67D

29

85

C9

FO

78

A5

DO

A5

DO

A6

BD

C9

FO

29

85

4C

OF

83

OF

31

79

1C

7A

10

83

2B 02

FF

IF

OF

82

8E E6

AND

STA

CMP

BEQ

SEI

LDA

BNE

LDA

BNE

LDX

LDA

CMP

BEO

AND

STA

JMP

#$0F

$83

#$0F

$E698

$79

$E688

$7A

$E680

$83

$022B,X

#$FF

$E698

#$0F

$82

$E68E

15?

yes, command channel

LISTEN active?

yes

TALK active?

yes

channel number

open channel to this second, addr

no

channel number

E680 20 EB DO JSR $D0EB

E683 20 4E EA JSR $EA4E

E686 DO 06 BNE $E68E

E688

E68B

E68E

E691

E693

E695

E698

E69B

E69C

E69E

E69F

F6A1

E6A3

E6A4

A6A6

E6A7

E6AA

E6AB

E6AC

E6AD

E6AE

E6AF

E6B0

E6B3

E6B4

E6B6

E6B8

E6BA

20

20

20

C9

BO

20

4C

07

4E

25

04

03

27

E7

AA

A9

F8

EO

FO

18

69

CA

4C

D8

AA

4A

4A

4A

4A

20

8A

29

09

91

C8

00

00

07

01

9F

B4

OF

30

A5

Dl

EA

Dl

D2

EB

E6

t * * * i

E6

JSR

JSR

JSR

CMP

BCS

JSR

JMP

k * * * * i

TAX

LDA

SED

CPX

BEO

CLC

ADC

DEX

JMP

CLD

TAX

LSR

LSR

LSR

LSR

JSR

TXA

AND

ORA

STA

I NY

$D107

$EA4E

$D125

#$04

$E698

$D227

$EBE7

#$00

#$00

$E6AA

#$01

$E69F

A

A

A

A

$E6B4

#$0F

#$30

($A5),Y

TALK

open channel for reading

accept byte

LISTEN

open channel for writing

accept byte

verify file type

file type REL?

yes

close channel

convert hex to decimal (2 bytes)

convert hex to BCD

divide BCD number into two bytes

shift hi-nibble down

convert to ASCII

erase top 4 bits

add l0l

write in buffer

increment buffer pointer

207

Anatomy of the 1541 Disk Drive

E6BB 60 RTS

E6BC

E6BF

E6C1

E6C3

E6C5

20 23 Cl

A9 00

A0 00

84 80

84 81

JSR $C123

LDA #$00

LDY #$00

STY $80

STY $81

E6C7

E6C9

E6C8

E6CD

E6CF

E6D1

E6D4

E6D6

ED68

E6D9

E6DC

E6DF

E6E0

E6E3

E6E5

E6E7

E6E8

E6EA

E6ED

E6EF

E6F1

E6F2

E6F4

E6F7

E6F8

E6F9

E6FA

E6FC

E6FF

E701

E703

E705

A0 00

A2 D5

86 A5

A2 02

86 A6

20 AB E6

A9 2C

9A A5

C8

AD D5 02

8D 43 02

8A

20 06 E7

A9 2C

91 A5

C8

A5 80

20 9B E6

A9 2C

91 A5

C8

A5 81

20 9B E6

88

98

18

69 D5

8D 49 02

E6 A5

A9 88

85 F7

60

LDY #$00

LDX #$D5

STX $A5

LDX #$02

STX $A6

JSR $E6AB

LDA #$2C

STA ($A5),Y

INY

LDA $02D5

STA $0243

TXA

JSR $E706

LDA #$2C

STA ($A5)fY

INY

LDA $80

JSR $E69B

LDA #$2C

STA ($A5),Y

INY

LDA $81

JSR $E69B

DEY

TYA

CLC

ADC #$D5

STA $0249

INC $A5

LDA #$88

STA $F7

RTS

E706

E707

E709

E7 0A

E70C

E70D

E70F

E713

E715

E716

E718

AA

A5 86

48

A5 87

48

A9 FC

85 86

85 87

8A

A2 00

Cl 86

TAX

LDA $86

PHA

LDA $87

PHA

LDA #$FC

STA #$E4

STA $87

TXA

LDX #$00

CMP ($86,X)

write 'ok1 in buffer

erase error flag

error number 0

track 0

sector 0

error message in buffer

buffer pointer

pointer $A5/$A6 TO $2D5

error # to ASCII and in buffer

1,' comma

write in buffer

increment buffer pointer

first digit of the disk status

in output register

error number in accumulator

error message in buffer

1,• comma

write in buffer

and increment buffer pointer

track number

to ASCII and in buffer

1,' comma

write in buffer

increment buffer pointer

sector

convert to ASCII and in buffer

end pointer

set READ flag

write error message to buffer

error code to X

preserve pointer $86/$87

start of the error messages

error number in accumulator

compare with error no in table

208

Anatomy of the 1541 Disk Drive

E71A

E71C

E71D

E7 20

E722

E725

E727

E729

E72B

E72D

E72F

E731

E733

E735

E736

E7 39

E73A

E73D

E740

E742

E745

E748

E74A

E74D

E74E

E750

E751

E753

FO 21

48

20 75 E7

90 05

20 75 E7

90 FB

A5 87

C9 E6

90 08

DO 0A

A0 OA

C5 86

90 04

68

4C 18 E7

68

4C 4D E7

20 67 E7

90 FB

20 54 E7

20 67 E7

90 F8

20 54

68

85 87

68

85 86

60

BEO

PHA

JSR

BCC

JSR

BCC

LDA

CMP

BCC

BNE

LDA

CMP

BCC

PLA

JMP

PLA

JMP

SE73D

$E775

$E727

$E775

$E722

$87

#$E6

$E735

$E739

#$0A

$86

$E739

$E718

$E74D

E7

JSR $E767

BCC $E73D

JSR SE754

JST $E767

BCC $E742

JSR $E754

PLA

STA $87

PLA

STA $86

RTS

E754

E756

E758

E759

E7 5B

E75D

E7 5E

E75F

E762

E763

E765

E766

C9 20

BO OB

AA

A9 20

91 A5

C8

8A

20 06 E7

60

91 A5

C8

60

CMP #$20

BCS $E763

TAX

LDA #$20

STA ($A5),Y

INY

TXA

JSR $E706

RTS

STA ($A5)fY

INY

RTS

E767

E769

E76B

E76D

E76F

E770

E772

E774

E6 86

DO 02

E6 87

Al 86

OA

Al 86

29 7F

60

INC $86

BNE $E76D

INC $87

LDA ($86,X)

ASL A

LDA ($86,X)

AND #$7F

RTS

bit 7 into carry and erase
not set?

bit 7 into carry

wait for character with bit 7 set

$E60A, check to end of table

no, continue

done

get a character, bit 7 in carry

wait for character with bit 7 set
and write in buffer

get next character

wait for character with bit 7 set
put character in buffer

get pointer $86/$87 back

get character and in buffer

1 • blank

greater, then write in buffer

save code

blank

write in buffer

increment buffer pointer

code in accumulator

output previous text

write character in buffer

and increment pointer

get a char of the error message

increment pointer

get character

bit 7 into carry

get character

erase bit 7

increment pointer

209

Anatomy of the 1541 Disk Drive

E775

E778

E77A

E77C

E77E

20 6D E7

E6 86

DO 02

E6 87

60

JSR $E76D

INC $86

BNE $E77E

INC $87

RTS

E77F 60 RTS

E780

E783

E784

E786

E788

E789

E78B

E78D

E78E

E791

E793

E795

E798

E79B

E79D

E7A0

E7A3

E7A5

E7A8

E7AB

E7AE

E7AF

E7B1

E7B4

E7B6

E7B8

E7BB

E7BE

E7C0

E7C2

E7C5

E7C6

E7C9

E7CC

E7CE

E7D1

E7D3

E7D5

E7D8

E7DA

E7DC

E7DF

E7E1

AD 00 18

AA

29 04

F0 F7

8A

29 01

F0 F2

58

AD 00 18

29 05

F0 F9

EE 78 02

EE 74 02

A9 2A

8D 00 02

4C A8 E7

A9 8D

20 68 C2

20 58 F2

AD 78 02

48

A9 01

8D 78 02

A9 FF

85 86

20 4F C4

AD 80 02

DO 05

A9 39

20 C8 Cl

68

8D 78 02

AD 80 02

85 80

AD 85 02

85 81

A9 03

20 77 D4

A9 00

85 87

20 39 E8

85 88

20 4B E8

LDA $1800

TAX

AND #$04

BEO $E77F

TXA

AND #$01

BEQ $E77F

CLI

LDA $1800

AND #$05

BNE $E78E

INC $0278

INC $0274

LDA #$2A

STA $0200

JMP $E7A8

bit 7 into carry

increment pointer

check for AUTO-start

read IEEE port

isolate 'CLOCK IN1 bit

not set, then done

isolate 'DATA IN1 bit

not set, then done

load IEEE port

test 'DATA IN1 and 'CLOCK IN1

wait until both set

file name

character in the input line

'*' as filename

write in buffer

************ .&. _ command

LDA

JSR

JSR

LDA

PHA

LDA

STA

LDA

STA

JSR

LDA

BNE

LDA

JSR

PLA

STA

LDA

STA

LDA

STA

LDA

JSR

LDA

STA

JSR

STA

JSR

#$8D

$C268

$F258

$0278

#$01

$0278

#$FF

$86

$C44F

$0280

SE7C5

#$39

$C1C8

$0278

$0280

$80

$0285

$81

#$03

$D477

#$00

$87

$E&39

$88

$E84B

check command line to end

(RTS)

number of file names

save

file name

find file

found?

39, 'file not found'

get number of file names back

track

and sector

file type 'USR'

buffer allocated, read 1st block

erase checksum

get byte from file

save as start address lo

form checksum

210

Anatomy of the 1541 Disk Drive

E7E4

E7E7

E7E9

E7EC

E7EE

E7F0

E7F2

E7F3

E7F5

E7F6

E7F8

E7FA

E7FD

E7FF

E802

E805

E807

E809

E80C

E80E

E80F

E811

E813

E815

E817

E819

E81B

E81E

E820

E822

E824

E827

E829

E82C

E82E

E830

E831

E833

E834

E836

E839

E83C

E83E

E840

E843

E845

E848

E84A

20

85

20

A5

F0

A5

48

A5

48

A9

85

20

85

20

20

A0

91

20

A5

18

69

85

90

E6

C6

DO

20

A5

C5

F0

20

A9

20

A5

DO

68

85

68

85

6C

20

A5

DO

20

A9

20

A5

60

39

89

4B

86

OA

88

89

00

86

39

8A

4B

39

00

88

4B

88

01

88

02

89

8A

E7

35

85

87

08

3E

50

45

F8

A8

89

88

88

35

F8

08

3E

51

45

85

E8

E8

E8

E8

E8

E8

CA

DE

E6

00

CA

DE

E6

JSR

STA

JSR

LDA

BEQ

LDA

PHA

LDA

PHA

LDA

STA

JSR

STA

JSR

JSR

LDY

STA

JSR

LDA

CLC

ADC

STA

BCC

INC

DEC

BNE

JSR

LDA

CMP

BEQ

JSR

LDA

JSR

LDA

BNE

PLA

STA

PLA

STA

JMP

JSR

LDA

BNE

JSR

LDA

JSR

LDA

RTS

$E839

$89

$E84B

$86

$E7FA

$88

$89

#$00

$86

$E839

$8A

$E84B

$E839

#$00

($88)rY

$E84B

$88

#$01

$88

$E817

$89

$8A

$E802

$CA35

$85

$87

$E82C

$DE3E

#$50

$E645

$F8

$E7D8

$89

$88

($0088)

$CA35

$F8

$E848

$DE3E

#$51

$E645

$85

E84B A8 CLC

E84C

E84E

E850

E852

65

69

85

60

87

00

87

ADC

ADC

STA

RTS

$87

#$00

$87

get byte from file

as start address hi

form checksum

save program start address

get byte from file

save as counter

form checksum

get byte from file

save as program bytes

form checksum

increment $88/$89

decrement pointer

get next byte

data byte

equal to checksum?

yes

transmit param to disk controller

50, 'record not present1
end?

no, next data block

get program start address back

and execute program

get byte from file

end?

no

transmit param to disk controller

51, 'overflow in record1
data byte

generate checksum

211

Anatomy of the 1541 Disk Drive

E853 AD 01 18 LDA $1801

E856 A9 01 LDA #$01

E858 85 7C STA $7C

E85A 60 RTS

************** IRq routine for serial bus

read port A, erase IRQ flag

set flag for 'ATN received1

E8 5B

E85C

E85E

E860

E862

E864

E866

E867

E869

E86B

E86D

E870

E873

E876

E878

E87B

E87E

E880

E882

E884

E887

E889

E88B

E88D

E88F

E891

E893

E895

E897

E899

E89B

E89D

E89F

E8A1

E8A3

E8A5

E8A7

E8A9

E8AB

E8AD

E8AF

E8B1

E8B3

E8B5

E8B7

E8B8

E8BA

******* servicing the serial bus

78

A9 00

85 7C

85 79

85 7A

A2 45

9A

A9 80

85 F8

85 7D

20 B7 E9

20 A5 E9

AD 00 18

09 10

8D 00 18

AD 00 18

10 57

29 04

DO F7

20 C9 E9

C9 3F

DO 06

A9 00

85 79

F0 71

C9 5F

DO 06

A9 00

85 7A

F0 67

C5 78

DO 0A

A9 01

85 7A

A9 00

85 79

F0 29

C5 77

DO 0A

A9 01

85 79

A9 00

85 7A

F0 IB

AA

29 60

C9 60

SEI

LDA #$00

STA $7C

STA $79

STA $7A

LDX #$45

TXS

LDA #$80

STA $F8

STA $7D

JSR $E9B7

JSR $E9A5

LDA $1800

ORA #$10

STA $1800

LDA $1800

BPL $E8D7

AND #$04

BNE $E87B

JSR $E9C9

CMP #$3F

BNE $E891

LDA #$00

STA $79

BEO $E902

CMP #$5F

BNE $E89B

LDA #$00

STA $7A

BEQ $E902

CMP $78

BNE $E8A9

LDA #$01

STA $7A

LDA #$00

STA $79

BEQ $E8D2

CMP $77

BNE $E8B7

LDA #$01

STA $79

LDA #$00

STA $7A

BEO $E8D2

TAX

AND #$60

CMP #$60

erase flag for 'ATN received1

erase flag for LISTEN

erase flag for TALK

initialize stack pointer

erase end flag

erase EOI flag

CLOCK OUT lo

DATA OUT, bit '0', hi

switch data lines to input

read IEEE port

EOI?

CLOCK IN?

no

get byte from bus

unlisten?

no

reset flag for LISTEN

untalk?

no

reset flag for TALK

TALK address?

no

set flag for TALK

reset flag for LISTEN

LISTEN address?

no

set flag for LISTEN

reset flag for TALK

set bit 5 and 6

212

Anatomy of the 1541 Disk Drive

E8BC

E8BE

E8BF

E8C1

E8C3

E8C5

E8C7

E8C9

E8CB

E8CD

E8CE

E8D1

E8D2

E8D5

E8D7

E8D9

E8DB

E8DE

E8E0

E8E3

E8E5

E8E7

E8EA

E8ED

E8EF

E8F1

E8F4

E8F7

E8FA

E8FD

E8FF

E902

E905

E907

DO

8A

85

29

85

A5

29

C9

DO

58

20

78

2C

30

A9

85

AD

29

8D

A5

F0

20

4C

A5

F0

20

20

20

4C

A9

8D

2C

10

30

3F

84

OF

83

84

FO

EO

35

CO

00

AD

00

7D

00

EF

00

79

06

2E

E7

7A

09

9C

AE

09

4E

10

00

00

DO

F9

DA

18

18

18

EA

EB

E9

E9

E9

EA

18

18

BNE

TXA

STA

AND

STA

LDA

AND

CMP

BNE

CLI

JSR

SEI

BIT

BMI

LDA

STA

LDA

AND

STA

LDA

BEO
JSR

JMP

LDA

BEO

JSR

JSR

JSR

JMP

LDA

STA

BIT

BPL

BMI

$E8FD

$84

#$0F

$83

$84

#$F0

#$E0

$E902

$DAC0

$1800

$E884

#$00

$7D

$1800

#$EF

$1800

$79

$E8ED

$EA2E

$EBE7

$7A

$E8FA

$E99C

$E9AE

$E909

$EA4E

#$10

$1800

$1800

$E8D7

$E902

E909

E90A

E90D

E90F

E911

E913

E915

E916

E919

E91C

E91E

E91F

E922

E923

E9 25

E928

E9 2B

E92D

78

20

B0

A6

B5

30

60

20

20

29

08

20

28

F0

20

20

29

DO

EB

06

82

F2

01

59

CO

01

B7

12

59

CO

01

F6

DO

EA

E9

E9

EA

E9

SEI

JSR

BCS

LDX

LDA

BMI

RTS

JSP

JSR

AND

PHP

JSR

PLP

BEO

JSR

JSR

AND

BNE

$D0EB

$E915

$82

$F2rX

$E916

$EA59
$E9C0

#$01

$E9B7

$E937

$EA59

$E9C0

#$01

$E925

no

byte is secondary address

channel number

CLOSE?

CLOSE routine

set EOI

IEEE port

switch data lines to output

LISTEN active?

no

receive data

to delay loop

TALK active?

no

DATA OUT, bit 'I1, lo

CLOCK OUT hi

send data

to delay loop

either TALK or LISTEN,ignor<

switch data lines to input

wait for handshake

: send data

open channel for read

channel active

channel number

set READ flag?

yes

check EOI

read IEEE port

isolate data bit

and save

CLOCK OUT lo

check EOI

read IEEE port

isolate data bit

213

Anatomy of the 1541 Disk Drive

E92F

E931

E933

E935

E937

E93A

E93D

E93F

E941

E944

E947

E949

E84B

E94E

E951

E954

E956

E958

E95A

E95C

E95F

E961

E963

E965

E968

E969

E96C

B96E

E971

E973

E976

E979

E97B

E97D

E980

E983

E985

E987

E98A

E98D

E98F

E991

E992

E995

E996

E999

E99C

E99F

E9A1

A6

B5

29

DO

20

20

29

DO

20

20

29

F0

20

20

20

29

DO

A9

85

20

29

DO

A6

BD

6A

9D

BO

20

DO

20

20

A5

DO

20

20

C6

DO

20

20

29

FO

58

20

78

4C

4C

82

F2

08

14

59

CO

01

F6

59

CO

01

F6

AE

59

CO

01

F3

08

98

CO

01

36

82

3E

3E

05

A5

03

9C

B7

23

03

F3

FB

98

D5

59

CO

01

F6

AA

OF

4E

EA

E9

EA

E9

E9

EA

E9

E9

02

02

E9

E9

E9

FE

FE

EA

E9

D3

E9

EA

AD 00 18

29

8D

E9A4 60

FD

00 18

LDX

LDA

AND

BNE

JSR

JSP

AND

BNE

JSR

JSR

AND

BEQ

JSR

JSR

JSR

AND

BNE

LDA

STA

JSR

AND

BNE

LDX

LDA

ROR

STA

BCS

JSR

BNE

JSR

JSR

LDA

BNE

JSR

JSR

DEC

BNE

JSR

JSR

AND

BEQ

CLI

JSR

SEI

JMP

JMP

LDA

AND

STA

RTS

$82

$F2,X

#$08

$E94B

$EA59

$E9C0

#$01

$E937

$EA59

$E9C0

#$01

$E941

$E9AE

$EA59

$E9C0

#$01

$E94B

#$08

$98

$E9C0

#$01

$E999

$82

$023E,X

A

$023E,X

$E973

$E9A5

$E976

$E99C

$E9B7

$23

$E980

$FEF3

$FEFB

$98

$E95C

$EA59

$E9C0

#$01

$E987

$D3AA

$E90F

$EA4E

$1800

#$FD

$1800

channel number

check EOI

read IEEE port

isolate data bit

check EOI

read IEEE port

isolate data bit

CLOCK OUT hi

check EOI

read IEEE port

isolate data bit

counter to 8 bits for serial

transmission

read IEEE port

isolate data bit

lowest bit in carry

set bit

DATA OUT, output bit '0'

absolute jump

DATA OUT, output bit 'I1

set CLOCK OUT

delay for serial bus

set DATA OUT and CLOCK OUT

all bits output?

no

check EOI

read IEEE port

isolate data bit

get next data byte

and output

to delay loop

DATA OUT lo

output bit 'I1

DATA OUT hi

214

E9A5 AD 00

E9A8 09 02

E9AA 8D 00

E9AD 60

18

18

LDA $1800

ORA #$02

STA $1800

RTS

Anatomy of the 1541 Disk Drive

output bit '01

****************************** CLOCK OUT hi

E9AE AD 00 18 LDA $1800

E9B1 09 08 ORA #$08 set bit 3
E9B3 8D 00 18 STA $1800

E9B6 60 RTS

CLOCK OUT lo

E9B7 AD 00 18 LDA $1800

E9BA 29 F7 AND #$F7 erase bit 3

E9BC 8D 00 18 STA $1800

E9BF 60 RTS

E9C0 AD 00 18 LDA $1800

E9C3 CD 00 18 CMP $1800

E9C6 DO F8 BNE $E9C0

E9C8 60 RTS

read IEEE port

read port

wait for constants

E9C9

E9CB

E9CD

E9D0

E9D3

E9D5

E9D7

E9DA

E9DC

E9DF

E9E2

E9E5

E9E7

E9E9

E9EC

E9EE

E9F0

E9F2

E9F5

E9F7

E9F8

E9FA

E9FD

EA00

EA03

EA05

EA07

EA09

EA0B

EAOE

EA10

A9

85

20

20

29

DO

20

A9

8D

20

AD

29

DO

20

29

F0

DO

20

A2

CA

DO

20

20

20

29

F0

A9

85

AD

49

4A

08

98

59

CO

04

F6

9C

01

05

59

0D

40

09

CO

04

EF

19

A5

0A

FD

9C

59

CO

04

F6

00

F8

00

01

EA

E9

E9

18

EA

18

E9

E9

E9

EA

E9

18

LDA

STA

JSR

JSR

AND

BNE

JSR

LDA

STA

JSR

LDA

AND

BNE

JSR

AND

BEQ

BNE

JSR

LDY

DEX

BNE

JSR

JSR

JSR

AND

BEO

LDA

STA

LDA

EOR

LSR

#$08

$98

$EA59

$E9C0

#$04

$E9CD

$E99C

#$01

$1805

$EA59

$180D

#$40

$E9F2

$E9C0

#$04

$E9DF

$EA0B

$E9A5

#$0A

$E9F7

$E99C

$EA59

$E9C0

#$04

$E9FD

#$00

$F8

$1800

#$01

A

bit counter for seric
check EOI

read IEEE port

CLOCK IN?

no, wait

DATA OUT, bit 'I1

set timer

check EOI

timer run down?

yes, EOI

read IEEE port

CLOCK IN?

no, wait

DATA OUT bit '0' hi

10

delay loop, approx 50

DATA OUT, bit 'I1, lo

check EOI

read IEEE

CLOCK IN?

no, wait

set EOI flag

IEEE port

invert data byte

215

Anatomy of the 1541 Disk Drive

EA11

EA13

EA15

EA16

EA17

EA18

EA1A

EA1D

EA20

EA22

EA24

EA26

EA28

EA2B

EA2D

29

DO

EA

EA

EA

66

20

20

29

F0

C6

DO

20

A5

60

****** X XX*

EA2E

EA2F

EA32

EA34

EA36

EA37

EA39

EA3B

EA3D

EA3F

EA41

EA44

EA47

EA48

EA4B

EA4E

EA50

EA53

EA56

78

20

B0

B5

6A

B0

A5

29

C9

F0

4C

20

58

20

4C

A9

8D

4C

4C

02

F6

85

59

CO

04

F6

98

E3

A5

85

07

05

F2

OB

84

FO

FO

03

4E

C9

B7

2E

00

00

E7

5B

EA

E9

E9

AND

BNE

NOP

NOP

NOP

ROR

JSR

JSR

AND

BEQ

DEC

BNE

JSR

LDA

RTS

#$02

$EA0B

$85

$EA59

$E9C0

#$04

$EA1A

$98

$EA0B

$E9A5

$85

Dl

EA

E9

CF

EA

18

EB

E8

SEI

JSR

BCS

LDA

ROR

BCS

LDA

AND

CMP

BEO
JMP

JSR

CLI

JSR

JMP

LDA

STA

JMP

JMP

$D1O7

$EA39

$F2,X

A

$EA44

$84

#$F0

#$F0

$EA44

$EA4E

$E9C9

$CFB7

$EA2E

#$00

$1800

$EBE7

$EB58

CLOCK IN?

prepare next bit

check EOI

read IEEE port

CLOCK IN?

no

decrement bit counter

all bits output?

DATA OUT, bit '01, hi

load data byte again

r accept data from serial

open channel for writing

channel not active?

WRITE flag

not set?

secondary address

OPEN command?

yes

to wait loop

get data byte from bus

and write in buffer

to loop beginning

reset IEEE port

to wait loop

to serial bus main loop

EA59

EA5B

EA5D

A5

FO

AD

7D

06

00 18

LDA

BEO

LDA

$7D

$EA63

$1800

EOI received?

yes

IEEE port

EA62

EA63

EA66

EA68

60 RTS

AD 00 18 LDA $1800

10 FA BPL $EA62

4C D7 E8 JMP $E8D7

EA6E A2 00 LDX #$00

EA70 2C .BYTE $2C

IEEE port

set EOI, serve serial bus

blink LED for hardware defects

blink once, zero page

216

Anatomy of the 1541 Disk Drive

EA71

EA73

EA74

EA75

EA77

EA7A

EA7D

EA7E

EA7F

EA81

EA83

EA84

EA86

EA89

EA8B

EA8E

EA8F

EA90

EA92

EA94

EA95

EA97

EA98

EA9A

EA9C

EA9E

A5 6F

9A

BA

A9 08

0D 00 1C

4C EA FE

98

18

69 01

DO FC

88

DO F8

AD 00 1C

29 F7

8D 00 1C

98

18

69 01

DO FC

88

DO F8

CA

10 DB

EO FC

DO FO

FO D4

EAA0

EAA1

EAA2

EAA4

EAA7

EAA8

EAAA

EAAC

EAAD

EAAF

EABO

EAB2

EAB3

EAB5

EAB7

EAB9

EABA

EABC

EABE

EACO

EAC2

EAC4

EAC6

EAC7

EAC9

EACB

EACD

LDX $6F

TXS

TSX

LDA #$08

ORA $1COO

JMP $FEEA

TYA

CLC

ADC #$01

BNE $EA7F

DEY

BNE $EA7E

LDA $1COO

AND #$F7

STA $1COO

TYA

CLC

ADC #$01

BNE $EA90

DEY

BNE $EA8F

DEX

BPL $EA75

CPX #$FC

BNE $EA8E

BEQ $EA74

blink X+l times for RAM/ROM err

select LED bit in the port

turn LED on, back to $EA7D

turn LED off

delay loop

wait for delay

turn LED on again

ir*************** reset routine

78

D8

A2 FF

8E 03 18

E8

A0 00

A2 00

8A

95 00

E8

DO FA

8A

D5 00

DO B7

F6 00

C8

DO FB

D5 00

DO AE

94 00

B5 00

DO A8

E8

DO E9

E6 6F

86 76

A9 00

SEI

CLD

LDX #$FF

STX $1803

INX

LDY #$00

LDX #$00

TXA

STA $00,X

INX

BNE $EAAC

TXA

CMP $00,X

BNE $EA6E

INC $00,X

INY

BNE $EAB7

CMP $00,X

BNE $EA6E

STY $00,X

LDA $00,X

BNE $EA6E

INX

BNE $EAB2

INC $6F

STX $76

LDA #$00

port A to output

erase zero page

is byte erased?

no, then to error display (blink)

217

Anatomy of the 1541 Disk Drive

EACF

EAD1

EAD2

EAD4

EAD5

EAD7

EAD9

EADA

EADC

EADD

EADF

EAE1

EAE2

EAE4

EAE6

EAE8

EAEA

EAEC

EAEE

EAFO

EAF2

EAF3

EAF4

EAF6

EAF8

EAF9

EAFB

EAFD

EAFE

EBOO

EB02

EB04

EB05

EB06

EB07

EB09

EBOB

EBOD

EBOF

EB11

EB13

EB15

EB17

EB18

EB1A

EB1B

EB1D

EB1F

EB22

EB24

EB25

EB28

EB2A

EB2D

85

A8

A2

18

C6

71

C8

DO

CA

DO

69

AA

C5

DO

EO

DO

A9

85

E6

A2

98

18

65

91

C8

DO

E6

CA

DO

A2

C6

88

98

18

65

Dl

DO

49

91

51

91

DO

98

DO

CA

DO

FO

4C

A2

9A

AD

29

8D

A9

75

20

76

75

FB

F6

00

76

39

CO

DF

01

76

6F

07

76

75

F7

76

F2

07

76

76

75

12

FF

75

75

75

08

EA

E5

03

71 EA

45

00 1C

F7

00 1C

01

STA

TAY

LDX

CLC

DEC

ADC

INY

BNE

DEX

BNE

ADC

TAX

CMP

BNE

CPX

BNE

LDA

STA

INC

LDX

TYA

CLC

ADC

STA

INY

BNE

INC

DEX

BNE

LDX

DEC

DEY

TYA

CLC

ADC

CMP

BNE

EOR

STA

EOR

STA

BNE

TYA

BNE

DEX

BNE

BEO

JMP

LDX

TXS

LDA

AND

STA

LDA

$75

#$20

$76

($75)rY

$EAD7

$EAD5

#$00

$76

$EB1F

#$C0

$EAC9

#$01

$76

$6F

#$07

$76

($75),Y

$EAF2

$76

$EAF2

#$07

$76

$76

($75)rY

$EB1F

#$FF

($75),Y

($75)fY

($75),Y

$EB1F

$EB04

$EB02

$EB22

$EA71

#$45

$1COO

#$F7

$1COO

#$01

test 32 pages

test ROM

ROM error

test RAM, beginn

RAM error

RAM error

continue test

ok

to error display

initialize stack

turn LED off

218

Anatomy of the 1541 Disk Drive

EB2F

EB32

EB34

EB37

EB3A

EB3D

EB3F

EB40

EB41

EB42

EB43

EB45

EB47

EB49

EB4B

EB4D

EB4F

EB51

EB53

EB54

EB57

EB59

EB5A

EB5B

EB5D

EB5F

EB61

EB63

EB64

EB66

EB68

EB69

E86B

EB6D

EB6E

EB70

EB72

EB74

EB76

EB79

EB7A

EB7C

EB7E

EB80

EB82

EB84

EB85

EB87

EB89

EB8B

EB8D

EB8F

EB91

EB93

EB95

8D

A9

8D

8D

AD

29

OA

2A

2A

2A

09

85

49

85

A2

A0

A9

95

E8

B9

95

E8

C8

CO

DO

A9

95

E8

A9

95

E8

A9

95

E8

A9

95

A9

A2

9D

CA

10

A2

95

95

95

CA

10

A9

85

A9

85

A9

85

85

A9

OC

82

OD

OE

00

60

48

78

60

77

00

00

00

99

EO

99

05

FO

00

99

02

99

D5

99

02

99

FF

12

2B

FA

05

A7

AE

CD

F7

05

AB

06

AC

FF

AD

B4

05

18

18

18

18

FE

02

STA

LDA

STA

STA

LDA

AND

ASL

ROL

ROL

ROL

ORA

STA

EOR

STA

LDX

LDY

LDA

STA

INX

LDA

STA

INX

INY

CPY

BNE

LDA

STA

INX

LDA

STA

INX

LDA

STA

INX

LDA

STA

LDA

LDX

STA

DEX

BPL

LDX

STA

STA

STA

DEX

BPL

LDA

STA

LDA

STA

LDA

STA

STA

LDA

$180C

#$82

$180D

$180E

$1800

#$60

A

A

A

A

#$48

$78

#$60

$77

#$00

#$00

#$00

$99,X

$FEE0,Y

$99,X

#$05

$EB4F

#$00

$99,X

#$02

$99,X

#$D5

$99,X

#$02

$99,X

#$FF

#$12

$022B,X

$EB76

#$05

$A7,X

$AE,X

$CD,X

$EB7E

#$05

$AB

#$06

$AC

#$FF

$AD

$B4

#$05

CA1 (ATN IN) trigger on pos edge

interrupt possible through ATN IN

read port B

isolate bits 5 & 6 (device #)

rotate to bit positions 0 & 1

add offset from 8 + $40 for TALK

device number for TALK (send)
erase bit 6, set bit 5

device number + $20 for LISTEN

low-byte of buffer address

high byte of address from table
save

ptr $A3/$A4 to $200, input buffer

pointer $A5/$A6 to $2D5, error
message pointer

fill channel table with $FF

erase buffer table

erase side-sector table

buffer 5

associate with channel 4

buffer 6

associate with channel 5

219

Anatomy of the 1541 Disk Drive

EB97

EB9A

EB9C

EB9F

EBA1

EBA4

EBA6

EBA8

EBAA

EBAC

EBAE

EBB1

EBB3

EBB6

EBB8

EBBA

EBBC

EBBF

EBC2

EBC5

EBC7

EBC9

EBCB

EBCD

EBCF

EBD1

EBD3

EBD5

EBD7

EBDA

EBDC

EBDF

EBE1

EBE4

EBE7

EBE8

EBEB

EBED

EBFO

EBF3

EBF5

EBF7

EBFA

EBFC

EBFF

ECOO

EC02

EC04

EC07

EC08

ECOA

ECOC

ECOE

8D 3B 02

A9 84

8D 3A 02

A9 OF

8D 56 02

A9 01

85 F6

A9 88

85 F7

A9 FO

8D 4F 02

A9 FF

8D 50 02

A9 01

85 1C

85 ID

20 63 CB

20 FA CE

20 59 F2

A9 22

85 65

A9 EB

85 66

A9 OA

85 69

A9 05

85 6A

A9 73

20 Cl

A9 1A

8D 02 18

A9 00

8D 00 18

20 80 E7

58

AD 00 18

29 E5

8D 00 18

AD 55 02

FO OA

A9 00

8D 55 02

85 67

20 46 Cl

E6

58

A5 7C

FO 03

4C 5B E8

58

A9 OE

85 72

A9 00

85 6F

STA $023B

LDA #$84

STA $023A

LDA #$0F

STA $0256

LDA #$01

STA $F6

LDA #$88

STA $F7

LDA #$E0

STA $024F

LDA #$FF

STA $0250

LDA #$01

STA $1C

STA $1D

JSR $CB63

JSR $CEFA

JSR $F259

LDA #$22

STA $65

LDA #$EB

STA $66

LDA #$0A

STA $69

LDA #$05

STA $6A

LDA #$73

JSR $E6C1

LDA #$1A

STA $1802

LDA #$00

STA $1800

JSR $E780

CLI

LDA $1800

AND #$E5

STA $1800

LDA $0255

BEQ $EBFF

LDA #$00

STA $0255

STA $67

JSR $C146

CLI

LDA $7C

BEO $EC07

JMP $E85B

CLI

LDA #$0E

STA $72

LDA #$00

STA $6F

channel 5 WRITE flag erased

channel 4 WRITE flag set

initialize channel allocation reg

bit 'I1 equals channel free

WRITE flag

READ flag

5 buffers free

initialize buffer allocation reg

$24F/$250, 16 bit

flags for WRITE protect

set vector for U0

initialize channel table

intialization for disk controller

pointer $65/$66 to $EB22

step width 10

for sector assignment

5 read attempts

prepare power-up message

73, 'cbm dos v2.6 1541'

bit 1, 3 & 4 to exit

data direction of port B

erase data register

check for auto-start

reset serial port

command flag set?

no

reset command flag

analyze and execute command

wait loop

ATN signal discovered?

no

to IEEE routine

14

as secondary address

job counter

220

Anatomy of the 1541 Disk Drive

EC10

EC12

EC14

EC17

EC19

EC1B

EC1D

EC1F

EC22

EC23

EC26

EC28

EC29

EC2B

EC2D

EC2F

EC31

EC34

EC36

EC38

EC39

EC3B

EC3C

EC3E

EC3F

EC42

EC44

EC45

EC47

EC49

EC4B

EC4D

EC4F

EC51

EC53

EC55

EC58

EC59

EC5B

EC5C

EC5E

EC60

EC62

EC64

EC66

EC69

EC6A

EC6C

EC6D

EC6F

EC71

EC72

EC75

EC77

EC7A

85

A6

BD

C9

FO

26

85

20

AA

BD

29

AA

F6

C6

10

A0

B9

10

29

AA

F6

88

10

78

AD

29

48

A5

85

A9

85

A5

FO

A5

FO

20

68

09

48

E6

A5

F0

A5

F0

20

68

09

48

A5

85

68

AE

FO

AD

EO

70

72

2B

FF

10

3F

82

93

5B

01

6F

72

E3

04

00

05

01

6F

F3

00

F7

7F

86

00

7F

6F

OB

1C

03

13

08

7F

70

OB

ID

03

13

00

86

7F

6C

21

00

80

02

DF

02

00

1C

D3

D3

02

1C

STA

LDX

LDA

CMP

BEO
AND

STA

JSR

TAX

LDA

AND

TAX

INC

DEC

BPL

LDY

LDA

BPL

AND

TAX

INC

DEY

BPL

SEI

LDA

AND

PHA

LDA

STA

LDA

STA

LDA

BEO

LDA

BEO

JSR

PLA

ORA

PHA

INC

LDA

BEO
LDA

BEO

JSR

PLA

ORA

PHA

LDA

STA

PLA

LDX

BEO

LDA

CPX

$70

$72

$022B,X

#$FF

$EC2B

#$3F

$82

$DF93

$025B,X

#$01

$6F,X

$72

$EC12

#$04

$0000,Y

$EC3B

#$01

$6F,X

$EC31

$1COO

#$F7

$7F

$86

#$00

$7F

$6F

$EC5C

$1C

$EC58

$D313

#$08

$7F

$70

$EC6D

$1D

$EC69

$D313

#$00

$86

$7F

$026C

$EC98

$1COO

#$80

secondary address

channel associated?

no

channel number

get buffer number

drive number

increment job counter
lo address

continue search

buffer counter

disk controller in action?
no

isolate drive number

increment job counter

next buffer

erase LED bit

drive number

drive 0

job for drive 0?

no

write protect for drive 0?

no

close all channels to drive 0

set LED bit

increment drive number

job for drive 1?

no

write protect for drive 1?

no

close all channels to drive 1

get drive number back

bit for LED

interrupt counter

to zero?

221

Anatomy of the 1541 Disk Drive

EC7C

EC7E

EC81

EC84

EC86

EC88

EC8B

EC8E

EC90

EC93

EC95

EC98

EC9B

EC9E

ECAO

ECA2

ECA4

ECA7

ECA9

ECAC

ECAE

ECBO

ECB3

ECB6

ECB7

ECB9

ECBC

ECBE

ECC1

ECC3

ECC6

ECC8

ECCB

ECCE

ECD1

ECD4

ECD6

ECD9

ECDC

ECDF

ECEO

ECE1

ECE3

ECE5

ECE7

ECEA

ECEC

ECEF

ECF2

ECF5

ECF7

EC FA

ECFD

DO

4C

AE

30

A2

8E

CE

DO

4D

A2

8E

8D

4C

A9

85

A9

20

A9

20

A6

A9

9D

20

AA

A5

9D

A9

20

A9

20

A9

20

20

AD

20

A9

20

20

20

OA

AA

D6

D6

A9

20

A9

20

20

20

90

AD

20

AD

03

8B

05

12

AO

05

6C

08

6D

10

6C

00

FF

00

83

01

E2

00

C8

82

00

44

93

7F

5B

01

Fl

04

Fl

01

Fl

Fl

72

Fl

00

Fl

59

93

99

99

00

Fl

01

Fl

Fl

CE

2C

72

Fl

73

EC

18

18

02

02

02

1C

EB

Dl

D4

02

DF

02

CF

CF

CF

CF

02

CF

CF

ED

DF

CF

CF

CF

C6

02

CF

02

BNE

JMP

LDX

BMI

LDX

STX

DEC

BNE

EOR

LDX

STX

STA

JMP

LDA

STA

LDA

JSR

LDA

JSR

LDX

LDA

STA

JSR

TAX

LDA

STA

LDA

JSR

LDA

JSR

LDA

JSR

JSR

LDA

JSR

LDA

JSR

JSR

JSR

ASL

TAX

DEC

DEC

LDA

JSR

LDA

JSR

JSR

JSR

BCC

LDA

JSR

LDA

SEC81

$EC8B

$1805

$EC98

#$A0

$1805

$026C

$EC98

$026D

#$10

$026C

$1COO

$EBFF

#$00

$83

#$01

$D1E2

#$00

$D4C8

$82

#$00

$0244,X

$DF93

$7F

$025B,X

#$01

$CFF1

#$04

$CFF1

#$01

$CFF1

$CFF1

$0272

$CFF1

#$00

$CFF1

$ED59

$DF93

A

$99rX

$99rX

#$00

$CFF1

#$01

$CFF1

$CFF1

$C6CE

$ED23

$0272

$CFF1

$0273

erase timer interrupt

set timer

decrement counter

not yet zero?

reset counter

turn LED on/off

back to wait loop

LOAD "$"

secondary address 0

find channel and buffer

initialize buffer pointer

channel number

pointer to end = zero

get buffer number

drive number

bring in table

1

write in buffer

4, start address $0401

write in buffer

2 times 1

write in buffer as link a

drive number

write in buffer as line n

line number hi

in buffer

directory entry in buffer

get buffer number

decrement buffer pointer

0 as line end in buffer

2 times 1 as link address

directory entry in buffer

another entry?

block number lo

in buffer

block number hi

222

Anatomy of the 1541 Disk Drive

EDOO

EDO 3

ED06

ED08

EDOB

EDOD

ED10

ED11

ED12

ED14

ED16

ED18

ED1A

ED1D

ED20

ED22

ED23

ED26

ED29

ED2C

ED2F

ED32

ED35

ED36

ED37

ED39

ED3B

ED3D

ED40

ED43

ED46

ED49

ED4A

ED4B

ED4E

ED50

ED53

20

20

A9

20

DO

20

OA

AA

A9

95

A9

A4

8D

99

A5

60

AD

20

AD

20

20

20

OA

AA

D6

D6

A9

20

20

20

20

OA

A8

B9

A6

9D

DE

Fl

59

00

Fl

DD

93

00

99

88

82

54

F2

85

CF

ED

CF

DF

02

00

72 02

Fl

73

Fl

59

93

99

99

00

Fl

Fl

Fl

93

99

82

44

44

CF

02

CF

ED

DF

CF

CF

CF

DF

02

02

02

JSR

JSR

LDA

JSR

BNE

JSR

ASL

TAX

LDA

STA

LDA

LDY

STA

STA

LDA

RTS

LDA

JSR

LDA

JSR

JSR

JSR

ASL

TAX

DEC

DEC

LDA

JSR

JSR

JSR

JSR

ASL

TAY

LDA

LDX

STA

DEC

$CFF1

$ED59

#$00

$CFF1

$ECEA

$DF93

A

#$00

$99,X

#$88

$82

$0254

$00F2

$85

,Y

$0272

$CFF1

$0273

$CFF1

$ED59

$DF93

A

$99fX

$99,X

#$00

$CFF1

$CFF1

$CFF1

$DF93

A

$0099

$82

$0244

$0244

ED56 4C OD ED JMP $ED0D

ED59

ED5B

ED5E

ED61

ED6 2

ED64

ED66

j. JU JL JL JL JL JU
** f* W #* J» #» «

ED67

ED6A

ED6C

AO

B9

20

C8

CO

DO

60

20

FO

60

00

Bl

Fl

IB

F5

37

01

02

CF

LDY

LDA

JSR

INY

CPY

BNE

RTS

Dl JSR

BEO
RTS

#$00

$O2B1

$CFF1

#$1B

$ED5B

$D137

$ED6D

,Y

,x

,x

,Y

in buffer

directory entry in buffer

zero as end marker in buffer

buffer full? no

get buffer number

buffer pointer to zero

set READ flag

channel number

flag for channel

data byte

block number lo

write in buffer

block number hi

in buffer

'Blocks free.1 in buffer

get buffer number

buffer pointer minus 2

three zeroes as program end

get buffer number

times 2

buffer pointer

as end marker

transmit directory line

character from buffer

write in output buffer

27 characters?

get byte from buffer

get byte

buffer pointer zero?

223

Anatomy of the 1541 Disk Drive

ED6D

ED6F

ED71

ED74

ED76

ED78

ED7B

85 85

A4 82

B9 44 02

F0 08

A9 80

99 F2

A5 85

00

ED7D 60

ED7E 48

ED7F 20 EA EC

ED82 68

ED83 60

STA $85

LDY $82

LDA $0244 ,Y

BEO $ED7E

LDA #$80

STA $00F2,Y

LDA $85

RTS

PHA

JSR $ECEA

PLA

RTS

ED84

ED87

ED8A

ED8C

ED8F

ED92

ED94

ED97

ED9A

ED9C

ED9E

EDAO

EDA3

EDA5

EDA8

EDAA

EDAD

EDBO

20

20 42

A9 40

8D F9

20 B7

Dl Cl

DO

02

EE

A9 00

8D 92 02

20 AC C5

DO 3D

A9 00

85 81

AD 8E FE

85 80

20 E5 ED

A9 00

8D F9 02

20 FF EE

4C 94 Cl

JSR

JSR

LDA

STA

JSR

LDA

STA

JSR

BNE

LDA

STA

LDA

STA

JSR

LDA

STA

JSR

JMP

$C1D1

$D042

#$40

$02F9

$EEB7

#$00

$0292

$C5AC

$EDD9

#$00

$81

$FE85

$80

$EDE5

#$00

$02F9

$EEFF

$C194

save data byte

channel number

set end marker

zero (LOAD $)?

set READ flag

data byte

create directory line in buffer

V command, 'collect'

find drive number in input line

load BAM

create new BAM in buffer

load directory, find 1st flag

found?

sector 0

18

track 18 for BAM

mark dir blocks as allocated

write BAM back to disk

done, prepare disk status

EDB3 C8 INY

EDB4 Bl 94 LDA ($94),Y save track

ED86 48 PHA

EDB7 C8 INY

EDB8 Bl 94 LDA ($94) ,Y

EDBA 48 PHA

EDBB A0 13 LDA #$13

EDBD Bl 94 LDA ($94) ,Y

EDBF F0 0A BEQ $EDCB

EDC1 85 80 STA $80

EDC3 C8 INY

EDC4 Bl 94 LDA ($94) ,Y

EDC6 85 81 STA $81

EDC8 20 E5 ED JSR $EDE5

EDCB 68 PLA

EDCC 85 81 STA $81

EDCE 68 PLA

EDCF 85 80 STA $80

EDD1 20 E5 ED JSR $EDE5

EDD4 20 04 C6 JSR $C604

and sector

pointer to side-sector block

no track following?

track and

sector of 1st side-sector block

mark side-sector blocks as

allocated

get track and sector back

mark blocks of file as allocated

read next entry in directory

224

Anatomy of the 1541 Disk Drive

EDD7

EDD9

EDDB

EDDD

EDDF

EDE2

EDE5

EDE8

EDEB

EDEE

EDFO

EDF3

EDF6

EDF8

EDFB

EDFD

EDFF

EE01

EE04

EE07

EEOA

EEOD

EE10

EE12

EE14

EE16

EE19

EE1B

EE1D

EE20

EE22

EE23

EE24

EE27

EE2A

EE2C

EE2F

EE31

EE34

EE36

EE39

EE3B

EE3D

EE40

EE43

EE46

EE49

EE4B

EE4E

FO C3

AO 00

Bl 94

30 D4

20 B6 C8

4C D4 ED

BEO $ED9C

LDY #$00

LDA ($94) ,Y

BMI $EDB3

JSR $C8B6

JMP $EDD4

20 5F D5

20 90 EF

20 75 D4

A9 00

20 C8 D4

20 37 Dl

85 80

20 37 Dl

85 81

A5 80

DO 03

4C 27 D2

JSR $D55F

JSR $EF90

JSR $D475

LDA #$00

JSR $D4C8

JSR $D137

STA $80

JSR $D137

STA $81

LDA $80

BNE $EE04

JMP $D227

20 90 EF JSR $EF90

20 4D D4 JSR $D44D

4C EE ED JMP $EDEE

20 12 C3

A5 E2

10 05

A9 33

4C C8 Cl

29 01

85 7F

20 00 Cl

A5 7F

OA

AA

AC 7B 02

CC 74 02

FO 1A

B9 00 02

95 12

B9 01 02

95 13

20 07 D3

A9 01

85 80

20 C6 C8

20 05 FO

4C 56 EE

JSR

LDA

BPL

LDA

JMP

AND

STA

JSR

LDA

ASL

TAX

LDY

CPY

BEQ

LDA

STA

LDA

STA

JSR

LDA

STA

JSR

JSR

JMP

$C312

$E2

$EE19

#$33

$C1C8

#$01

$7F

$C100

$7F

A

$027B

$0274

$EE46

$0200,Y

$12,X

$0201,Y

$13,X

$D307

#$01

$80

$C8C6

$F005

$EE56

20 42 DO JSR $D042

A6 7F LDX $7F

BD 01 01 LDA $0101,X

CD D5 FE CMP $FED5

end of directory?

file type

bit 7 set, file closed?

file type to zero and write BAM

allocate file blocks in BAM

check track and sector number

allocate block in BAM

read next block

buffer pointer zero

get byte from buffer

track

get byte from buffer

sector

another block?

yes

close channel

allocate block in BAM

read next block

continue

N command, 'header1

get drive number

drive number

not clear?

33, 'syntax error'

drive number

turn LED on

drive number

times 2

comma position

compare with end name

format without ID

first character of ID

save

second character

close all channels

track 1

format disk

erase buffer

continue as below

load BAM

drive number

'A', marker for 1541 format

225

Anatomy of the 1541 Disk Drive

EE51

EE53

EE56

EE59

EE5B

EE5C

EE5D

EE5E

EE61

EE63

EE66

EE68

EE6B

EE6D

EE6F

EE72

EE75

EE76

EE77

EE78

EE7A

EE7C

EE7D

EE7F

EE81

EE82

EE83

EE85

EE87

EE88

EE8B

EE8D

EE8F

EE91

EE94

EE96

EE99

EE9B

EE9D

EEAO

EEA3

EEA6

EEA8

EEAA

EEAC

EEAF

EEB1

EEB4

FO

4C

20

A5

A8

0A

AA

AD

95

AE

A9

20

A0

A6

AD

9D

8A

OA

AA

B5

91

C8

B5

91

C8

C8

A9

91

C8

AD

91

AO

91

AD

85

20

A9

85

20

20

20

AO

A9

9A

20

C6

20

4C

03

72

B7

F9

88

99

7A

IB

6E

12

7F

D5

01

12

94

13

94

32

94

D5

94

02

6D

85

80

93

01

81

93

FF

05

01

FF

6D

64

81

60

94

D5

EE

FE

02

C6

FE

01

FE

FE

EF

EF

EE

FO

D4

D4

Cl

BEO

JMP

JSR

LDA

TAY

ASL

TAX

LDA

STA

LDX

LDA

JSP

LDY

LDX

LDA

STA

TXA

ASL

TAX

LDA

STA

INY

LDA

STA

INY

INY

LDA

STA

INY

LDA

STA

LDY

STA

LDA

STA

JSP

LDA

STA

JSR

JSR

JSR

LDY

LDA

STA

JSP

DEC

JSR

JMP

$EE56

$D572

$EEB7

$F9

A

$FE88

$99 fX

$027A

#$1B

$C66E
#$12

$7F

$FED5

$0101

A

$12,X

($94)

$13fX

($94)

#$32

($94)

$FED5

($94)

#$02

($6D)

$FE85

$80

$EF93

#$01

$81

$EF93

$EEFF

$F005

#$01

#$FF

($6D)

$D464

$81

$D460

$C194

,x

rY

,Y

,Y

,Y

,Y

rY

EEB7

EEBA

EEBC

EEBE

20

AO

A9

91

Dl

00

12

6D

FO JSR

LDY

LDA

STA

$FOD1

#$00

#$12

($6D) rY

ok

73, 'cbm dos v2.6 15411

create BAM

buffer number

$90, start of disk name

buffer pointer to name

27

write filenames in buffer

position 18

drive number

•A1, 1541 format

times 2

ID, first character

in buffer

and second character

in buffer

'2'

in buffer

•A1 1541 format

in buffer

and at position 2

18

track number

mark block as allocated

1

sector number

mark block as allocated

write BAM

pointer $6D/$6E to buffer, erase

buffer

track following is zero

write BAM

decrement sector number, 0

read block

prepare disk status

create BAM

18

pointer to directory track

226

Anatomy of the 1541 Disk Drive

EECO

EEC1

EEC2

EEC4

EEC5

EEC6

EEC7

EEC9

EECB

EECD

EECF

EEDO

EED1

EED2

EED5

EED7

EED8

EED9

EEDA

EEDC

EEDE

EEEO

EEE1

EEE3

EEE5

EEE7

EEE8

EEE9

EEEB

EEED

EEEF

EEF1

C8

98

91 6D

C8

C8

C8

A9 00

85 6F

85 70

85 71

98

4A

4A

20 4B F2

91 6D

C8

AA

38

26 6F

26 70

26 71

CA

DO F6

B5 6F

91 6D

C8

E8

E0 03

90 F6

CO 90

90 D6

4C 75 DO

INY

TYA

STA

INY

INY

INY

LDA

STA

STA

STA

TYA

LSR

LSR

JSP

STA

INY

TAX

SEC

ROL

ROL

ROL

DEX

BNE

LDA

STA

INY

INX

CPX

BCC

CPY

BCC

JMP

($6D)fY pointer to directory sector

#$00

$6F

$70

$71

A

A

$F24B

($6D)rY

$6F

$70

$71

$EED9

$6F,X

($6D)rY

#$03

$EEE3

#$90

$EEC7

$D075

EEF4

EEF7

EEF8

EEFB

EEFD

EEFF

EF01

EF04

EF06

EF07

EF09

EFOC

EFOF

EF11

EF12

EF13

EF16

EF17

EF18

EF1A

20 93 DF

AA

BD 5B 02

29 01

85 7F

A4 7F

B9 51 02

DO 01

60

A9 00

99 51 02

20 3A EF

A5 7F

0A

48

20 A5 F0

68

18

69 01

20 A5 FO

JSR

TAX

LDA

AND

STA

LDY

LDA

BNE

RTS

$DF93

$025B,X

#$01

$7F

$7F

$0251,Y

$EF07

LDA #$00

STA $0251fY

JSR $EF3A

LDA $7F

ASL A

PHA

JSR $F0A5

PLA

CLC

ADC #$01

JSR $F0A5

3 bytes = 24 bits for sectors

byte position

divided by 4 = track number
get number of sectors

and in BAM

create bit model

3 bytes

the BAM in buffer

position 144?

no, next track

calculate number of free blocks

write BAM if needed

get buffer number

command for disk controller

isolate drive number

BAM-changed flag set?

yes

reset BAM-changed flag

set buffer pointer for BAM

drive number

times 2

verify BAM entry

increment track number
verify BAM entry

227

Anatomy of the 1541 Disk Drive

EF1D

EF1F

EF20

EF22

EF24

EF25

EF26

EF28

EF2B

EF2D

EF2F

EF32

EF34

EF35

EF37

A5 80

48

A9 01

85 80

0A

0A

85 6D

20 20 F2

E6 80

A5 80

CD D7

90 F0

68

85 80

4C 8A D5

FE

LDA

PHA

LDA

STA

ASL

ASL

STA

JSR

INC

LDA

CMP

BCC

PLA

STA

JMP

$80

#$01

$80

A

A

$6D

$F220

$80

$80

$FED7

$EF24

$80

$D58A

EF3A

EF3D

EF3E

EF41

EF43

EF46

EF48

EF4A

EF4C

20 OF Fl

AA

20 DF FO

A6 F9

BD EO FE

85 6E

A9 00

85 6D

60

JSR $F10F

TAX

JSR $F0DF

LDX $F9

LDA $FEE0,X

STA $6E

LDA #$00

STA $6D

RTS

EF4D

EF4F

EF52

EF55

EF58

EF5B

EF5C

EF5F

EF62

EF63

EF65

EF67

EF6A

EF6C

EF6F

EF71

EF72

EF74

EF76

EF78

EF7A

EF7D

EF7F

EF8 2

EF84

A6 7F

BD FA 02

8D 72 02

BD FC 02

8D 73 02

60

20 Fl EF

20 CF EF

38

DO 22

Bl 6D

ID E9 EF

91 6D

20 88 EF

A4 6F

18

Bl 6D

69 01

91 6D

A5 80

CD 85

FO 3B

FE FA 02

DO 03

FE FC 0 2

LDX $7F

LDA $02FA,X

STA $0272

LDA $02FC,X

STA $0273

RTS

FE

JSR

JSR

SEC

BNF

LDA

ORA

STA

JSR

LDY

CLC

LDY

ADC

STA

LDA

CMP

BEO
INC

BNE

INC

$EFF1

$EFCF

$EF87

($6D),Y

$EFE9

($6D)fY

$EF88

$6F

($6D)fY

#$01

($6D)rY

$80

$FE85

$EFBA

$02FA,X

$EF87

$02FC,X

track

track 1

times 4

verify BAM

increment track number

and compare with max val + 1 = 36

ok, next track

get track number back

write BAM to disk

set buffer pointer for BAM

get 6 for drive 0

allocate buffer

buffer number

buffer address, hi byte

lo byte

pointer to $6D/$6E

get # of free blocks for dir

drive number

number of blocks, lo

number of blocks, hi

in buffer for directory

mark block as free

set buffer pointer

erase bit for sector in BAM

block already free, then done

bit model of BAM

set bit X, marker for free

set flag for BAM changed

increment # of free blocks/track

track

equal to 18?

then skip

inc # of free blocks in disk

increment number of blocks hi

228

Anatomy of the 1541 Disk Drive

EF87 60 RTS

EF88 A6 7F LDX $7F

EF8A A9 01 LDA #$01

EF8C 9D 51 02 STA $0251fX
EF8F 60 PTS

set flag for 'BAM changed1

drive number

flag hs i

EF90

EF93

EF96

EF98

EF9A

EF9D

EF9F

EFA2

EFA4

EFA6

EFA7

EFA9

EFAB

EFAD

EFBO

EFB2

EFB5

EFB7

EFBA

EFBD

EFCO

EFC2

EFC5

EFC7

EFC9

EFCB

EFCE

20 Fl EF

20 CF EF

F0 36

Bl 6D

5D E9 EF

91 6D

20 88 EF

A4 6F

Bl 6D

38

E9 01

91 6D

A5 80

CD 85 FE

F0 0B

BD FA 02

DO 03

DE FC 02

DE FA 02

BD FC 02

DO OC

BD FA 02

C9 03

BO 05

A9 72

20 C7

60

E6

JSR

JSR

BEQ

LDA

EOR

STA

JSR

LDA

LDA

SEC

SBC

STA

LDA

CMP

BEO

LDA

BNE

DEC

DEC

LDA

BNE

LDA

CMP

BCS

LDA

JSR

RTS

$EFF1

$EFCF

$EFCE

($6D),Y

$EFE9,X

($6D),Y

$EF88

$6F

($6D)fY

#$01

($6D),Y

$80

$FE85

$EFBD

$02FAfX

$EFBA

$02FC,X

$02FA,X

$02FC,X

$EFCE

$02FA,X

#$03

$EFCE

#$72

$E6C7

EFCF

EFD2

EFD3

EFD5

EFD7

EFD8

EFD9

EFDA

EFDB

EFDD

EFDE

EFEO

EFE2

EFE3

EFE5

EFE8

20 11 FO

98

85 6F

A5 81

4A

4A

4A

38

65 6F

A8

A5 81

29 07

AA

Bl 6D

3D E9 EF

60

JSR $F011

TYA

STA $6F

LDA $81

LSR A

LSR A

LSR A

SEC

ADC $6F

TAY

LDA $81

AND #$07

TAX

LDA ($6D)fY

AND $EFE9,X

RTS

mark block as allocated

set buffer pointer

erase bit for sector in BAM

already allocated, then done

erase bit for block

set flag for BAM changed

decrement # of blocks per track

track

18?

number of free blocks lo

decrement number of free blocks

number of free blocks hi

more than 255 blocks free?

free blocks lo

smaller than 3?

72, 'disk full1

erase bit for sector in BAM entry

find BAM field for this track

sector

divide by 8

byte number in BAH entry

sector number

bit number in BAM entry

byte in BAM

erase bit for corresponding
sector

229

Anatomy of the 1541 Disk Drive

EFE9

EFF1

EFF3

EFF6

EFF8

EFFA

EFFC

EFFE

F001

F004

01

A9

2C

FO

10

70

A9

8D

4C

60

02

FF

F9

OC

OA

08

00

F9

8A

04

02

02

D5

08 10

LDA

BIT

BEQ

BPL

BVS

LDA

STA

JMP

RTS

20 40

#$FF

$02F9

$F004

$F004

$F004

#$00

$02F9

$D58A

80

F005

F008

FOOA

FOOB

FOOD

FOOE

F010

F011

F013

F014

F016

F017

F019

F01B

F01D

FO1F

F022

F025

F027

F028

F029

F02B

F02C

F02E

F031

FO33

F034

F036

F039

F03B

F03E

F040

F042

F045

F046

F047

F048

F04A

20

AO

98

91

C8

DO

60

A5

48

A5

48

A6

B5

FO

A9

20

20

85

8A

OA

85

AA

A5

DD

FO

E8

86

DD

FO

20

A5

A6

9D

OA

OA

18

69

85

3A

00

6D

FB

6F

70

7F

FF

05

74

48

OF

6F

70

80

9D

OB

70

9D

03

5B

70

7F

9B

Al

6D

EF

E6

Fl

02

02

FO

02

JSP

LDY

TYA

STA

INY

BNE

PTS

LDA

PHA

LDA

PHA

LDX

LDA

BEQ

LDA

JSR

JSR

STA

TXA

ASL

STA

TAX

LDA

CMP

BEQ

INX

STX

CMP

BEO

JSR

LDA

LDX

STA

ASL

ASL

CLC

ADC

STA

$EF3A

#$00

($6P),

SFOOB

$6F

$70

$7F

$FFfX

$F022

#$74

$E648

$F10F

$6F

A

$70

$80

S029D

$F03E

$70

$029D

$F03E

$F05B

$70

$7F

$029B

A

A

#$A1

$6D

,Y

rX

,x

rX

powers

write

reset

write

erase

of 2

BAM after change

flag

block

BAM buffer

pointer $6D/$6E to BAM

erase

drive

drive

BAM buffer

number

zero?

'drive not ready1

get buffer number for

track

drive

tiroes

number

4

230

Anatomy of the 1541 Disk Drive

F04C

F04E

F050

F052

F054

F055

F057

F058

F05A

A9

69

85

AO

58

85

68

85

60

02

00

6E

.00

70

6F

LDA

ADC

STA

LDY

PLA

STA

PLA

STA

RTS

#$02

#$00

$6E

#$00

$70

$6F

F05B

F05D

F060

F062

F063

F064

F067

F069

F06B

F06D

F070

F072

F073

F074

F076

F077

F078

F07A

F07C

F07D

F07E

F07F

F081

F084

F086

F088

F08A

F08B

F08C

F08E

F090

F092

F094

F097

F09A

F09C

F09F

F0A1

F0A4

F0A5

F0A6

F0A9

A6

20

A5

AA

OA

ID

49

29

85

20

A5

OA

AA

A5

OA

OA

95

A5

OA

OA

A8

Al

99

A9

81

F6

C8

98

29

DO

A6

A5

9D

AD

DO

4C

09

8D

60

A8

B9

FO

6F

DF

7F

9B

01

03

70

A5

F9

80

99

70

99

Al

00

99

99

03

EF

70

80

9D

F9

03

8A

80

F9

9D

25

FO

02

FO

02

02

02

D5

02

02

LDX

JSR

LDA

TAX

ASL

ORA

EOR

AND

STA

JSR

LDA

ASL

TAX

LDA

ASL

ASL

STA

LDA

ASL

ASL

TAY

LDA

STA

LDA

STA

INC

I NY

TYA

AND

BNE

LDX

LDA

STA

LDA

BNE

JMP

ORA

STA

RTS

TAY

LDA

BEO

$6F

$F0DF

$7F

A

$029B,X

#$01

#$03

$70

$F0A5

$F9

A

$80

A

A

$99,X

$70

A

A

($99,X)

$O2A1,X

#$00

($99fX)

$99,X

#$03

$F07F

$70

$80

$029DfX

$02F9

$F09F

$D58A

#$80

$02F9

$029D,Y

$F0D0

drive number

buffer number

track

times 4

equal pointer in BAM field

zero in buffer

increment buffer pointer

track

write block

231

Anatomy of the 1541 Disk Drive

FOAB

FOAC

FOAE

F0B1

F0B3

F0B4

F0B5

F0B6

F0B7

FOBB

FOBA

FOBB

FOBC

FOBD

FOBE

FOCI

FOC3

F0C5

F0C8

FOCA

FOCB

FOCC

FOCE

FODO

FOD1

F0D3

F0D4

F0D5

FOD7

FODA

FODB

FODE

FODF

FOE1

F0E3

F0E5

F0E6

F0E7

FOEA

FOEB

FOED

FOEF

F0F2

F0F4

F0F5

F0F6

F0F7

F0F9

FOFC

FOFD

FOFE

F1O1

F103

48

A9

99

A5

OA

AA

68

OA

OA

95

98

OA

OA

AB

B9

81

A9

99

F6

C8

9B

29

DO

60

A5

OA

AA

A9

9D

E8

9D

60

B5

C9

DO

8A

48

20

AA

10

A9

20

86

68

A8

8A

09

99

OA

AA

AD

95

A9

00

9D

F9

99

Al

99

00

Al

99

03

EE

7F

00

9D

9D

A7

FF

25

8E

05

70

C8

F9

80

A7

85

06

00

02

02

02

02

02

D2

Cl

00

FE

PHA

LDA

STA

LDA

ASL

TAX

PLA

ASL

ASL

STA

TYA

ASL

ASL

TAY

LDA

STA

LDA

STA

INC

INY

TYA

AND

BNE

RTS

LDA

ASL

TAX

LDA

STA

INX

STA

PTS

LDA

CMP

BNE

TXA

PHA

JSR

TAX

BPL

LDA

JSR

STX

PLA

TAY

TXA

ORA

STA

ASL

TAX

LDA

STA

LDA

#$00

$029D,

$F9

A

A

A

$99,X

A

A

$02Alf

Y

Y

($99,X)

#$00

$O2A1,

$99,X

#$03

$FOBE

$7F

A

#$00

$029D,

$029D,

$A7,X

#$FF

$F10A

$D28E

$F0F2

#$70

$C1C8

$F9

#$80

$00A7

A

$FE85

$06,X

#$00

Y

rX

rX

,Y

buffer number

times 2

write in buffer

increment buffer po

drive number

70, 'no channel1

18, directory track

save

0

232

Anatomy of the 1541 Disk Drive

F105

F107

95 07

4C 86 D5

F10A 29 OF

F10C 85 F9

F10E 60

STA $07,X

JMP $D586

AND #$0F

STA $F9

PTS

F10F

Fill

F113

F115

F116

F118

A9 06

A6 7F

DO 03

18

69 07

60

LDA #$06

LDX $7F

BNE $F118

CLC

ADC #$07

PTS

F119 20 OF Fl JSR $F10F

F11C AA TAX

F11D 60 RTS

F11E

F121

F123

F125

F127

F12A

F12D

F12F

F130

F133

F134

F136

F138

F13A

F13C

F13F

F141

F143

F145

F147

F14A

F14C

F14F

F150

F152

F154

F156

F158

F15A

F15C

F15F

F161

F163

F166

20

A9

85

A9

OD

8D

A5

48

20

68

85

Bl

DO

A5

CD

FO

90

E6

A5

CD

DO

AE

CA

86

A9

85

C6

DO

A9

20

C6

DO

AE

E8

3E

03

6F

01

F9

F9

6F

11

6F

6D

39

80

85

19

1C

80

80

D7

El

85

80

00

81

6F

D3

72

C8

80

CA

85

DE

02

02

FO

FE

FE

FE

Cl

FE

JSR

LDA

STA

LDA

ORA

STA

LDA

PHA

JSR

PLA

STA

LDA

BNE

LDA

CMP

BEQ

BCC

INC

LDA

CMP

BNE

LDX

DEX

STX

LDA

STA

DEC

BNE

LDA

JSR

DEC

BNE

LDX

INX

$DE3E

#$03

$6F

#$01

$02F9

$02F9

$6F

$F011

$6F

($6D),Y

$F173

$80

SFE85

$F15A

$F15F

$80

$80

$FED7

$F12D

$FE85

$80

#$00

$81

$6F

$F12D

#$72

$C1C8

$80

$F12D

$FE85

as sector

write block

buffer number

get buffer number for BAM

drive number

gives 13 for drive 0

buffer number for BAM

get buffer number

find and allocate free block

get track and sector number

counter

save counter

find BAM field for this track

get counter back

number of free blocks in track

blocks still free?

track

18, directory track?

yes, 'disk full1

smaller, then next lower track

increment track number

36, highest track number plus one

no, continue searching this track

18, directory track

decrement

save as track number

begin with sector number zero

decrement counter

not yet zero, then continue

72, 'disk full1

decrement track number

not yet 0, continue in this track

18, directory track

increment

233

Anatomy of the 1541 Disk Drive

F167

F169

F16B

F16D

F16F

F171

F173

F175

F176

F178

F17A

F17C

F17F

F182

F185

F187

F189

F18A

F1BC

F18F

F191

F193

F195

F198

F19A

F19D

F19F

F1A1

F1A4

F1A6

*****i

F1A9

F1AB

F1B1

F1B3

F1B4

F1B6

F1B8

F1BB

F1BC

F1BE

F1C0

F1C2

F1C4

F1C7

F1C9

F1CB

F1CE

F1CF

F1D1

F1D3

F1D5

F1D8

86

A9

85

C6

DO

FO

A5

18

65

85

A5

20

8D

8D

C5

BO

38

A5

ED

85

FO

C6

20

FO

4C

A9

85

20

DO

4C

A9

OD

A5

48

49

85

AD

38

E5

85

90

FO

20

Bl

DO

AD

18

65

85

E6

CD

90

80

00

81

6F

BC

E7

81

69

81

80

4B

4E

4D

81

OC

81

4E

81

02

81

FA

03

90

00

81

FA

F4

F5

iic*i

01

F9

86

01

86

85

86

80

09

07

11

6D

IB

85

86

80

86

D7

05

F2

02

02

02

Fl

EF

Fl

Fl

tic** i

02

FE

FO

FE

FE

STX

LDA

STA

DEC

BNE

BEO

LDA

CLC

ADC

STA

LDA

JSR

STA

STA

CMP

BCS

SEC

LDA

SBC

STA

BEO

DEC

JSP

BEO

JMP

LDA

STA

JSR

BNE

JMP

LDA

ORA

LDA

PHA

LDA

STA

LDA

SEC

SBC

STA

BCC

BEO

JSR

LDA

BNE

LDA

CLC

ADC

STA

INC

CMP

BCC

$80

#$00

$81

$6F

$F12D

$F15A

$81

$69

$81

$80

$F24B

$024E

$024D

$81

$F195

$81

$024E

$81

SF195

$81

$F1FA

$F19D

$EF90

#$00

$81

$F1FA

$F19A

$F1F5

r*******

#$01

$02F9

$86

#$01

$86

$FE85

$86

$80

$F1CB

$F1CB

$F011

($6D),Y

$F1E6

$FE85

$86

$80

S86

$FED7

$F1DF

save as track number

begin with sector zero

decrement counter

not yet zero, then continue

else 'disk full1

sector number

plus step width (10)

as new number

track number

get maximum sector number

and save

greater than selected sector #?

yes

else

sector number

minus maximum sector number

save as new sector number

zero?

else decrement sector no. by one

check BAM, find free sector

not found?

allocate block in BAM

sector zero

find free sector

found?

no, 'dir sector1

find free sector and allocate

track counter

18, directory track

minus counter

save as track number

result <= zero?

then try top half of dir

find BAM field for this track

no. of free blocks in this track

free blocks exist

18, directory track

plus counter

save as track number

increment counter

36, max track number plus one

smaller, then ok

234

Anatomy of the 1541 Disk Drive

F1DA

F1DC

F1DF

F1E2

F1E4

F1E6

F1E7

F1E9

F1EB

F1ED

FIFO

F1F2

F1F5

F1F7

A9

20

20

Bl

F0

68

85

A9

85

20

F0

4C

A9

20

67

45

11

6D

D2

86

00

81

FA

03

90

71

45

E6

FO

Fl

EF

E6

LDA

JSR

JSR

LDA

BEO
PLA

STA

LDA

STA

JSR

BEO

JMP

LDA

JSR

#$67

$E645

$F011

($6D),Y

$F1BB

$86

#$00

$81

$F1FA

$F1F5

$EF90

#$71

$E645

F1FA

F1FD

FIFE

F1FF

F202

F204

F207

F20A

F20P

F20D

F20F

F212

F214

F217

F219

F21B

F21D

F21F

20

98

48

20

A5

20

8D

68

85

A5

CD

B0

20

DO

E6

DO

A9

60

11

20

80

4B

4E

6F

81

4E

09

D5

06

81

FO.

00

FO

F2

F2

02

02

EF

F220

F222

F223

F225

F227

F22A

F22B

F22D

F22F

F232

F234

F236

F237

F239

F23A

F23C

F23E

F240

A5

48

A9

85

AC

88

A2

Bl

3D

FO

E6

CA

10

88

DO

Bl

C5

DO

6F

00

6F

86

07

6D

E9

02

6F

F4

EF

6D

6F

04

FE

EF

JSR

TYA

PHA

JSR

LDA

JSR

STA

PLA

STA

LDA

CMP

BCS

JSR

BNE

INC

BNE

LDA

RTS

$F011

$F220

$80

$F24B

$024E

$6F

$81

$024E

$F21D

$EFD5

$F21F

$81

$F20D

#$00

Ir ************

LDA

PHA

LDA

STA

LDY

DEY

LDX

LDA

AND

BEO

INC

DEX

BPL

DEY

BNE

LDA

CMP

BNE

$6F

#$00

$6F

$FE86

#$07

($6D),Y

$EFE9fX

$F236

$6F

$F22D

$F22B

($6D),Y

$6F

$F246

67, 'illegal track or sector1

find BAM field for this track

no. of free blocks in this track

no more free blocks?

sector 0

find free sector

not found?

allocate block in BAM

71, 'dir error'

find free sectors in actual track

find BAM field for this track

points to # of free blocks

verify BAM

track

get max # of sectors of the track

save

save pointer

compare sector

with maximum number

greater than or equal to?

get bit number of sector

sector free?

increment sector number

and check if free

no sectors free

verify no. of free blocks in BAM

counter to zero

4, no. of bytes per track in BAM

isolate bit

increment counter of free sectors

compare with number on diskette

not equal, then error

235

Anatomy of the 1541 Disk Drive

F242

F243

F245

F246

F248

68

85 6F

60

A9 71

20 45 E6

PLA

STA $6F

RTS

LDA #$71

JSP $E645

F24B

F24E

F251

F252

F254

F257

AE D6 FE

DD D6 FE

CA

BO FA

BD Dl FE

60

F258 60

LDX $FED6

CMP $FED6fX

DEX

BCS $F24E

LDA $FEDlfX

RTS

PTS

F259

F25B

F25E

F260

F263

F266

F268

F26A

F26C

F26F

F271

F274

F276

F279

F27B

F27E

F281

F283

F286

F288

F28B

F28E

F290

F292

F294

F296

F298

F29A

F29C

F29E

F2A0

F2A2

F2A4

F2A6

F2A8

F2AA

F2AC

F2AE

A9 6F

8D 02 1C

29 F0

8D 00 1C

AD 0C 1C

29 FE

09 0E

09 E0

8D OC 1C

A9 41

8D OB 1C

A9 00

8D 06 1C

A9 3A

8D 07 1C

8D 05 1C

A9 7F

8D OE 1C

A9 CO

8D OD 1C

8D OE 1C

A9 FF

85 3E

85 51

A9 08

85 39

A9 07

85 47

A9 05

85 62

A9 FA

85 63

A9 C8

85 64

A9 04

85 5E

A9 04

85 6F

LDA

STA

AND

STA

LDA

AND

ORA

ORA

STA

LDA

STA

LDA

STA

LDA

STA

STA

LDA

STA

LDA

STA

STA

LDA

STA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

#$6F

$1CO2

#$F0

$1COO

$1COC

#$FE

#$0E

#$E0

$1COC

#$41

$1COB

#$00

$1CO6

#$3A

$1CO7

$1CO5

#$7F

$1COE

#$C0
$1COD

$1COE

#$FF

$3E

$51

#$08

$39

#$07

$47

#$05

$62

#$FA

$63

#$C8

$64

#$04

$5E

#$04

$6F

71, 'dir error1

establish # of sectors per track

4 different values

track number

not greater?

get number of sectors

initialize disk controller

bit 4 (write prot) & 7 (SYNC)

data direction register port B

port B, control port

PCR, control register

timer 1 free running, enable

port A latch

timer 1 lo latch

timer 1 hi latch

timer 1 hi

erase IRQs

IER, allow interrupts

track counter for formatting

8

constants for block header

7

constants for data block

pointer $62/$63 to $FA05

200

236

Anatomy of the 1541 Disk Drive

F2B0

F2B1

F2B3

F2B6

F2B9

F2BB

F2BE

F2C0

F2C3

F2C5

F2C7

F2C9

F2CA

F2CD

F2CF

F2D1

F2D3

F2D5

F2D8

F2D9

F2DB

F2DD

F2DF

F2E2

F2E4

F2E9

F2EB

F2ED

F2EE

F2F0

F2F3

F2F4

F2F6

F2F9

F2FB

F2FD

F2FF

F301

F304

F306

F308

F30A

F30C

F30F

F311

F313

F315

F317

BA

86 49

AD 04 1C

AD 0C 1C

09 0E

8D 0C 1C

A0 05

B9 00 00

10 2E

C9 DO

DO 04

98

4C 70 F3

29 01

F0 07

84 3F

A9 OF

4C 69 F9

AA

85 3D

C5 3E

FO OA

20 7E

A5 3D

85 3E

F9

A5 20

30 03

OA

10 09

4C 9C F9

F3

A9 20

85 20

AO 05

84 3F

20 93

30 1A

C6 3F

10 F7

A4 41

20 95 F3

A5 42

85 4A

06 4A

A9 60

85 20

TSX

STX $49

LDA $1CO4

LDA S1C0C

ORA #$0E

STA $1COC

LDY #$05

LDA $0000rY

BPL $F2F3

CMP #$D0

BNE $F2CD

TYA

JMP $F370

AND #$01

BEQ $F2D8

STY $3F

LDA #$0F

JMP $F969

TAX

STA $3D

CMP $3E

BEO $F2E9

JSR $F97E

LDA $3D

STA $3E

F2E6 4C 9C F9 JMP $F99C

LDA $20

BMI $F2F0

ASL A

BPL $F2F9

JMP $F99C

88 DEY

10 CA BPL $F2C0

4C 9C F9 JMP $F99C

LDA #$20

STA $20

LDY #$05

STY $3F

JSP $F393

BMI $F320

DEC $3F

BPL SF301

LDY $41

JSR $F395

LDA $42

STA $4A

ASL $4A

LDA #$60

STA $20

IRQ routine for disk controller

save stack pointer

erase interrupt flag from timer

command for buffer Y?

no

exec, code for program in buffer

no

execute program in buffer

isolate drive number

drive zero?

else

74, 'drive not ready1

motor running?

yes

turn drive motor on

set flag

to job loop

head transport programmed?

to job loop

check next buffer

to job loop

program head transport

initialize buffer counter

set pointer in buffer

command for buffer?

decrement counter

check next buffer

buffer number

set pointer in buffer

track difference for last job

as counter for head transport

set flag for head transport

237

Anatomy of the 1541 Disk Drive

F319

F31B

F31D

F320

F322

F324

F326

F328

F32A

F32B

F32D

F32F

F331

F333

F335

F337

F339

E33C

F33E

F340

F342

F345

F346

F348

F34B

F34D

F34E

F34F

F350

F351

F352

F353

F355

F358

F35A

F35C

F35F

F361

F363

F365

F367

F369

F36B

F36E

F370

F371

F373

F375

F377

Bl

85

4C

29

C5

DO

A5

FO

38

Fl

FO

49

85

E6

A5

85

4C

A2

Bl

85

DD

CA

BO

8D

85

8A

OA

OA

OA

OA

OA

85

AD

29

05

8D

A6

A5

C9

FO

C9

FO

4C

k***

A5

18

69

85

A9

85

32

22

9C

01

3D

EO

22

12

32

OD

FF

42

42

3F

41

06

04

32

40

D6

FA

Dl

43

44

00

9F

44

00

3D

45

40

15

60

03

Bl

fr**i

3F

03

31

00

30

F9

F3

FE

FE

1C

1C

F3

LDA

STA

JMP

AND

CMP

BNE

LDA

BEO

SEC

SBC

BEO

EOR

STA

INC

LDA

STA

JMP

LDX

LDA

STA

CMP

DEX

BCS

LDA

STA

TXA

ASL

ASL

ASL

ASL

ASL

STA

LDA

AND

ORA

STA

LDX

LDA

CMP

BEO

CMP

BEO

JMP

*****:

LDA

CLC

ADC

STA

LDA

STA

($32),

$22

$F99C

#$01

$3D

$F306

$22

$F33C

($32),

$F33C

#$FF

$42

$42

$3F

$41

$F306

#$04

($32),

$40

$FED6,

$F342

$FED1,

$43

A

A

A

A

A

$44

$1COO

#$9F

$44

$1COO

$3D

$45

#$40

$F37C

#$60

$F36E

$F3B1

$3F

#$03

$31

#$00

$30

y

y

Y

X

X

:**

get track number from buffer

to job loop

isolate drive number

equal drive number of last job?

no

last track number

equal zero?

equal track number of this job?

yes

drive number

track number of the job

save

compare with max track number

greater?

get # of sectors per track

and save

gives 0, 32, 64, 96

generate control byte for notor

command code

position head?

yes

command code for prg execution?

yes

read block header

execute program in buffer

buffer number

plus 3

equals address of buffer

F379 6C 30 00 JMP ($0030) execute program in buffer

position head

238

Anatomy of the 1541 Disk Drive

F37C

F37E

F380

F383

F385

F388

F38A

F38C

F38E

F390

A9

85

AD

29

8D

A9

85

A9

85

4C

60

20

00

FC

00

A4

4A

01

22

69

1C

1C

F9

LDA

STA

LDA

AND

STA

LDA

STA

LDA

STA

JMP

#$60

$20

$1COO

#$FC

$1COO

#$A4

$4A

#$01

$22

$F969

F393

F395

F398

F399

F39B

F39D

F39F

F3A0

F3A1

F3A3

F3A5

F3A6

F3A7

F3A9

F3AB

F3AD

F3AF

A4

B9

48

10

29

85

98

0A

69

85

98

18

69

85

A0

84

68

F3B0 60

F3B1

F3B3

F3B5

F3B7

F3B9

F3BB

F3BE

F3C0

F3C1

F3C4

F3C6

F3C8

F3CA

F3CB

F3CE

F3D0

F3D1

F3D3

F3D5

F3D8

F3DA

F3DC

F3DF

A2

86

A2

A9

85

20

50

B8

AD

C5

DO

50

B8

AD

95

E8

E0

DO

20

A0

A9

59

88

3F

00

10

78

45

06

32

03

31

00

30

5A

4B

00

52

24

56

FE

01

24

3F

FE

01

25

07

F3

97

04

00

16

00

F5

1C

1C

F4

00

LDY

LDA

PHA

BPL

AND

STA

TYA

ASL

ADC

STA

TYA

CLC

ADC

STA

LDY

STY

PLA

PTS

*

LDX

STX

LDX

LDA

STA

JSR

BVC

CLV

LDA

CMP

BNE

BVC

CLV

LDA

STA

INX

CPX

BNE

JSP

LDY

LDA

EOR

DEY

$3F

$0000fY

$F3AB

#$78

$45

A

#$06

$32

#$03

$31

#$00

$30

#$5A

$4B

#$00

#$52

$24s

$F556

$F3BE

$1CO1

$24

$F407

$F3C8

$1CO1

$25,X

#$07

$F3C8

$F497

#$04

#$00

$0016fY

set flag for head transport

turn stepper motors on

164

step counter for head transport

track number

ok

initialize pointer in buffer

buffer number

command code

save

erase bits 0,1,2, and 7

buffer number

times two

plus 6

equals pointer to actual buffer

buffer number

plus 3

equals buffer address hi

buffer address lo

get command code back

read block header, verify ID

90

counter

82

wait for SYNC

byte ready?

data from read head

20, 'read error1

byte ready?

data byte from disk(block heade

save 7 bytes

continue reading

4 bytes plus parity

form checksum for header

239

Anatomy of the 1541 Disk Drive

F3E0

F3E2

F3E4

F3E6

F3E8

F3EA

F3EC

F3EE

F3F0

F3F2

F3F4

F3F5

F3F6

F3F9

F3FB

F3FD

F400

F402

F404

F407

F409

F40B

F40D

F410

F412

F414

F416

F418

F41A

F41B

F41D

F41E

F420

F423

F425

F427

F429

F4 2A

F42C

F42E

F430

F432

F434

F436

F438

F43A

F43D

F43F

F441

F443

10

C9

DO

A6

A4

95

A5

C9

F0

A5

0A

A8

B9

C5

DO

B9

C5

DO

4C

C6

DO

A9

20

A5

85

A5

85

A9

2C

A9

2C

A9

4C

A9

85

A5

18

69

C5

90

E5

R5

A2

86

A2

20

10

85

29

C5

FA

00

38

3E

18

22

45

30

IE

3E

12

16

IE

13

17

17

23

4B

BO

02

69

16

12

17

13

01

OB

09

69

7F

4C

19

02

43

02

43

4D

05

3F

FF

93

44

44

01

3E

00

00

F4

F9

F9

F3

BPL

CMP

BNE

LDX

LDA

STA

LDA

CMP

BEQ

LDA

ASL

TAY

LDA

CMP

BNE

LDA

CMP

BNE

JMP

DEC

BNE

LDA

JSR

LDA

STA

LDA

STA

LDA

$F3DC

#$00

$F41E

$3E

$18

$22,X

$45

#$30

$F410

$3E

A

$0012,Y

$16

$F41B

$0013,Y

$17

$F41B

$F423

$4B

$F3BB

#$02

$F969

$16

$12

$17

$13

#$01

.BYTE $2C

LDA #$0B

.BYTE $2C

LDA

JMP

LDA

STA

LDA

CLC

ADC

CMP

BCC

SBC

STA

LDX

STX

LDX

JSR

BPL

STA

AND

CMP

#$09

$F969

#$7F

$4C

$19

#$02

$43

$F432

$43

$4D

#$05

$3F

#$FF

$F393

$F483

$44

#$01

$3E

parity ok?

27, 'read error1

drive number

track number of header

use as actual track number

code for 'preserve header'

preserve header

compare with IDl

compare with ID2

<>, then 29, 'disk id mismatcl-

decrement counter for attempts

and try again

else

20, 'read error1

preserve block header

IDl

and ID2

preserve

ok

29, 'disk id mismatch'

27, 'write error'

done

set buffer ptr for disk contrc

240

Anatomy of the 1541 Disk Drive

F445

F447

F449

F44B

F44D

F44F

F451

F453

F455

F457

F458

F45A

F45C

F45E

F45F

F461

F463

F465

F466

F468

F46A

F46B

F46D

F46F

F471

F473

F475

F477

F478

F47A

F47C

F47E

F47F

F481

F483

F485

F487

F488

F48A

F48D

F48F

F492

F494

F497

F499

F49A

F49C

F49D

F49F

F4A1

F4A3-

F4A5

F4A7

DO

AO

Bl

C5

DO

A5

C9

FO

AO

38

Bl

E5

10

18

65

C4

BO

48

A5

FO

68

C9

90

C9

BO

85

A5

AA

69

85

DO

68

C9

90

C6

10

8A

10

4C

86

20

A5

4C

A5

48

A5

48

A9

85

A9

85

A9

85

3C

00

32

40

34

45

60

OC

01

32

4D

03

43

4C

IE

45

14

09

14

OC

10

4C

3F

03

31

05

06

FO

3F

B3

03

9C F9

3F

93 F3

45

CA F4

30

31

24

30

00

31

00

34

BNE

LDY

LDA

CMP

BNE

LDA

CMP

BEO

LDY

SEC

LDA

SBC

BPL

CLC

ADC

CMP

BCS

PHA

LDA

BEQ

PLA

CMP

BCC

CMP

BCS

STA

LDA

TAX

ADC

STA

BNE

PLA

CMP

BCC

DEC

BPL

TXA

BPL

JMP

STX

JSP

LDA

JMP

LDA

PLA

LDA

PHA

LDA

STA

LDA

STA

LDA

STA

$F483

#$00

($32),Y

$40

$F483

$45

#$60

$F461

#$01

($32),Y

$4D

$F461

$43

$4C

$F483

$45

$F47E

#$09

$F483

#$0C

$F483

$4C

$3F

#$03

$31

$F483

#$06

$F473

$3F

$F43A

$F48D

$F99C

$3F

$F393

$45

$F4CA

$30

$31

#$24

S30

#$00

$31

#$00

$34

command code

to job loop

get buffer number

command code

continue checking

save pointer $30/

pointer $30/$31 t

241

Anatomy of the 1541 Disk Drive

F4A9

F4AC

F4AE

F4B0

F4B2

F4B4

F4B6

F4B8

F4BB

F4BD

F4BF

F4C1

F4C3

F4C4

F4C6

F4C7

F4C9

F4CA

F4CC

F4CE

F4D1

F4D4

F4D6

F4D7

F4DA

F4DC

F4DD

F4DF

F4E1

F4E3

F4E4

F4E7

F4EA

F4EB

F4ED

F4F0

F4F2

F4F4

F4F6

F4F8

F4FB

F4FE

F500

F502

F504

F505

F507

20

A5

85

A5

85

A5

85

20

A5

85

A5

85

68

85

68

85

60

C9*
F0

. 4C

20

50

B8

AD

91

C8

DO

A0

50

B8

AD

99

C8

DO

20

A5

C5

F0

A9

4C

20

C5

FO

A9

2C

A9

4C

E6

55

18

54

19

53

1A

E6

52

17

53

16

31

30

F7

F7

00

03

6E

OA

FE

01

30

F5

BA

FE

01

00

F4

EO

38

47

05

04

69

E9

3A

03

05

01

69

F5

F5

1C

1C

01

F8

F9

F5

F9

JSR

LDA

STA

LDA

STA

LDA

STA

JSR

LDA

STA

LDA

STA

PLA

STA

PLA

STA

RTS

CMP

BEQ

JMP

JSR

BVC

CLV

LDA

STA

INY

BNE

LDY

BVC

CLV

LDA

STA

INY

BNE

JSR

LDA

CMP

BEO

LDA

JMP

JSR

CMP

BEQ

LDA

$F7E6

$55

$18

$54

$19

$53

$1A

$F7E6

$52

$17

$53

$16

$31

$30

#$00

$F4D1

$F56E

$F50A

$F4D4

$1CO1

($30),Y

$F4D4

#$BA

$F4E1

$1CO1

$0100,Y

$F4E1

$F8E0

$38

$47

$F4FB

#$04

$F969

$F5E9

$3A

$F505

#$05

.BYTE $2C

LDA

JMP

#$01

$F969

F50A

F50D

20

4C

10

56

F5

F5

JSR

JMP

$F510

$F556

get pointer $30/$31 back

command code for 'read'?

yes

continue checking command code

find beginning of data block

byte ready?

get data byte

and write in buffer

256 times

byte ready?

read bytes

from $1BA to $1FF

equal 7, beginning of data block?

yes

22, 'read error'

error termination

calculate parity of data block

agreement?

yes

23, 'read error'

ok

prepare error message

find start of data block

read block header

wait for SYNC

242

Anatomy of the 1541 Disk Drive

F510

F512

F513

F514

F516

F518

F51A

F51C

F51E

F520

F522

F523

F525

F527

F529

F52B

F52D

F52F

F531

F533

F536

F538

F53B

F53D

F53F

F540

F543

F546

F548

F549

F54B

F54D

A5 3D

OA

AA

B5 12

85 16

B5 13

85 17

AO 00

Bl 32

85 18

C8

Bl 32

85 19

A9 00

45 16

45 17

45 18

45 19

85 1A

20 34 F9

A2 5A

20 56 F5

AO 00

50 FE

B8

AD 01 1C

D9 24 00

DO 06

C8

CO 08

DO F0

60

F54E CA

F54F DO E7

F551 A9 02

F553 4C 69 F9

LDA $3D

ASL A

TAX

LDA $12fX

STA $16

LDA $13,X

STA $17

LDY #$00

LDA ($32)fY

STA $18

INY

LDA ($32)rY

STA $19

LDA #$00

EOR $16

EOR $17

EOR $18

EOR $19

STA $1A

JSR $F934

LDX #$5A

JSR $F556

LDY #$00

BVC $F35D

CLV

LDA $1CO1

CMP $0024,Y

BNE $F54E

INY

CPY #$08

BNE $F53D

RTS

DEX

BNE $F538

LDA #$02

JMP $F969

F556

F558

F55B

F55D

F560

F562

F565

F567

F56A

F56B

F56D

A9 DO

8D 05 18

A9 03

2C 05 18

10 Fl

2C 00 1C

30 F6

AD 10 1C

B8

AO 00

60

LDA #$D0

STA $1805

LDA #$03

BIT $1805

BPL $F553

BIT $1COO

BMI $F55D

LDA $1CO1

CLV

LDY #$00

RTS

F56E C9 10 CMP #$10

read block header

drive number

ID1

save

ID2

save

get track and

sector number from buffer

calculate parity for block header

and save

90 attempts

wait for SYNC

byte ready?

read data from block header

compare with saved data

not the same, try again

8 bytes read?

no

decrement counter

not yet zero?

20, 'read error1

wait for SYNC

208

start timer

error code

timer run down, then 'read error1

SYNC signal

not yet found?

read byte

command code for 'write1

243

Anatomy of the 1541 Disk Drive

F570

F572

F575

F57B

F57A

F57D

F57F

F581

F583

F586

F589

F58C

F58E

F590

F591

F592

F594

F596

F599

F59C

F59E

F5A0

F5A3

F5A5

F5A7

F5AA

F5AB

F5AD

F5AE

F5AF

F5B1

F5B3

F5B6

F5B8

F5B9

F5BC

F5BD

F5BF

F5C1

F5C3

F5C4

F5C7

F5C8

F5CA

F5CC

F5CF

F5D1

F5D4

F5D6

F5D9

F5DC

F5DE

' FO

4C

20

85

AD

29

DO

A9

4C

20

20

A2

50

B8

CA

DO

A9

8D

AD

29

09

8D

A9

A2

8D

B8

50

B8

CA

DO

A0

B9

50

B8

8D

C8

DO

Bl

50

B8

8D

C8

DO

50

AD

09

8D

A9

8D

20

A4

B9

03

91

E9

3A

00

10

05

08

69

8F

10

09

FE

FA

FF

03

OC

IF

CO

OC

FF

05

01

FE

FA

BB

00

FE

01

F4

30

FE

01

F5

FE

OC

EO

OC

00

03

F2

3F

00

F6

F5

1C

F9

F7

F5

1C

1C

1C

1C

01

1C

1C

1C

1C

1C

F5

00

BEQ

JMP

JSR

STA

LDA

AND

BNE

LDA

JMP

JSP

JSP

LDX

BVC

CLV

DEX

BNE

LDA

STA

LDA

AND

ORA

STA

LDA

LDX

STA

CLV

BVC

CLV

DEX

BNE

LDY

LDA

BVC

CLV

STA

INY

BNE

LDA

BVC

CLV

STA

INY

BNE

BVC

LDA

ORA

STA

LDA

LDA

JSR

LDY

LDA

$F575

$F691

$F5E9

$3A

$1COO

#$10

$F586

#$08

$F969

$F78F

$F510

#$09

$F58E

$F58E

#$FF

$1CO3

$1COC

#$1F

#$C0

$1COC

#$FF

#$05

$1CO1

$F5AB

$F5AB

#$BB

$0100,Y

$F5B6

$1CO1

$F5B3

($30)fY

$F5C1

$1CO1

$F5BF

$F5CA

$1COC

#$E0

$1COC

#$00

$1CO3

$F5F2

$3F

$0000,Y

yes

continue checking command code

write data block to disk

calculate parity for buffer

and save

read port B

isolate bit for 'write protect1

not set, ok

26, 'write protect1

find block header

byte ready?

port A (write/read head) to

to output

change PCR to output

write $FF to disk 5 times

as SYNC characters

bytes $1BB to $1FF to disk

write data buffer (256 bytes)

byte ready?

PCR to input again

port A (read/write head) to input

244

Anatomy of the 1541 Disk Drive

F5E1

F5E3

F5E6

F5E9

F5EB

F5EC

F5EE

F5EF

F5F1

F5F2

F5F4

F5F6

F5F8

F5FA

F5FC

F5FE

F600

F602

F604

F606

F608

F60A

F60D

F60F

F611

F613

F615

F617

F618

F61A

F61C

F61D

F61F

F621

F622

F624

F627

F629

F6 2B

F62D

F62E

F630

F632

F633

F635

F637

F639

F6 3A

F63C

F6 3E

F63F

F641

49

99

4C

A9

A8

51

C8

DO

60

A9

85

85

85

A5

85

A9

85

85

A9

85

85

20

A5

85

A4

A5

91

C8

A5

91

C8

A5

91

C8

84

20

A4

A5

91

C8

A5

91

C8

FO

A5

91

C8

A5

91

C8

84

DO

30

00 00

Bl F3

00

30

FB

00

2E

30

4F

31

4E

01

31

2F

BB

34

36

E6 F7

52

38

36

53

2E

54

2E

55

2E

36

E6 F7

36

52

2E

53

2E

OE

54

2E

55

2E

36

El

EOR

STA

JMP

LDA

TAY

EOR

INY

BNE

RTS

LDA

STA

STA

STA

LDA

STA

LDA

STA

STA

LDA

STA

STA

JSP

LDA

STA

LDY

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

STY

JSR

LDY

LDA

STA

INY

LDA

STA

INY

BEQ

LDA

STA

INY

LDA

STA

INY

STY

BNE

#$30

$0000

$F3B1

#$00

($30)

$F5EC

#$00

$2E

$30

$4F

$31

$4E

#$01

$31

$2F

#$BB

$34

$36

$F7E6

$52

$38

$36

S53

($2E)

$54

($2E)

$55

($2E)

$36

$F7E6

$36

$52

CS2E)

$53

($2E)

$F643

$54

($2E)

$55

($2E)

$36

$F624

,Y

,Y

,Y

,Y

,Y

,Y

,Y

,Y

,Y

convert command code

to 'verify1

write1

calculate parity for data iNuffer

245

Anatomy of the 1541 Disk Drive

F643

F645

F647

F648

F64A

F64C

F64D

F64F

F652

F654

F656

F658

F659

F65B

F65D

F65E

F660

F662

F663

F665

F667

F668

F66A

F66C

F66E

F670

F672

F674

F676

F678

F67A

F67C

F67D

F67F

F681

F683

F685

F688

F68A

F68B

F68C

F68E

F690

F691

F693

F695

F698

F69B

F69D

F6A0

F6A3

F6A5

A5 54

91 30

C8

A5 55

91 30

C8

84 36

20 E6 F7

A4 36

A5 52

91 30

C8

A5 53

91 30

C8

A5 54

91 30

C8

A5 55

91 30

C8

84 36

CO BB

90 El

A9 45

85 2E

A5 31

85 2F

A0 BA

Bl 30

91 2E

88

DO F9

Bl 30

91 2E

A2 BB

BD 00 01

91 30

C8

E8

DO F7

86 50

60

LDA

STA

INY

LDA

STA

INY

STY

JSR

LDY

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

STY

CPY

BCC

LDA

STA

LDA

STA

LDY

LDA

STA

DEY

BNE

LDA

STA

LDX

LDA

STA

INY

INX

BNE

STX

RTS

$54

($30),Y

$55

($30),Y

$36

$F7E6

$36

$52

($30)fY

$53

($30),Y

$54

($30),Y

$55

($30)rY

$36

#$BB

$F64F

#$45

$2E

$31

$2F

#$BA

($30),Y

($2E)fY

$F678

($30),Y

($2E),Y

#$BB

$0100,X

($30),Y

$F685

$50

C9 20

FO 03

4C CA F6

CMP #$20

BEQ $F698

JMP $F6CA

20 E9 F5 JSR $F5E9

85 3A

20 8F F7

20 OA F5

AO BB

B9 00 01

STA $3A

JSR $F78F

JSR $F50A

LDY #$BB

LDA $0100,Y

command code for 'verify1?

yes

continue checking command code

calculate parity for data buffer

and save

find start of data block

data from buffer

246

Anatomy of the 1541 Disk Drive

F6A8

F6AA

F6AB

F6AE

F6B0

F6B1

F6B3

F6B5

F6B7

F6B8

F6BB

F6BD

F6BE

F6C0

F6C2

F6C5

F6C7

50 FE

B8

4D 01 1C

DO 15

C8

DO F2

Bl 30

50 FE

B8

4D 01 1C

DO 08

C8

CO FD

DO Fl

4C 18 F4

A9 07

4C 69 F9

BVC $F6A8

CLV

EOR $1CO1

BNE $F6C5

INY

BNE $F6A5

LDA ($30)rY

BVC $F6B5

CLV

EOR $1CO1

BNE $F6C5

INY

CPY #$FD

BNE $F6B3

JMP $F418

LDA #$07

JMP $F969

F6CA

F6CD

20 10 F5

4C 18 F4

JSR $F510

JMP $F418

F6D0

F6D2

F6D4

F6D6

F6D8

F6DA

F6DC

F6DD

F6DE

F6DF

F6E0

F6E1

F6E4

F6E5

F6E6

F6E7

F6E9

F6EB

F6ED

F6EE

F6F1

F6F2

F6F4

F6F5

F6F7

F6F9

F6FB

F6FD

F6FE

F700

F702

A9 00

85 57

85 5A

A4 34

A5 52

29 FO

4A

4A

4A

4A

AA

BD 7F F7

OA

OA

OA

85 56

A5 52

29 OF

AA

BD 7F F7

6A

66 57

6A

66 57

29 07

05 56

91 30

C8

A5 53

29 FO

4A

LDA #$00

STA $57

STA $5A

LDY $34

LDA $52

AND #$F0

LSR A

LSR A

LSR A

LSR A

TAX

LDA $F77FfX

ASL A

ASL A

ASL A

STA $56

LDA $52

AND #$0F

TAX

LDA $F77F,X

ROR A

ROR $57 .

ROR A

ROR $57

AND #$07

ORA $56

STA ($30) ,Y

INY

LDA $53

AND #$F0

LSR A

byte ready?

compare with data from disk

not equal, then error

data from buffer

compare with data from disk

not equal, then error

error free termination

25, 'write error1

read block header

done

isolate hi-nibble

and rotate to lower nibble

as index in table

times 8

isolate lower nibble

as index in table

in buffer

increment buffer

isolate upper nibble

247

Anatomy of the 1541 Disk Drive

F703

F704

F705

F706

F707

F70A

F70B

F70D

F70F

F711

F713

F714

F717

F718

F719

F71A

F71B

F71D

F71E

F720

F722

F724

F725

F727

F729

F72A

F72B

F72C

F72D

F72E

F731

F732

F733

F735

F7 37

F738

F739

F73B

F73D

F73F

F741

F742

F745

F746

F747

F749

F74B

F74D

F74F

F751

F752

F753

F754

F755

F756

4A

4A

4A

AA

BD

OA

05

85

A5

29

AA

BD

2A

2A

2A

2A

85

2A

29

05

91

C8

A5

29

4A

4A

4A

4A

AA

BD

18

6A

05

91

C8

6A

29

85

A5

29

AA

BD

OA

OA

29

05

85

A5

29

4A

4A

4A

4A

AA

BD

7F

57

57

53

OF

7F

58

01

57

30

54

F0

7F

58

30

80

59

54

OF

7F

7C

59

59

55

FO

7F

F7

F7

F7

F7

F7

LSR

LSR

LSR

TAX

LDA

ASL

ORA

STA

LDA

AND

TAX

LDA

ROL

ROL

ROL

ROL

STA

ROL

AND

ORA

STA

INY

LDA

AND

LSR

LSR

LSR

LSR

TAX

LDA

CLC

ROR

ORA

STA

INY

ROR

AND

STA

LDA

AND

TAX

LDA

ASL

ASL

AND

ORA

STA

LDA

AND

LSR

LSR

LSR

LSR

TAX

LDA

A

A

A

$F77F,

A

$57

$57

$53

#$0F

$F77Ff

A

A

A

A

$58

A

#$01

$57

($30)r

$54

#$F0

A

A

A

A

$F77F,

A

$58

($30),

A

#$80

$59

$54

#$0F

$F77F,

A

A

#$7C

$59

$59

$55

#$F0

A

A

A

A

$F77F,

X

X

Y

X

Y

X

rX

shift to upper nibble

as index in table

lower nibble

as index

in buffer

increment buffer

isolate hi-nibble

in buffer

increment buffer pointer

lower nibble

as index

isolate hi-nibble

shift to lower nibble

as index in table

248

u<
D

4
Ja

U<
D

4
JC

•
HOf
t

MC
D

24
J

"8
U

4
J

<
B

C
0
)

<
D
>

g
1
0

1

oc

<1)

O
(0

r
H

(TJ
c

c
c

h
h

j

i
n

i
n

i
n

t
o
-
i
n

<
/
>

<
/
>
-
<
<
/
>
<
<
/
>
=
#
=
<
/
>
—

<i
n

<
<

c
o

o
\
c

i
n

i
n
o
m

c
o

f
a

c
m

r
o

i
n

</)■
<
*
>
<
/
!
■
<
/
)
-
<
/
>
=
#
=

^
W
<
<

<
C
Q

>

^
r

f
a

r
H
m

f
a

<
<

S
3

i
n

<
/
>

<
<

g

<
o

i
n

r
o

C
O

H

W
H

H
JH

CO
i••

C
O

H

K
r
H
r
H

c
r
v
.

f
\

K
O

r
H

C
Ct)
Q

c
O
O

c
C
O

C
Q

K
H
H

c
C
N
<

K
r
H

r
H

:
O
Q

<
J
\

O"^
'
^

C
J

C
^

O
u
^
3

^
^

^J*
^
D

0
0
o
^

p
Q

C
^

Dt^
r^H

c
o

^j*
r****

o
^

P
Q
C
J

&
J

f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a

f
a
r
^

r
^

o
o

f
a

f
a

Q
C
J

O
C
Q

r
H

H
U
b
]

o
o
W
v
o
C
Q
'
t
O
r
H
f
a
O
r
H
r
-
o
j
v
o
c
N
o
o

c
M
t

c
M
i
n

^
o
v
d
v
o
c
n

t
n
-
r
o
N
n
o
j
-
r
o
i
f
i
r
o
o
i
w
-
n
t
i
n
n
w
-
i
n

<
/
>
i
n

t
/
i
-
i
n

r
o
f
a
r
o
t
/
j
-

f
a

Ci3
t

D
J

I
D

<
£
O

(
C

Ii]

C
M
i
n

C
N

I
D

C
O
Q
C
O
C
M

a
n
o
i
n
n
n
C
T
i
n
n
n
^
n
o
o
H
t
n
o
o
o
o
3
o
3

<
C
X
)
0
0
0
0
<
0
0
0
0
<
0
0
<
0
0
<
0
0
<
C
Q
0
0
U
C
Q
0
0
O
D
Q
C
D
C
J
C
3
0
t
N
<
C
D

r
r
r
^
^
r
r
t
r
r
r
r
^
f
r
r
r
r
r
i
r
i
r
r
c

r
r

f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a
f
a

Anatomy of the 1541 Disk Drive

F7C3

F7C5

F7C6

F7C8

F7CA

F7CC

F7CD

F7CF

F7D1

F7D2

F7D4

F7D6

F7D7

F7D9

F7DB

F7DD

F7DF

F7E1

F7E3

F7E6

F7E8

F7EA

F7EC

F7ED

F7EE

F7EF

F7F1

F7F3

F7F5

F7F6

F7F7

F7F9

F7FA

F7FC

F7FE

F800

F802

F804

F806

F807

F808

F809

F80B

F80D

F80F

F811

F812

F814

F816

F818

F819

F81A

F81B

F81C

85

C8

FO

Bl

85

C8

Bl

85

C8

Bl

85

C8

DO

A5

85

A9

85

85

4C

A4

Bl

29

4A

4A

4A

85

Bl

29

OA

OA

85

C8

DO

A5

85

A4

Bl

29

2A

2A

2A

05

85

Bl

29

4A

85

Bl

29

OA

OA

OA

OA

85

52

11

2E

53

2E

54

2E

55

El

3A

53

00

54

55

DO F6

34

30

F8

56

30

07

57

06

4E

31

4F

30

CO

57

57

30

3E

58

30

01

59

STA

INY

BEQ

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

BNE

LDA

STA

LDA

STA

STA

JMP

LDY

LDA

AND

LSR

LSR

LSR

STA

LDA

AND

ASL

ASL

STA

INY

BNE

LDA

STA

LDY

LDA

AND

ROL

ROL

ROL

ORA

STA

LDA

AND

LSR

STA

LDA

AND

ASL

ASL

ASL

ASL

STA

$52

$F7D9

($2E)

$53

($2E)

$54

($2E)

$55

$F7BA

$3A

$53

#$00

$54

$55

$F6D0

$34

($30)

#$F8

A

A

A

$56

($30)

#$07

A

A

$57

$F802

$4E

$31

$4F

($30)

#$C0

A

A

A

$57

$57

($30)

#$3E

A

$58

($30)

#$01

A

A

A

A

$59

rY

rY

rY

rY

rY

rY

rY

rY

250

24
J

IT)

O
O

X
<
Q

0
5
«

O
S
«

•

i
n

O
O

c
o
o
o

r
H
O
U

v
>
i
n
i
n

<
/
>

i
n

I
T
)

o
o
U

D

O
B
n

u
u
r
o
n
Q

o
o

i
n
m
n
o

i
n

o
o

r
o
o
o

<
<
o
u

o
i
n
m
r
o
r
^

m
o
m

i
n
n
o

u
u
o
Q

*
o
o
r
o

i
n
m
r
o
H
i
n

n
i
n
<

i
n
u

m
i
n
H
o
\
i
n
a
^
\
o
Q
v
o
Q

0
0
U
C
0
<
;
f
f
l

O
O
O
O
O
O
C
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
C
O
O
O
C
O
C
O
O
O
C
O
O
O
C
O
C
O
G
O
C
O
C
O
C

o
u
o
<
U
Q
4
H
^
^

i
^

C
O
O
O
C
O
O
O
O
^

Anatomy of the 1541 Disk Drive

F879

F87B

F87D

F880

F882

F885

F887

F889

F88C

F88E

F891

F893

F895

F898

F89A

F89D

F89F

85

A6

BD

A6

ID

85

A6

BD

A6

ID

85

A6

BD

A6

ID

85

60

52

58

A0

59

CO

53

5A

A0

5B

CO

54

5C

A0

5D

CO

55

F8

F8

F8

F8

F8

F8

STA

LDX

LDA

LDX

ORA

STA

LDX

LDA

LDX

ORA

STA

LDX

LDA

LDX

ORA

STA

RTS

$52

$58

$F8A0,X

$59

$F8C0fX

$53

$5A

$F8A0,X

$5B

$F8C0,X

$54

$5C

$F8A0,X

$5D

$F8C0fX

$55

F8A0 FF FF FF FF FF FF FF FF

F8A8 FF 80 00 10 FF CO 40 50

F8B0 FF FF 20 30 FF FO 60 70

F8B8 FF 90 AO BO FF DO EO FF

F8C0 FF FF FF FF FF FF FF FF

F8C8 FF 08 00 01 FF OC 04 05

F8D0 FF FF 02 03 FF OF 06 07

F8D8 FF 09 OA OB FF OD OE FF

F8E0

F8E2

F8E4

F8E6

F8E8

F8EA

F8EC

F8EE

F8F0

F8F2

F8F4

F8F7

F8F9

F8FB

F8FD

F8FF

F901

F902

F904

F906

F907

F909

F90B

F90C

F90E

A9

85

85

85

A9

85

A9

85

A5

85

20

AS

85

A4

A5

91

C8

A5

91

C8

A5

91

C8

84

20

00

34

2E

36

01

4E

BA

4F

31

2F

E6 F7

52

38

36

53

2E

54

2E

55

2E

36

E6 F7

LDA

STA

STA

STA

LDA

STA

LDA

STA

LDA

STA

JSR

LDA

STA

LDY

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

STY

JSR

#$00

$34

$2E

$36

#$01

$4E

#$BA

$4F

$31

$2F

$F7E6

$52

$38

$36

$53

($2E)fY

$54

($2E)fY

$55

($2E),Y

$36

$F7E6

252

Anatomy of the 1541 Disk Drive

F911

F913

F915

F917

F918

F91A

F91C

F91E

F91F

F921

F923

F924

F926

F928

F929

F92B

F92D

F92F

F931

F933

F934

F936

F938

F93A

F93C

F93E

F940

F942

F944

F946

F948

F94A

F94C

F94E

F950

F953

F955

F957

F959

F95B

F95D

F95F

F961

F964

F966

F968

F969

F96B

F96E

F970

F972

F975

F978

A4

A5

91

C8

FO

A5

91

C8

A5

91

C8

A5

91

C8

DO

A5

85

A5

85

60

A5

85

A9

85

A9

85

A5

85

A5

85

A5

85

A5

85

20

A5

85

A5

85

A9

85

85

20

A5

85

60

A4

99

A5

FO

20

20

A6

36

52

2E

11

53

2E

54

2E

55

2E

El

53

3A

2F

31

31

2F

00

31

24

34

39

52

1A

53

19

54

18

55

DO

17

52

16

53

00

54

55

DO

2F

31

3F

00

50

03

F2

8F

49

F6

F6

00

F5

F9

LDY

LDA

STA

INY

BEQ

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

BNE

LDA

STA

LDA

STA

RTS

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

STA

JSR

LDA

STA

LDA

STA

LDA

STA

STA

JSR

LDA

STA

RTS

LDY

STA

LDA

BEO

JSR

JSR

LDX

$36

$52

($2E)fY

$F92B

$53

($2E),Y

$54

($2E)fY

$55

($2E),Y

$F90C

$53

$3A

$2F

$31

$31

$2F

#$00

$31

#$24

$34

$39

$52

$1A

$53

$19

$54

$18

$55

$F6D0

$17

$52

$16

$53

#$00

$54

$55

$F6D0

$2F

$31

$3F

$0000fY

$50

$F975

$F5F2

$F98F

$49 get stack pointer back

253

Anatomy of the 1541 Disk Drive

F97A

F97B

F97E

F980

F982

F985

F987

F98A

F98C

F98E

F98F

F991

F993

F995

F997

F999

F99B

F99C

F99F

F9A2

F9A5

F9A7

F9A9

F9A'B

F9AD

F9AF

F9B1

F9B4

F9B6

F9BB

F9BA

F9BC

F9BF

F9C1

F9C3

F9C5

F9C8

F9CB

F9CD

F9CF

F9D1

F9D2

F9D4

F9D6

F9D9

F9DB

F9DD

F9DE

F9E0

F9E2

9A

4C

A9

85

AD

09

8D

A9

85

60

A6

A5

09

85

A9

85

60

AD

8D

AD

29

C5

85

F0

A9

85

AD

F0

C9

DO

A9

8D

F0

85

A9

8D

4C

A6

30

A5

A8

C9

DO

4C

C6

DO

98

10

29

85

BE

A0

20

00

04

00

3C

48

3E

20

10

20

FF

48

07

05

00

10

IE

IE

04

01

1C

FE

15

02

07

00

FE

OA

4A

02

FE

2E

3E

07

20

20

03

BE

48

ID

04

7F

20

F2

1C

1C

1C

1C

1C

02

02

02

FA

FA

TXS

JMP

LDA

STA

LDA

ORA

STA

LDA

STA

PTS

LDX

LDA

ORA

STA

LDA

STA

RTS

LDA

STA

LDA

AND

CMP

STA

BEO

LDA

STA

LDA

BEQ

CMP

BNE

LDA

STA

BEO

STA

LDA

STA

JMP

LDX

BMI

LDA

TAY

CMP

BNE

JMP

DEC

BNE

TYA

BPL

AND

STA

SF2BE

#$A0

$20

$1COO

#$04

$1COO

$3C

$48

$3E

$20

#$10

$20

#$FF

$48

$1CO7

$1CO5

$1COO

#$10

$1E

$1E

$F9B1

#$01

$1C

$02FE

$F9CB

#$02

$F9C1

#$00

$02FE

$F9CB

$4A

#$02

$02FE

$FA2E

$3E

$F9D6

$20

#$20

$F9D9

$FABE

$48

$F9FA

$F9E4

#$7F

$20

turn drive motor off

write protect?

254

Anatomy of the 1541 Disk Drive

F9E4

F9E6

F9E8

F9EB

F9ED

F9F0

F9F2

F9F4

F9F6

F9F8

F9FA

F9FB

F9FD

F9FF

FA02

FA05

FA07

FA09

FAOB

FAOC

FAOE

FA1O

FA12

FA14

FA16

FA18

FA1A

FA1C

FA1E

FA20

FA22

FA24

FA26

FA28

FA2A

FA2C

FA2E

FA30

FA32

FA34

FA37

FA38

FA3B

FA3D

FA3F

FA41

FA43

FA45

FA47

FA49

FA4B

29

FO

AD

29

8D

A9

85

A9

85

FO

98

29

DO

4C

6C

A5

10

49

18

69

C5

BO

A9

85

A9

85

DO

E5

E5

85

A5

85

A9

85

A9

85

A5

10

E6

AE

CA

4C

A5

DO

A9

85

A9

85

A9

85

4C

10

12

00

FB

00

FF

3E

00

20

DC

40

03

BE

62

4A

05

FF

01

64

OA

3B

62

FA

63

12

5E

5E

61

5E

60

7B

62

FA

63

4A

31

4A

00

69

4A

EF

4E

62

FA

63

05

60

BE

1C

1C

FA

00

1C

FA

FA

AND

BEO
LDA

AND

STA

LDA

STA

LDA

STA

BEO

TYA

AND

BNE

JMP

JMP

LDA

BPL

EOF

CLC

ADC

CMP

BCS

LDA

STA

LDA

STA

BNE

SBC

SBC

STA

LDA

STA

LDA

STA

LDA

STA

LDA

BPL

INC

LDX

DEX

JMP

LDA

BNE

LDA

STA

LDA

STA

LDA

STA

JMP

#$10

$F9FA

$1COO

#$FB

$1COO

#$FF

$3E

#$00

$20

$F9D6

#$40

$FA02

$FABE

($0062)

#$4A

$FA0E

#$FF

#$01

$64

$FA1C

#$3B

$62

#$FA

$63

$FA2E

$5E

$5E

$61

$5E

$60

#$7B

$62

#$FA

$63

$4A

$FA63

$4A

$1COO

$FA69

$4A

$FA2E

#$4E

$62

#$FA

$63

#$05

$60

$FABE

drive motor on

pointer $62/$63 to $FA3B

pointer $62/$63 to $FA7B

step counter for head transport

increment

step counter for head transport

not yet zero?

pointer $62/$63 to $FA4E

counter to 5

255

Anatomy of the 1541 Disk Drive

FA4E

FA50

FA52

FA54

FA56

FA58

FA5A

FA5C

FA5E

FA60

C6 60

DO 6C

A5 20

29 BF

85 20

A9 05

85 62

A9 FA

85 63

4C BE FA

DEC $60

BNE $FAPE

LDA $20

AND #$BF

STA $20

LDA #$05

STA $62

LDA #$FA

STA $63

JMP $FABE

FA63

FA65

FA68

FA69

FA6A

FA6C

FA6E

FA71

FA73

FA75

FA78

C6 4A

AE 00 1C

E8

8A

29 03

85 4B

AD 00 1C

29 FC

05 4B

8D 00 1C

4C BE FA

DEC $4A

LDX $1COO

INX

TXA

AND #$03

STA $4B

LDA $1COO

AND #$FC

ORA $4B

STA $1COO

JMP $FABE

decrement counter

not yet zero?

erase bit 6

pointer $62/$63 to FA05

step counter for head transport

stepper motor off

FA7B

FA7C

FA7F

FA81

FA84

FA86

FA88

FA8A

FA8C

FA8E

FA90

FA92

FA94

38

AD 07 1C

E5 5F

8D 05 1C

C6 60

DO 0C

A5 5E

85 60

A9 97

85 62

A9 FA

85 63

4C 2E FA

SEC

LDA $1CO7

SBC $5F

STA $1CO5

DEC $60

BNE $FA94

LDA $5E

STA $60

STA #$97

STA $62

LDA #$FA

STA $63

JMP $FA2E

decrement counter

not yet zero?

pointer $62/$63 to $FA97

FA97

FA99

FA9B

FA9D

FA9F

FAA1

FAA3

C6 61

DO F9

A9 A5

85 62

A9 FA

85 63

DO EF

DEC $61

BNE $FA94

LDA #$A5

STA $62

LDA #$FA

STA $63

BNE $FA94

pointer $62/$63 to $FAA5

FAA5 AD 07 1C LDA $1CO7

FAA8 18 CLC

FAA9 65 5F ADC $5F

FAAB 8D 05 1C STA $1CO5

256

Anatomy of the 1541 Disk Drive

FAAE

FABO

FAB2

FAB4

FAB6

FAB8

FABA

FABC

FABE

FAC1

FAC3

FAC6

C6 60

DO E2

A9 4E

85 62

A9 FA

85 63

A9 05

85 60

AD 0C 1C

29 FD

8D 0C 1C

60

DEC $60

BNE $FA94

LDA #$4E

STA $62

LDA #$FA

STA $63

LDA #$05

STA $60

LDA $1COC

AND #$FD

STA $1COC

RTS

FAC7

FAC9

FACB

FACD

FACF

FAD1

FAD3

FAD5

FAD7

FAD9

FADB

FADE

FAEO

FAE3

FAE5

FAE8

FAEA

FAED

FAEF

FAF2

FAF5

FAF7

FAF9

FAFB

FAFD

FBOO

FB03

FB05

FB07

FB09

FBOC

FBOF

FB12

FB14

FB17

FB1A

FB1D

FB20

1C

1C

06

06

A5 51

10 2A

A6 3D

A9 60

95 20

A9 01

95 22

85 51

A9 A4

85 4A

AD 00

29 FC

8D 00

A9 OA

8D 20

A9 AO

8D 21

A9 OF

8D 22 06

4C 9C F9

AO 00

Dl 32

FO 05

91 32

4C 9C F9

AD 00 1C

29 10

DO 05

A9 08

4C D3 FD

20 A3 FD

20 C3 FD

A9 55

8D 01 1C

20 C3 FD

20 00 FE

20 56 F5

A9 40

LDA

BPL

LDX

LDA

STA

LDA

STA

STA

LDA

STA

LDA

AND

STA

LDA

STA

LDA

STA

LDA

STA

JMP

$51

$FAF5

$3D

#$60

$20,X

#$01

$22,X

$51

#$A4

$4A

$1COO

#$FC

$1COO

#$0A

$0620

#$40

$0621

#$0F

$0622

$F99C

LDY #$00

CMP ($32) ,Y

BEQ $FBOO

STA ($32),Y

JMP $F99C

LDA $1COO

AND #$10

BNE $FB0C

LDA #$08

JMP $FDP3

JSP $FDA3

JSR $FDC3

LDA #$55

STA $1CO1

JSR $FDC3

JSR $FEOO

JSR $F556

LDA #$40

decrement counter

not yet zero?

pointer $62/$63 to $FA4E

counter to 5

erase bit 1

formatting

track number

fomatting already in progress

drive number

flag for head transport

set

set destination track

running track # for format

164

step counter for head transport

stepper motor on

10

error counter

$621/$622 = 4000

initialize track capacity

4000 < capacity < 2*4000 bytes

back in job loop

to job loop

write protect?

no

26, 'write protect on1

write $FF to disk 10240 times

code ($621/$622) times to disk

$55

to write head

and ($621/$622) times to disk

switch to read

set timer, find $FF (SYNC)

257

Anatomy of the 1541 Disk Drive

FB22

FB25

FB28

FB2A

FB2D

FB2F

FB32

FB35

FB37

FB39

FB3C

FB3E

FB41

FB43

FB46

FB49

FB4B

FB4E

FB4F

FB51

FB52

FB54

FB55

FB57

FB59

FB5C

FB5E

FB60

FB62

FB64

FB67

FB6A

FB6C

FB6F

FB70

FB72

FB73

FB75

FB76

FB78

FB7A

FB7D

FB7E

FB7F

FB81

FB82

FB84

F-B85

FB87

FB88

FB8A

FB8C

FB8E

18

OD OB 18

8D OB 18

A9 62

8D 06 18

A9 00

8D 07

8D 05 18

A0 00

A2 00

2C 00 1C

30 FB

2C 00 1C

10 FB

AD 04 18

2C 00 1C

10 11

AD 0D 18

OA

10 F5

E8

DO EF

C8

DO EC

A9 02

4C D3 FD

86 71

84 72

A2 00

AO 00

AD 04 18

2C 00 1C

30 11

AD OD 18

OA

10 F5

E8

DO EF

C8

DO EC

A9 02

4C D3 FD

38

8A

E5 71

AA

85 70

98

E5 72

A8

85 71

10 OB

49 FF

A8

ORA $180B

STA $180B

LDA #$62

STA $1806

LDA #$00

STA $1807

STA $1805

LDY #$00

LDX #$00

BIT $1COO

BMI $FB39

BIT $1COO

BPL $FB3E

LDA $1804

BIT $1COO

BPL $FB5C

LDA $180D

ASL A

BPL $FB46

INX

BNE $FB43

INY

BNE $FB43

LDA #$02

JMP $FDD3

STX

STY

LDX

LDY

LDA

BIT

BMI

LDA

ASL

BPL

INX

BNE

INY

BNE

LDA

JMP

$71

$72

#$00

#$00

$1804

$1COO

$FB7D

$180D

A

$FB67

$FB64

$FB64

#$02

$FDD3

SEC

TXA

SBC $71

TAX

STA $70

TYA

SBC $72

TAY

STA $71

BPL $FB97

EOR #$FF

TAY

timer 1 free running

98 cycles, about 0.1 ms

start timer

counter to zero

SYNC found?

no, wait

SYNC found?

wait for SYNC

reset interrupt flag timer

SYNC found?

not SYNC ($55)?

interrupt flag register

shift timer flag

timer not run down yet?

increment counter

increment hi-byte of counter

overflow, then error

20, 'read error1

counter to zero again

reset timer 1 interrupt flag

SYNC found?

yes

interrupt-flag register

timer flag to bit 7

no, wait until timer run down

increment counter

overflow, then error

20, 'read error1

difference between counter

and value for $FF-storage

bring to $70/$71

difference positive?

258

Anatomy of the 1541 Disk Drive

FB8F

FB90

FB92

FB93

FB94

FB96

FB97

FB98

FB9A

FB9C

FB9E

FBAO

FBA2

FBA3

FBA5

F8A8

FBAB

FBAD

FBBO

FBB3

FBB6

FBB8

FBBA

FBBB

FBBE

FBCO

FBC2

FBC3

FBC4

FBC6

FBC7

FBC9

FBCB

FBCE

FBCF

FBDO

FBD3

FBD4

FBD5

FBD8

FBDA

FBDD

FBEO

FBE2

FBE5

FBE7

FBE9

FBEA

FBEB

FBEE

FBFO

FBF1

FBF2

8A

49 FF

AA

E8

DO 01

C8

98

DO 04

EO 04

90 18

06 70

26 71

18

A5 70

6D 21 06

8D 21 06

A5 71

6D 22 06

8D 22 06

4C OC FB

A2 00

AO 00

B8

AD 00 1C

10 OE

50 59

B8

E8

DO F5

C8

DO F2

A9 03

4C D3 FD

8A

OA

8D 25 06

98

2A

8D 24 06

A9 BF

2D OB 18

8D OB 18

A9 66

8D 26 06

A6 43

AO 00

98

18

6D 26 06

90 01

C8

C8

CA

TXA

EOR

TAX

INX

BNE

INY

TYA

BNE

CPX

BCC

ASL

ROL

CLC

LDA

ADC

STA

LDA

ADC

STA

JMP

LDX

LDY

CLV

LDA

BPL

BVC

CLV

INX

BNE

INY

BNE

LDA

JMP

TXA

ASL

STA

TYA

ROL

STA

LDA

AND

STA

LDA

STA

LDX

LDY

TYA

CLC

ADC

BCC

INY

INY

DEX

#$FF

$FB97

$FB9E

#$04

$FBB6

$70

$71

$70

$0621

$0621

$71

$0622

$0622

$FBOC

#$00

#$00

$1COO

$FBCE

$FBBB

$FBBB

$FBBB

#$03

$FDD3

A

$0625

A

$0624

#$BF

$180B

$180B

#$66

$0626

$43

#$00

$0626

$FBF1

calculate abs. val of difference

difference less than 4 * 0.1 ms
yes

double difference

add to 4000

repeat until diff < 4 * 0.1 ms

counter to zero

SYNC?

no

byte ready?

increment counter

overflow, then error

21, read error

double counter

and to $624/$625 as track cap.

102

number of sectors in this track

259

Anatomy of the 1541 Disk Drive

FBF3

FBF5

FBF7

FBF8

FBFA

FBFB

FBFE

FCOO

FC03

FC04

FC05

FC07

FC08

FCOA

FCOB

FCOE

FC10

FC12

FC15

FC16

FC17

FC19

FC1A

FC1C

FC1E

FC1F

FC21

FC22

FC24

FC27

FC29

FC2B

FC2D

FC30

FC31

FC33

FC36

FC38

FC3B

FC3D

FC3F

FC41

FC44

FC45

FC46

FC49

FC4C

FC4D

FC4F

FC52

FC53

FC55

FC58

FC59

DO

49

38

69

18

6D

BO

CE

AA

98

49

38

69

18

6D

10

A9

4C

A8

8A

A2

38

E5

BO

88

30

E8

DO

8E

EO

BO

A9

4C

18

65

8D

A9

8D

AO

A6

A5

99

C8

C8

AD

99

C8

A5

99

C8

B5

99

C8

B5

F5

FF

00

25

03

24

FF

00

24

05

04

D3

00

43

03

03

F5

26

04

05

05

D3

43

27

00

28

00

3D

39

00

28

00

51

00

13

00

12

06

06

06

FD

06

FD

06

06

03

06

03

03

03

BNE

EOR

SEC

ADC

CLC

ADC

BCS

DEC

TAX

TYA

EOF

SEC

ADC

CLC

ADC

BPL

LDA

JMP

TAY

TXA

LDX

SEC

SBC

BCS

DEY

BMI

I NX

BNE

STX

CPX

BCS

LDA

JMP

CLC

ADC

STA

LDA

STA

LDY

LDX

LDA

STA

INY

INY

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

LDA

$FBEA

#$FF

#$00

$0625

$FC03

$0624

#$FF

#$00

$0624

$FC15

#$04

$FDD3

#$00

$43

$FC21

SFC24

$FC19

$0626

#$04

$FC30

#$05

$FDD3

$43

$0627

#$00

$0628

#$00

$3D

$39

$0300,Y

$0628

$0300fY

$51

$0300,Y

$13,X

$0300,Y

$12,X

calculate # of Dytes

result in A/X

22, 'read error1

total divided by number

of sectors ($43)

compare no. of bytes per inte

with minimum value

ok

23, 'read error1

remainder of division

plus number of sectors

save

counter for sectors

counter lo

drive number

constant 8, marker for header

in buffer

sector number

in buffer

track number

in buffer

ID 2

in buffer

ID 1

260

Anatomy of the 1541 Disk Drive

FC5B

FC5E

FC5F

FC61

FC64

FC65

FC68

FC69

FC6B

FC6E

FC71

FC74

FC77

FC7A

FC7D

FC80

FC82

FC84

FC85

FC86

FC87

FC88

FC8B

FC8C

FC8E

FC90

FC92

FC95

FC96

FC97

FC98

FC9B

FC9E

FCAO

FCA2

FCA5

FCA7

FCAA

FCAC

FCAE

FCB1

FCB3

FCB6

FCB8

FCBA

FCBB

FCBC

FCBE

FCCO

FCC2

FCC4

FCC5

FCC8

FCCB

FCCC

99 00 03

C8

A9 OF

99 00 03

C8

99 00 03

C8

A9 00

59 FA 02

59 FB 02

59 FC 02

59 FD 02

99 F9 02

EE 28 06

AD 28 06

C5 43

90 BB

98

48

E8

8A

9D 00 05

E8

DO FA

A9 03

85 31

20 30 FE

68

A8

88

20 E5 FD

20 F5 FD

A9 05

85 31

20 E9 F5

85 3A

20 8F F7

A9 00

85 32

20 OE FE

A9 FF

8D 01 1C

A2 05

50 FE

B8

CA

DO FA

A2 OA

A4 32

50 FE

B8

B9 00 03

8D 01 1C

G8

CA

STA

INY

LDA

STA

INY

STA

INY

LDA

EOR

EOR

EOR

EOR

STA

INC

LDA

CMP

BCC

TYA

PHA

INX

TXA

STA

INX

BNE

LDA

STA

JSR

PLA

TAY

DEY

JSR

JSR

LDA

STA

JSR

STA

JSR

LDA

STA

JSR

LDA

STA

LDX

BVC

CLV

DEX

BNE

LDX

LDY

BVC

CLV

LDA

STA

INY

DEX

$0300,Y in buffer

#$0F

$0300,Y

15

in buffer

$0300,Y 15 in buffer

#$00

$02FA,Y

$02FB,Y

$02FC,Y

$02FD,Y

$02F9,Y

$0628

$0628

$43

$FC3F

$0500,X

$FC88

#$03

$31

$FE30

$FDE5

$FDF5

#$05

$31

$F5E9

$3A

$F78F

#$00

$32

$FE0E

#$FF

$1CO1

#$05

$FCB8

$FCB8

#$0A

$32

$FCC2

$0300,Y

$1CO1

generate checksum

increment counter

counter

compare with no. of sectors

smaller, then continue

buffer pointer to $300

copy buffer data

copy data in buffer

buffer pointer to $500

calculate parity for data buffer

and save

to write head

write $FF 5 times

byte ready

10 times

buffer pointer

byte ready?

data from buffer

write

10 data written?

261

Anatomy of the 1541 Disk Drive

FCCD

FCCF

FCD1

FCD3

FCD4

FCD6

FCD9

FCDA

FCDC

FCDE

FCEO

FCE2

FCE3

FCE6

FCE7

FCE9

FCEB

FCED

FCEE

FCF1

FCF4

FCF5

FCF7

FCF9

FCFB

FCFC

FCFE

FD01

FD02

FD04

FD06

FD09

FDOB

FDOC

FDOF

FD10

FD12

FD14

FD15

FD17

FD19

FD1C

FD1E

FD20

FD21

FD23

FD24

FD27

FD29

FD2C

FD2E

FD30

FD32

FD34

FD36

DO

A2

50

B8

A9

8D

CA

DO

A9

A2

50

B8

8D

CA

DO

A2

50

B8

BD

8D

E8

DO

AO

50

B8

Bl

8D

C8

DO

A9

AE

50

B8

8D

CA

DO

A5

18

69

85

CE

DO

50

B8

50

B8

20

A9

8D

A9

85

A9

85

A5

8D

F3

09

FE

55

01

F5

FF

05

FE

01

F7

BB

FE

00

01

F4

00

FE

30

01

F5

55

26

FE

01

F7

32

OA

32

28

93

FE

FE

00

C8

23

00

30

03

31

43

28

1C

1C

01

1C

1C

06

1C

06

FE

06

06

BNE

LDX

BVC

CLV

LDA

STA

DEX

BNE

LDA

LDX

BVC

CLV

STA

DEX

BNE

LDX

BVC

CLV

LDA

STA

INX

BNE

LDY

BVC

CLV

LDA

STA

INY

BNE

LDA

LDX

BVC

CLV

STA

DEX

BNE

LDA

CLC

ADC

STA

DEC

BNE

BVC

CLV

BVC

CLV

JSR

LDA

STA

LDA

STA

LDA

STA

LDA

STA

SFCC2

#$09

$FCD1

#$55

$1CO1

$FCD1

#$FF

#$05

$FCEO

$1CO1

$FCEO

#$BB

$FCEB

$0100rX

$1CO1

$FCEB

#$00

$FCF9

($30),Y

$1CO1

$FCF9

#$55

$0626

$FD09

$1CO1

$FD09

$32

#$0A

$32

$0628

$FCB1

$FD1E

$FD21

$FEOO

#$C8

$0623

#$00

$30

#$03

$31

$43

$0628

9 times

byte ready?

$55

write

9 times?

$FF

5 times

byte ready?

to write head

area $1BB to $1FF

save

byte ready?

256 bytes of data

write byte to disk

$55

($626) times

write

plus 10

decrement sector number

byte ready?

byte ready?

switch to reading

200

buffer pointer to $200

number of sectors per t

262

Anatomy of the 1541 Disk Drive

FD39

FD3C

FD3E

FD40

FD42

FD43

FD46

FD48

FD4A

FD4B

FD4C

FD4E

FD4F

FD51

FD53

FD55

FD58

FD5B

FD5D

FD5F

FD62

FD65

FD67

FD69

FD6A

FD6D

FD70

FD72

FD73

FD75

FD77

FD79

FD7A

FD7D

FD80

FD82

FD83

FD84

FD86

FD89

FD8B

FD8D

FD8F

FD91

FD93

FD96

FD98

FD9A

FD9C

FD9E

FDAO

1C

20 56 F5

A2 0A

A0 00

50 FE

B8

AD 01

Dl 30

DO 0E

C8

CA

DO F2

18

A5 30

69 OA

85 30

4C 62 FD

CE 23 06

DO CF

A9 06

4C D3 FD

20 56 F5

AO BB

50 FE

B8

AD 01 1C

D9 00 01

DO E6

C8

DO F2

A2 FC

50 FE

B8

AD 01 1C

D9 00 05

DO D6

C8

CA

DO Fl

CE 28 06

DO AE

E6 51

A5 51

C9 24

BO 03

4C 9C F9

A9 FF

85 51

A9 00

85 50

A9 01

4C 69 F9

JSR

LDX

LDY

BVC

CLV

LDA

CMP

BNE

I NY

DEX

BNE

CLC

LDA

ADC

STA

JMP

SF556

#$0A

#$00

$FD40

$1CO1

($30),Y

$FD58

$FD40

$30

#$0A

$30

$FD62

DEC $0623

BNE $FD2C

LDA #$06

JMP $FDD3

JSR $F556

LDY #$BB

BVC $FD67

CLV

LDA $1CO1

CMP $0100,Y

BNE $FD58

I NY

BNE $FD67

LDX #$FC

BVC $FD77

CLV

LDA $1CO1

CMP $0500,Y

BNE $FD58

INY

DEX

BNE $FD77

DEC $0628

BNE $FD39

INC $51

LDA $51

CMP #$24

BCS $FD96

JMP $F99C

LDA #$FF

STA $51

LDA #$00

STA $50

LDA #$01

JMP $F969

wait for SYNC

10 data

byte ready?

read byte

compare with data in buffer

not equal, error

increment pointer by 10

decrement counter for attempts

not yet zero?

else error

24, 'read error1

wait for SYNC

byte ready?

read byte

compare with buffer contents

not equal, error

next byte

byte ready?

read byte

compare with buffer contents

not equal, then error

next byte

decrement sector counter

not yet zero?

increment track number

compare with 36, highest trk# +1

greater, then formatting done

continue

track number to $FF

ok

263

Anatomy of the 1541 Disk Drive

FDA3

FDA6

FDA8

FDAA

FDAD

FDAF

FDB2

FDB5

FDB7

FDB9

FDBB

FDBC

FDBD

FDBF

FDCO

FDC2

AD OC 1C

29 IF

09 CO

8D OC 1C

A9 FF

8D 03 1C

8D 01 1C

A2 28

AO 00

50 FE

B8

88

DO FA

CA

DO F7

60

*********<

FDC3

FDC6

FDC9

FDCB

FDCC

FDCD

FDCF

FDDO

FDD2

AE 21 06

AC 22 06

50 FE

B8

CA

DO FA

88

10 F7

60

FDD3 CE 20 06

FDD6 FO 03

FDD8 4C 9C F9

FDDB

FDDD

FDDF

FDEO

FDE2

AO FF

84 51

C8

84 50

4C 69 F9

LDA

AND

ORA

STA

LDA

STA

STA

LDX

LDY

BVC

CLV

DEY

BNE

DEX

BNE

RTS

31C0C

#$1F

#$C0

$1COC

#$FF

$1CO3

$1CO1

#$28

#$00

$FDB9

$FD89

$FD89

LDX $0621

LDY $0622

BVC $FDC9

CLV

DEX

BNE $FDC9

DEY

BPL $FDC9

RTS

DEC $0620

BEO $FDDB

JMP $F99C

LDY #$FF

STY $51

I NY

STY $50

JMP $F969

FDE5 B9 00 03 LDA $0300 ,Y

FDE8 99 45 03 STA $0345 ,Y

FDEB 88 DEY

FDEC DO F7 BNE $FDE5

FDEE AD 00 03 LDA $0300

FDF1 8D 45 03 STA $0345

FDF4 60 RTS

FDF5

FDF7

FDFA

FDFC

FDFD

AO 44

B9 BB 01

91 30

88

10 F8

LDY #$44

LDA $01BB,Y

STA ($30),Y

DEY

BPL $FDF7

write $FF 10240 times

switch PCR to writing

port A(read/write head) to output

write $FF to disk

40

byte ready?

read/write ($621/$622) times

byte ready?

attempt counter for formatting

decrement number of attempts

zero, then error

continue

flag for end of formatting

error termination

copy buffer contents

$1BB to $1FF

write in buffer $30/$31

264

Anatomy of the 1541 Disk Drive

FDFF 60 RTS

FEOO

FE03

FE05

FE08

FEOA

FEOD

FEOE

FEU

FE13

FE15

FE18

FE1A

FE1D

FE1F

FE22

FE24

FE26

FE28

FE29

FE2A

FE2C

FE2D

FE2F

FE30

FE32

FE34

FE36

FE38

FE3A

FE3C

FE3E

FE40

FE42

FE44

FE46

FE48

FE4A

FE4B

FE4D

FE4F

FE50

FE52

FE54

FE55

FE57

FE59

FE5A

FE5C

AD

09

8D

A9

8D

60

AD

29

09

8D

A9

8D

A9

8D

A2

AO

50

B8

88

DO

CA

DO

60

A9

85

85

85

A9

85

A5

85

A9

85

A4

Bl

85

C8

Bl

85

C8

Bl

85

C8

Bl

85

C8

FO

84

OC

EO

OC

00

03

1C

1C

1C

LDA

ORA

STA

LDA

STA

RTS

OC 1C LDA

IF

CO

OC

FF

03

55

01

28

00

FE

FA

F7

00

30

2E

36

BB

34

31

2F

01

31

36

2E

52

2E

53

2E

54

2E

55

08

36

1C

1C

1C

AND

ORA

STA

LDA

STA

LDA

STA

LDX

LDY

BVC

CLV

DEY

BNE

DEX

BNE

RTS

LDA

STA

STA

STA

LDA

STA

LDA

STA

LDA

STA

LDY

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

LDA

STA

INY

BEQ

STY

$1COC

#$E0

$1COC

#$00

$1CO3

$1COC

#$1F

#$C0

$1COC

#$FF

$1CO3

#$55

$1CO1

#$28

#$00

$FE26

$FE26

$FE26

#$00 .

$30

$2E

$36

#$BB

$34

$31

$2F

#$01

$31

$36

($2E)rY

$52

($2E)rY

$53

($2E),Y

$54

($2E),Y

$55

$FE64

$36

switch to reading

switch PCR to reading

port A to input

write $55 10240 times

switch PCR to writing

port A to output (write head)

%01010101

to port A (write head)

byte ready for write electronics

10240 times

265

Anatomy of the 1541 Disk Drive

FE5E 02 DO F6

FE61 4C 44 FE

JSR $F6D0

FE64 4C DO F6 JMP $F6D0

FE67

FE68

FE69

FE6A

F.E6B

FE6C

FE6F

FE71

FE73

FE76

FE79

FE7A

FE7C

FE7F

FE80

FE81

FE82

FE83

FE84

48

8A

48

98

48

AD

29

F0

20

AD

0A

10

20

68

A8

68

AA

68

40

OD

02

03

53

OD

03

BO

18

E8

1C

F2

PHA

TXA

PHA

TYA

PHA

LDA

AND

BEO
JSR

LDA

ASL

BPL

JSP

PLA

TAY

PLA

TAX

PLA

RTI

$180D

#$02

$FE76

$E853

$1COD

A

$FE7F

$F2B0

FE85

FE86

FE87

FE88

12

04

04

90

FE89 56 49 44 4D 42 55

FE8F 50 26 43 52 53 4E

FE95 84 05 Cl F8 IB 5C

FE9F 07 A3 FO 88 23 OD

FEA1 ED DO C8 CA CC CB

FEA7 E2 E7 C8 CA C8 EE

FEAD 51 DD 1C 9E 1C

FEB2 52 57 41 4D

FEB6 44 53 50 55 4C

FEBB 44 53 50 55 52 1st

interrupt routine

save registera

interrupt from serial bus

no

serve serial bus

interrupt from timer 1?

no

IRQ routine for disk controller

get register back

constants for disk format

18, track for BAM and directory

start of BAM at position 4

4 bytes in BAM for each track

$90 = 144, end of BAM, disk name

table of command words

•V, 'I'^'D', 'M1, 'B1, 'U'

'P1 , •&•• , 'C1 , fR' , 'S1 , 'N1

lo-bytes of command addresses

hi-bytes of command addresses

bytes for syntax check

file control methods

•R' , 'W , 'A1 , 'M1

file types

'Dff 'S1, 'P', 'U1, 'L1

names of file types

letters 'D', 'S1, 'P\ 'U1, fR'

266

Anatomy of the 1541 Disk Drive

FECO 45 45 52 53 45

FEC5 4C 51 47 52 4C

2nd letters ' E1,

3rd letters 'L' ,

'E\ •R1

'6'

FECA 08 00 00

FECD 3F 7F BF FF

FED1 11 12 13 15

FED5 4A

FED6 04

FED7 24

FED8 IF 19 12

masks for bit command

number of sectors per track

17, 18f 19, 21

contants for disk format

'A1 marker for 1541 format

4 track numbers

36, highest track number + 1

31, 25, 18 tracks with change of

number of sectors

FEDB 01 FF FF 01 00 control bytes for head position

****************************** addresses of buffers

FEEO 03 04 05 06 07 high bytes

FEE5 07 0E .

****************************** for ux coiranand

FEE7 6C 65 00 JMP ($0065)

****************************** for diagnostic routine

FEEA 8D 00 1C STA $1COO turn LED on

FEED 8D 02 1C STA $1CO2 port to output

FEFO 4C 7D EA JMP $EA7D back to diagnostic routine

****************************** delay loop for serial bus

FEF3 8A TXA

FEF4 A2 05 LDX #$05

FEF6 CA DEX about 40 microseconds

FEF7 DO FD BNE $FEF6

FEF9 AA TAX

FEFA 60 RTS

****************************** data output to serial bus

FEFB 20 AE E9 JSR $E9AE CLOCK OUT hi

FEFE 4C 9C E9 JMP $E99C DATA OUT lo

****************************** yj vector

FF01 AD 02 02 LDA $0202

FF04 C9 2D CMP #$2D •-• ■

FF06 F0 05 BEO $FF0D

FF08 38 SEC

FF09 E9 2B SBC #$2B • + •

FF0B DO DA BNE $FEE7 indirect jump over ($65)

267

Anatomy of the 1541 Disk Drive

FFOD 85 23

FFOF 60

STA $23

RTS

FF10 AA ...

FFE1 ... AA

FFE2 52 53 52 AA

FFE6 C6 C8 8F F9

****************************** USER vectors

FFEA 5F CD UA, Ul, $CD5F

FFEC 97 CD UB, U2, $CD97

FFEE 00 05 UC, U3, $0500

FFFO 03 05 UD, U4, $0503

FFF2 06 05 UE, U5, $0506

FFF4 09 05 UF, U6, $0509

FFF6 0C 05 UG, U7 , $050C

FFF8 OF 05 UH, U8, $050F

FFFA 01 FF UI, U9, $FF01

(NMI vector not used)

FFFC 0A EA

FFFE 67 FE

hardware vectors

$EAA0 RESET and UJ (U:) vector

$FE67 IRQ vector

268

Anatomy of the 1541 Disk Drive

Chapter 4: Programs and Tips for the 1541 Disk Drive

4.1 Utility Programs

4.1.1 Displaying all File Parameters

The directory contains several important pieces of

information about each file. Some information is not kept in

the directory, such as the starting address of a program.

These and other file parameters can be easily found ard

displayed by the following program. The number and kind of

file parameters are naturally dependent on the file type. A

relative file, for instance, has no starting address. The

following table presents the parameters displayed by this
program.

: PARAMETER

: File closed?

: File protected?

: Allocated blocks

: Side-sector blocks

: Data blocks

: Records

: Start address

: Free blocks, disk

: Allocated bl. disk

: FILE TYPE :

: DEL

: X

: SEQ : PRG : USR : REL :

X : X : X : X :

i X : X : X : X :

This program is documented in detail so that the serious

programmer can get a good overview of the file parameters.

In addition, the variables used by the program are
explained.

Variables used in the program:

Numerical Variables

T - Track of the actual block of the file entry in the

directory

S - Sector of the actual block of the file entry in the
directory

FL - Flag, set if the file name read from the diskette does

not agree with the searched-for file

TY - File type of the given file (byte 0 of the entry)

269

Anatomy of the 1541 Disk Drive

FT - nybble of the file type (bits 0-3), contains the

actual file type

LB - Low byte of the starting address

HB - High byte of the starting address

BL - Number of allocated blocks in the file

RL - Record length of a relative file

DT - Track of the first data block of a program file, which

contains the starting address

DS - Sector of the first data block of a program file

SA - Starting address of a program file

BF - Number of free blocks on a disk

BA - Number of allocated blocks on a disk

BS - Number of side-sector blocks in a relative file

RC - Number of records in a relative file

String Variables

F$ - Name of the file to search for

FF$- Contains the actual file name from the directory

FT$- File type

CL$- Indicates whether the file is closed or not

(contains "YES" or "NO")

PR$- Indicates whether the file is protected or not

(contains "YES" or "NO")

RE$- contains CHR$(18), REVERSE ON

RA$- contains CHR$(146), REVERSE OFF

Program Documentation:

110 Set the color code of the screen

120 - 200 Program heading

210 - 230 Asks if the names should be listed out.

Sets flag FL to 1 and executes the routine at

280-490.

250 - 270 Input the filename. Asks for new input if the

filename if greater than 16 characters.

280 - 490 Reads the file name from the directory and either

displays it (FL=1) or compares it to the desired

filename.

500 - 530 Reads byte 0 (file type) of the file entry of the

desired file and stores it in TY. Also, the right

half-byte is stored in FT.

540 - 590 Checks the file type and saves the text in FT$,

and checks for invalid file type.

600 - 610 Checks bit 7 of the file type byte (file closed?)

and saves the result in CL$.

620 - 630 Checks bit 6 of the file type byte (file

protected?) and saves the result in PR$.

640 - 690 Reads the number of allocated blocks in the file

from bytes 28 and 29 of the file entry and saves

it in BL.

270

Anatomy of the 1541 Disk Drive

700 - 730 If it is relative file, the record length is read

from byte 21 and saved in RL

740 - 880 If it is a program file, the starting address of

the file is taken from the first data block and

stored in SA.

890 - 980 Free blocks on the disk are calculated by reading

the first byte of the track-marked BAM section

and added to BF. The allocated blocks are calcu

lated by BA = 664 - BF

990 -1020 Here the number of side-sector blocks (BS) of a

relative file is calculated with the help of the

record length (RL) and the number of allocated

blocks in the file (RC).

1040-1230 Here the data can be sent to the screen or the

printer as one chooses. The file parameters are

shown in REVERSE.

1240-1280 The parameters of another file can be output.

The program is written for a CBM 64. In spite of this, it

can be run without major changes on a VIC 20. Only line 110,

where the color of the screen is set, need be changed for

the VIC 20.

BASIC Listing of the Program:

100 CLR

110 POKE 53280,2:POKE53281,2:PRINTCHR$(158);CHR$(147);

120 PRINT TAB(6);"===========================n

130 PRINT TAB(6);"DISPLAY ALL FILE PARAMETERS"

140 PRINT TAB(6);"==========================="

150 PRINT:PRINT

160 PRINT"WITH THIS PROGRAM, ALL PARAMETERS OF A"

170 PRINT"FILE CAN BE OUTPUT TO THE SCREEN OR TO"

180 PRINT"A PRINTER AT YOUR OPTION."

200 PRINT:PRINT

210 PRINT"LIST FILENAMES (Y/N)?"

220 GETX$:IFX$<>"Y"ANDX$<>"N"THEN220

230 IF X$="Y"THENFL=1:GOSUB280

240 FL=0

250 INPUT"NAME OF THE FILE: ";F$

260 IFLEN(F$)<=16THEN280

270 PRINT"FILENAME TOO LONG!":GOTO250

280 OPEN 15,8,15,"IO":OPEN2,8,2,"#11

290 T=18:S=1

300 PRINT#15,"B-R";2;0;T;S

310 PRINT#15,"B-P";2;0

320 GET#2,X$:IFX$=""THENX$=CHR$(0)
325 T=ASC(X$)

330 GETX$:IFX$=""THENX$=CHR$(0)

340 S=ASC(X$)

350 FORX=0TO7

360 PRINT#15,"B-P";2;X*32+5
370 FF$=""

380 FORY=0TO15

390 GET#2,X$:IFX$=""THENX$=CHR$(0)

271

Anatomy of the 1541 Disk Drive

400 IF ASC(X$)=160THEN430

410 FF$=FF$+X$

4 20 NEXT Y

430 IFF$=FF$THEN490

440 IFFLTHENPRINTFF$

450 NEXT X

460 IF T=0 THEN 480

470 GOTO 300

480 CLOSE2:CLOSE15

485 IFFL=OTHENPRINT"FILENAME NOT FOUND1":GOTO210

490 IFFLTHENRETURN

500 PRINT#15,"B-P";2;X*32+2

510 GET#2 rX$:IFX$ = ""THENX$=CHR$(0)

520 TY=ASC(X$)

530 FT=TYAND15

540 IFFT=0THENFT$="DELETED"

550 IFFT=1THENFT$="SEOUENTIAL"

560 IFFT=2THENFT$="PROGRAM"

570 IFFT=3THENFT$="USER"

580 IFFT=4THENFT$="RELATIVE"

590 IFFT>4THENPRINT"INVALID FILE TYPEi":GOTO200

600 IFTYANDl28THENCL$="YES":GOTO620

610 CL$="NO"

620 IFTYAND64THENPR$="YES":GOTO640

630 PP$="NO"

640 PRINT#15,"B-P";2;X*32+30

650 GET#2,X$:IFX$= IIIITHENX$=CHR$(0)

660 LB=ASC(X$)

670 GET#2,X$:IFX$=""THENX$=CHR$(0)

680 HB=ASC(X$)*256

690 BL=LB+HB

700 IFFTO4THEN740

710 PRINT#15,"B-P";2;X*32+23

720 GET#2fX$:IFX$= llflTHENX$=CHR$(0)

730 RL=ASC(X$)

740 IFFTO2THEN890

750 PRINT#15,"B-P";2;X*32+3

760 GET#2fX$:IFX$=""THENX$=CHR$(0)

770 DT=ASC(X$)

780 GET#2fX$:IFX$=""THENX$=CHR$(0)

790 DS=ASC(X$)

800 OPEN3f8f3,"#"

810 PRINT#15,"B-R";3;0;DT;DS

820 PRINT#15f"B-P";3;2

8 30 GET#3fX$:IFX$=""THENX$=CHR$(0)

840 LB=ASC(X$)

850 GET#3fX$:IFX$=n"THENX$=CHR$(0)

860 HB=ASC(X$)*256

870 SA=LB+HB

880 CLOSE3

890 PPINT#15f"B-R";2;0;18;0

900 BF=0

910 FORI=4TO140STEP4

920 IFI=72THEN960

930 PRINT#15f"B-Plt;2;I

272

Anatomy of the 1541 Disk Drive

940 GET#2fX$:IFX$ = IMITHENX$=CHR$(0)

950 BF=ASC(X$)+BF

960 NEXT

980 BA=664-BF

990 IFFTO4THEN1040

1010 BS=BL/121:IFBSOINT(BS)THENBS=INT(BS+1)

1020 RC=INT(((BL-BS)*254)/RL)

1040 PRINTCHRS (147); "SCREEN OR PRINTER (S/P)?11

1050 GETX$:IFX$<>nSMANDX$<>"P"THEN1050

1060 RE$=CHR$(18):RA$=CHR$(146)

1070 IFX$=nS"THENOPENl,3:PRINT*l,CHR$(147)
1080 IFX$=MP"THENOPEN1,4

1090 PRINT*1,"FILE PARAMETERS ";RE$;F$;RO$
1100 PRINT*1," .»

1110 PRINT*1,"FILE TYPE: ";PE$;FT$;RA$:PRINT#1

1120 PRINT#lfIIFILE CLOSED: ";RES;CL$;RA$:PRINT*1

1130 PRINT*1,"FILE PROTECTED: ";PE$?PR$?RA$:PRINT*1
1140 PRINT*1,"ALLOCATED BLOCKS: ";RE$;BL;RA$:PRINT#1

1150 IFFTO4THEN1200

1160 PRINT*1,"RECORD LENGTH: ";PE$;RL;RA$:PRINT#1

1170 PRINT*1,"SIDE-SECTOR BLOCKS: ";RES;BS?RA$:PRINT*1

1180 PRINT*1,"DATA BLOCKS: ";RES;BL-BS;RA$:PRINT*1

1190 PRINT*1,"RECORDS: ";RE$;RC;RA$:PRINT*1

1200 IFFT=2THENPRINT*1,"START ADDRESS: ";

RE$;SA;RA$:PRINT#1

1210 PRINT*1,"FREE BLOCKS (DISK): ";RES;BF;RA$:PRINT*1

1220 PRINT*lf"ALLOCATED BLOCKS (D):";RE$;BA;RA$:PRINT#1
1230 CLOSE1

1240 PRINT"MORE (Y/N)?"

1250 CLOSE2:CLOSE15

1260 GETX$:IFX$<>"Y"ANDX$<>"NIITHEN1260
1270 IFX$="Y"THEN100

4.1.2 Scratch-protect Files - File Protect

As already mentioned, it is possible to protect files on the

VIC-1541 diskette and save this information in the

directory. A file's type is contained in byte 0 of the file
entry. Bit 6 denotes a protected file. If this bit is set to

1, the file can no longer be deleted with the SCRATCH
command. But because the DOS has no command to set this bit

an alternative way must be used to protect a file.

With the following program, you can:

* display all files on the disk

* protect files
* unprotect files

* erase files

This program can delete protected files as well as
unprotected files. If you wish to delete a protected file,

273

Anatomy of the 1541 Disk Drive

you must confirm it. This program is also documented with a

variable usage and descriptions so that you can use these

techniques in your own programs.

List of Variables:

DF - Flagf set in the routine "read/search file" if the

desired filename is found

FL - Set if the routine "read/search file" is only to be

used for listing files

FT - Variable for storing the filetype

T - Track of the actual block of the file entry

S - Sector of the actual block of the file entry

TT -Track, in which the file entry block of the desired

file is found

SS - Sector, in which the file entry block of the desired

file is found

FF$ - last filename read from the directory

F$ - filename to search for

Program Documentation:

100 Set the screen color

110 - 230 Program header and option menu

240 - 260 Read the menu choice and call the appropriate

subroutine

270 Back to the option menu

280 - 350 Subprogram "list all files"

310 Erase screen

320 Set flag FL to list files in the subroutine

"read/search file"

350 Reset the flag and jump back

360 - 600 Subroutine "protect file"

390 Call subroutine "input filename"

400 Call the subroutine "read/search file"

410 - 450 Test if the file is found

460 - 480 Read file type and store in FT

490 - 500 Test if the file is already protected

510 Protect file (bit 6 to 1)

520 - 550 Transfer the file type to the buffer and write the

block to disk

560 Close the channel

570 - 600 Message "File protected" and jump back

610 - 850 Subroutine "unprotect file"

640 Call subroutine "input filename"

650 Call subroutine "read/search file"

660 - 700 Test if file is found

710 - 730 Read file type and store in FT

740 - 750 Test if the file is already unprotected

760 Unprotect the file (bit 6 to 0)

770 - 800 Transfer the file type to the buffer and write

the block to the disk ,

810 Close the file :

820 - 850 End the subroutine

274

Anatomy of the 1541 Disk Drive

860 -1170 Subroutine "erase a file"

890 Call the subroutine "input filename"

900 Call the subroutine "read/search file"
910 - 950 Test if the file is found

960 - 980 Read the file type and save in FT

990 Test if the file is protected

1000-1030 Indicate that the file is protected, with the

possibility to erase it anyway

1040-1060 Ask if the file should really be erased

1070 Bit 6 set back, if protected

1080-1110 Transfer the file type to the buffer and write
the block to the disk

1120 Initialize the diskette

1130 Erase the file

1140-1170 End the subroutine

1190-1560 Subroutine "read/search file"

1220 Open the command and data channels

1230-1240 Read directory and set buffer pointer

1250-1320 Test if the disk contains a write protect. For
this purpose, the directory is written back to the
disk unchanged (line 1250). If the disk has a

write protect tab on it, the error message 26,
WRITE PROTECT ON will occur.

1330 Initial values for the track and sector variables
are set

1340-1350 Read the file entry block and position the buffer
pointer to the first byte

1360-1390 Read the address of the next file entry block
1400-1530 Loop to read filenames. The names are then either

listed on the screen or compared to the desired
filename, based on the value of flag FL

1540-1560 If the variable T (track) contains zero, no more
file entry blocks follow and the subroutine ends.

BASIC Listing of the Program:

100 POKE 53280,2:POKE53281,2:PRINTCHR$ (158) ;CHR$,(147) ;
110 PRINTTAB(8) ;"============:========:===»

120 PRINTTAB(8);"ERASE AND PROTECT FILES"
130 PRINTTAB(8) ;"========:===============«

140 PRINT:PRINT

150 PRINT"WITH THIS PROGRAM, FILES CAN BE"

160 PRINT"PROTECTED, ERASED, AND UNPROTECTED"
180 PRINT:PRINT

190 PRINTTAB(6);" -1- LIST ALL FILES":PRINT
200 PRINTTAB(6);" -2- PROTECT A FILE":PRINT
210 PRINTTAB(6);" -3- UNPROTECT A FILE":PRINT
220 PRINTTAB(6);" -4- ERASE A FILE":PRINT

230 PRINTTAB(6);" -5- END THE PROGRAM":PRINT

240 GETX$:IFX$=""ORVAL(X$)<lORVAL(X$)>5THEN240
250 IFVAL(X$)=5THENEND

260 ONVAL(X$)GOSUB280,360,610,860
270 GOTO 100 ■ ' '

280 REM •

290 REM LIST ALL FILES

275

Anatomy of the 1541 Disk Drive

300 PEM

310 PRINTCHR$(147)

320 FL=1:GOSUB1190

330 PRINT:PRINT"RETURN FOR MORE"

340 INPUTXS

350 FL=0:RETURN

360 REM

370 REM PROTECT A FILE

380 REM

390 GOSUB1580

400 GOSUB1190

410 IFDF=1THEN46O

420 PRINT"FILE NOT FOUND!":PRINT

430 PRINT"RETURN FOR MORE"

440 INPUTX$:CLOSE2:CLOSE15

450 RETURN

460 PRINT#15,"B-P";2;X*32+2

470 GET# 2,X$:IFX$=""THENX$=CHR$(0)

480 FT=ASC(X$)

490 IF(FT AND 64)=0 THEN 510

500 PRINT"FILE IS ALREADY PROTECTEDI":PRINT:GOTO430

510 FT=(FT OR 64)

520 PRINT#15r"B-P";2;X*32+2

530 PRINT#2,CHR$(FT);

540 PRINT#15,"B-P";2;0

550 PRINT#15,"U2";2;0;TT;SS

560 CLOSE2:CLOSE15

570 PRINT"FILE PROTECTED."

580 PRINT"RETURN FOR MORE"

590 INPUTX$

600 CLOSE2:CLOSE15:RETURN

610 REM

620 REM UNPROTECT A FILE

630 REM

640 GOSUB1580

650 GOSUB1190

660 IFDF=1THEN71O

670 PRINT"FILE NOT FOUND!":PRINT

680 PRINT"RETURN FOR MORE"

690 INPUTX$:CLOSE2:CLOSE15

700 RETURN

710 PRINT#15,"B-P";2;X*32+2

720 GET#2,X$:IFX$=""THENX$=CHR$(0)

730 FT=ASC(X$)

740 IF (FT AND 64)=64THEN760

750 PRINT"FILE IS ALREADY UNPROTECTED!":PRINT:GOTO680

760 FT=(FTAND255-64)

770 PRINT#15,"B-P";2;X*32+2

780 PRINT#2,CHR$(FT);

790 PRINT#15,"B-P";2;0

800 PRINT#15,"U2";2;0;TT;SS

810 CLOSE2:CLOSE15

820 PRINT"FILE UNPROTECTED."

830 PRINT"RETURN FOR MOPE"

840 INPUTXS

276

Anatomy of the 1541 Disk Drive

850 RETURN

860 REM

870 REM ERASE A FILE

880 REM

890 GOSUB1580

900 GOSUB1190

910 IFDF=1THEN96O

920 PRINT"FILE NOT FOUND!":PRINT

930 PRINT"RETURN FOR MORE"

940 INPUTX$:CLOSE2:CLOSE15

950 RETURN

960 PRINT#15,"B-P";2;X*32+2

970 GET#2,X$:IFX$="MTHENX$=CHR$(0)

980 FT=ASC(X$)

990 IF(FT AND 64)=0THEN1040

1000 PRINT"WARNING! FILE IS PROTECTED!"

1010 PRINT"UNPROTECT AND ERASE (Y/N)?"

1020 GETX$:IFX$<>"YwANDX$<>"NIITHEN1020

1030 IFX$="N"THEN1170

1040 PRINT"ARE YOU SURE (Y/N)?"

1050 GETX$:IFX$<>"Yl)ANDX$<>"N"THEN1050

1060 IFX$="N"THEN1170

1070 FT=(FT AND 255-64)

1080 PRINT#15f"B-P";2;X*32+2

1090 PRINT#2,CHR$(FT);

1100 PRINT#15,"B-P";2;0

1110 PRINT#15,"U2";2;0;TT;SS

1120 PRINT#15f"l0"

1130 PRINT#15,"S:"+F$

1140 PRINT"FILE ERASED."

1150 PRINT"RETURN FOR MORE"

1160 INPUTX$

1170 CLOSE2:CLOSE15:RETURN

1180 REM

1190 REM

1200 REM READ / SEARCH FILE

1210 REM

1220 OPEN15,8f15,"l0":OPEN2f8,2f"#"

1230 PRINT#15,"B-R";2;0;18;0

1240 PRINT#15,"B-P";2;0

1250 PRINT#15,"U2";2;0;18,-0
1260 INPUT#15,X1$

1270 IF VAL(X1$)<>26 THEN 1330

1280 PRINT"PLEASE REMOVE THE WRITE PROTECT TAB FROM"

1290 PRINT"THE DISKETTE BEFORE USING THIS PROGRAM."
1300 PRINT"RETURN FOR MORE"

1310 INPUTXS

1320 CLOSE2:CLOSE15sRETURN

1330 T=18:S=1:TT=18:SS=1

1340 PRINT#15,"B-R";2;0;T;S
1345 TT=T:SS=S

1350 PRINT#15,"B-P";2;0

1360 GET#2,X$:IFX$=""THENX$=CHP$(0)
1370 T=ASC(X$)

1380 GET#2,X$:IFX$=""THENX$=CHR$(0)

277

Anatomy of the 1541 Disk Drive

1390 S=ASC(X$)

1400 FORX=0TO7

1410 PRINT#15,"B-P";2;X*32+2

1420 GET#2,X$:IFX$= IMITHENX$=CHR$(0)

1430 IFASC(X$)=0THEN1530

1440 PRINT#15,MB-P";2;X*32+5

1450 FF$=""

1460 FORY=0TO15

1470 GET#2,X$:IFX$=IIMTHENX$=CHR$(0)

1480 IFASC(X$)=160THEN1500

1490 FF$=FF$+X$

1500 NEXTY

1510 IFFLTHENPRINTFF$:GOTO1530

1520 IFF$=FF$THENDF=l:GOTO1570

1530 NEXTX

1540 IFTO0THEN1340

1550 CLOSE2:CLOSE15

1560 IFFL=OTHENPRINTMFILENAME NOT FOUNDln:FORI=lTO2000:

NEXT

1570 RETURN

1580 REM

1590 REM INPUT FILENAME

1600 REM

1610 PRINTtPRINT

1620 INPUTMFILENAME:H;F$

1630 IFLEN(F$X=16THEN1650

1640 PRINT"FILENAME TOO LONG!":GOTO1620

1650 DF=0:FL=0

1660 RETURN

This utility program was written for the CBM 64. This

version can also be run on the VIC 20. Only line 100 which

sets the screen color on the CBM 64 need be changed or

ignored. If you value perfect video output, lines 110-230

can also be changed to accommodate the VIC 20's smaller

screen size.

4.1.3 Backup Program - Copying a Diskette

The VIC 1541 disk drive does not allow disks to be

duplicated since it is a single drive, as the double drives

permit with the COPY or BACKUP commands of BASIC 4.0. With

the 1541, each program to be copied must be transferred

through the computer.

Here's an example of how you might copy a diskette using a

single disk drive:

First, the BAM as well as the names and IDs of the disk to

be copied are read into the computer. From the information

in the BAM, you can determine which blocks of the original

diskette are used. In order to save time, only the allocated

278

Anatomy of the 1541 Disk Drive

blocks are copied. Then a direct access file is opened and
the first 169 (as many as will fit in the memory of tPe
Commodore 64) allocated blocks are read. Then the user is

asked to put a new diskette in the drive. The new diskette
is then formatted with the name and ID of the original
diskette. Now the previously read blocks are written to the
diskette. The next 169 blocks of the original diskette are
read into memory and written out to the destination
diskette. This ends after four disk swaps, at which time the
entire diskette will have been copied.

The program is written in BASIC except for the portion which
reads and writes the direct access file. This part is

written in machine language which is considerably faster
than a GET# loop in BASIC. Because of the nature of the
program, the number of diskette changes is dependent on the
free storage in the computer. A VIC 20 with a 16K expansion
requires 11 changes of original and destination diskettes.

Here is a time comparison between this program and
duplication on a double drive with the same capacity. Our
program requires about 20 minutes, while the CBM 4040 does
it in about 3 minutes.

Duplicating a diskette with this program is quite simple.
You need only follow the messages on the screen to insert
the original or destination diskette. The program does the
rest for you.

100 REM BACKUP PPOGRAM C64 - VIC 1541
110 PEM

* 120 POKE56,23:CLR:GOSUB640
130 OPEN1,8,15

140 DIM B%(35,23),S%(35),Z(7),A$(1)

150 A$(0)="DESTINATION":A$(1) ^'ORIGINAL":R=1
160 AD=23*256:GOSUB590

170 POKE250,0:POKE251,AD/256
180 GOSUB530:GOSUB290

190 PRINTNS"BLOCKS TO COPYM:PRINT
200 T=l:S=0

210 FORI=lTO4:TT=T:SS=S:R=l:IFI=lTHEN240
220 IFR=0ANDI=lTHENGOSUB450:GOTO240
230 GOSUB590

240 POKE251,AD/256:FORJ=1TO169
250 IFB%(T,S)=0THENGOSUB570

260 S=S+1:IFS=S%(T)THENT=T+1sS=0:IFT=36THENJ=169
270 NEXT:IFRTHENR=0:T=TT:S=SS:GOTO220
280 NEXT:GOTO510

290 T=18:S=0:GOSUB570

300 NS=0:FORT=lTO35:S=0

310 NS=NS+S%(T)-PEEK(AD+4*T)
320 FORJ=1TO3

330 B=PEEK(AD+4*T+J)

340 FORI=0TO7

279

Anatomy of the 1541 Disk Drive

340 FORI=0TO7

350 B%(T,S)=B AND Z(I):S=S+1

360 NEXT I,J

370 FOR S=S%(T)TO23

380 B%(T,S)=-1 : NEXT S,T

390 FOP I=0TO15

400 A=PEEK(AD+144+I)

410 IFAOl60THENN$=N$+CHP$(A)

420 NEXT

430 I$=CHP$(PEEK(AD+16 2))+CHR$(PEEK(AD+163))

440 PRINTN$,I$:RETURN

450 PRINT"PLEASE INSERT NEW DISKETTE"

460 PRINT"AND PRESS RETURN":PRINT:POKE198,0:CLOSE2

470 GETA$:IFA$OCHR$(13)THEN470

480 PRINT#lf"N0:"N$"fllI$

490 INPUT#1,A,B$,C,D:IFATHENPRINTA","B$","C","D:END

500 GOTO630

510 CLOSE2:CLOSE1:END

520 REM SECTORS PEP TRACK

530 FORT=1TO35

540 S%(T)=21:IFT>17THENS%(T)=19:IFT>24THENS%(T)=18:

IFT>30THENS%(T)=17

550 NEXT

560 FORI=0TO7:Z(I)=2*I:NEXT:RETURN

570 IFRTHENPRINT#1,"U1 2 0"T;S:SYSIN:RETURN

580 PRINT#1,"B-P 2 0":SYSOUT:PRINT#1,"U2 2 0"T;S:RETURN

590 CLOSE2:PRINT"PLEASE INSERT "A$(R)M DISKETTE."

600 PRINT"AND PRESS RETURN":PRINT:POKEl98f0

610 GETA$:IFA$OCHR$(13)THEN610

620 PRINT#1,"IO"

6 30 OPEN2,8,2,"#":RETURN

640 FOR I = 828 TO 873 : REM READ MACHINE LANG. PROGRAM

650 READ X : POKE I,X : S=S+X : NEXT

660 DATA 162, 2, 32,198 ,255 ,160f 0, 32,207,255,145,250

670 DATA 200,208,248,230,251, 32,204,255, 96,198, 1,162

680 DATA 2, 32,201,255,160, 0,177,250, 32,210,255,200

690 DATA 208,248,230,251, 32,204,255,230, 1, 96

700 IF SO7312 THEN PRINT "EPPOR IN DATA!!":END

710 IN=828:OUT=849-.RETURN

4.1.4 Copying Individual Files to another Diskette

The following program permits you to copy individual files

from one diskette to another. The files can be programs

(PRG), sequential files (SEQ) or user files (USP). Relative
files cannot be copied with this program; these can be

copied with a BASIC program that reads all data records into
a string array and then writes them back again into a new

file.

In the first pass, the program reads the complete file into

the memory of the Commodore 64. Then the destination

280

Anatomy of the 1541 Disk Drive

Next the complete file is written on the second disk. The

computer has 49 Kbytes for data storage; you can handle up

to 196 blocks on the diskette.

For reasons of speed, the reading and writing of "the data is

performed by a machine language program, which is stored in

DATA statements.

The program is suited for copying sequential files as

already mentioned, as well as programs of all kinds; the

start address (of a machine language program) is not

relevant.

100 REM FILE COPIER PROGRAM C64

110 REM

120 POKE 56,12 : CLR

130 GOSUB 1000

140 INPUT"FILENAME ";N$

150 PRINT"FILE TYPE ";

160 GETT$:IFT$<>IISllANDT$<>"PllANDT$O"UIITHEN160
170 PRINTT$:PRINT

180 PRINT"PLEASE INSERT ORIGINAL DISK"

190 PRINT"AND PRESS A KEY":PRINT

200 GETA$:IFA$=""THEN200

210 OPEN 2,8,2,N$+","+T$

220 POKE 3,0:POKE 4,12:SYS 866

230 CLOSE 2

240 PRINT"PLEASE INSERT DESTINATION DISK"

250 PRINT"AND PRESS A KEY":PRINT

260 GETA$:IFA$=""THEN260

270 OPEN 2,8,2,N$ + II,"+T$+I1,W"

280 POKE 3,0:POKE 4,12:SYS 828

290 CLOSE 2 : END

1000 FOR I = 828 TO 898

1010 READ X : POKE I,X : S=S+X : NEXT

1020 DATA 162, 2, 32,201,255,198, 1,160, 0, 56,165, 3

1030 DATA 229, 5,165, 4,229, 6,176, 13,177, 3, 32,210

1040 DATA 255,230, 3,208,236,230, 4,208,232,230, 1, 76

1050 DATA 204,255,162, 2, 32,198,255,160, 0, 32,207,255

1060 DATA 145, 3,230, 3,208, 2,230, 4, 36,144, 80,241

1070 DATA 165, 3,133, 5,165, 4,133, 6, 76,204,255

1080 IF SO8634 THEN PRINT "ERROR IN DATA !!":END

1090 RETURN

4.1.5 Reading the directory from within a program

Sometimes applications programs store user data in a file

under a desired name. If you want to use this file again,

but you cannot remember the file name, then you have a

problem. If this happens, you must exit the program, search

for the name in the directory, reload the program and start

281

Anatomy of the 1541 Disk Drive

again. To avoid this, you can include a directory listing
routine in your program. If you forget the filename, you can
display the directory with a function key, for example,
without the need to leave the program. Here is a sample of
such a. routine:

100 PRINTCHR$(147);

110 OPEN15,8,15,"I0":OPEN2,8,2,M#"
120 T=18:S=1

130 PRINT#15,"B-RM;2;0;T;S

140 PRINT#15,"B-P";2;0

150 GET#2,X$:IFX$=""THENX$=CHR$(0)
160 T=ASC(X$)

170 GET#2,X$:IFX$=""THENX$=CHR$(0)
180 S=ASC(X$)

190 FORX=0TO7

200 PRINT#15,MB-PM;2;X*32+5

210 FF$=""

220 FORY=0TO15

230 GET# 2,X$:IFX$= ""THENX$=CHR$ (0)

240 IFASC(X$)=160THEN270

250 FF$=FF$+X$

260 NEXTY

270 IFA=OTHENA=1:PRINTFF$;:GOTO290

280 A=0:PRINTTAB(20);FF$

290 NEXTX

300 IFTO0THEN130

310 CLOSE1:CLOSE2

320 PRINT"RETURN FOR MORE"

330 INPUTXS

340 END:REM IF SUBROUTINE, THEN RETURN HERE

In order to select the filename, the directory is printed on

the screen. Should this program be used as a subroutine

(called with GOSUB) line 340 must contain RETURN instead of
END.

We used this routine in the utility programs in sections
4.1.1 and 4.1.2.

282

Anatomy of the 1541 Disk Drive

4.2 The Utility Programs on the TEST/DEMO Disk

There are many 1541 owners that know little about the

programs contained on the Test/Demo disk. The main reason is

that these programs are largely undocumented. The following

descriptions of these programs should help you:

4.2.1 DOS 5.1

The DOS 5.1 simplifies the operation of the VIC-1541 DOS. It

can run on the VIC-20 or Commodore 64. To load DOS 5.1 on

the VIC-20, give the commands

LOAD"VIC-20 WEDGE",8

RUN

This is the loader for DOS 5.1 for the VIC 20.

If you want to use it on the Commodore 64, give the

commands:

LOADnC-64 WEDGE",8

RUN

This loads DOS 5.1 into the CBM 64.

What does this DOS 5.1 offer? It allows you to send

convenient commands to the 1541 disk drive. If, for example,

you want to display the directory on the screen, you use the

DOS 5.1 command @$ or >$. This does not erase the program in
memory.

The individual commands of the DOS 5.1 ,

Command Function

@$ or >$

@V or >V

@C:... or >C:..,

©file or /file

@ or >

@N:... or >N:...

@I or >I

@R:... or >R:..,

@S:... or >S:...

@#n or >#n

Display the directory

Same function as "VALIDATE"

Copy files (COPY)

Load program

Read and display error message

Format a diskette

Intitialize the disk

Rename a file (RENAME)

Erase a file (SCRATCH)

Change disk device to n

283

Anatomy of the 1541 Disk Drive

4.2.2 COPY/ALL

With the program COPY/ALL files can be copied between disk

drives with different addresses. A drive must be changed

from device address 8 with the program DISK ADDR CHANGE

before this can occur. After starting the program, the

message:

disk copy all jim butterfield

from unit? 8

appears on the screen. Here you give the device address of

the disk drive from which you wish to get the files. If this

address is 8, just press RETURN. After this you give the

corresponding drive number of this unit (always 0 for single

drives). In this manner .you also give the device address of

the destination drive. Once this has occurred, the program

asks

want to new the output disk

?n

You are being asked if the destination diskette should fce

formatted. You answer with lyl (yes) or 'n' (no).

Then you can choose the files you want to copy with the

wildcard (*). If all files are supposed to be copied, just

give the asterisk.

Now the program gives the message

hold down 'y' or 'n' key to select

The program displays the files on the original disk, which

you can select with the 'y1 key (yes) or 'n' (no). The files

by which you pressed 'y' will be copied.

If, during the copying process, asterisks (***) appear behind

the files, it means that an error has occurred.

If there is not enough room on the destination disk, "***

output disk full" and "do you have a new one" appears. The

remaining files can be put on another formatted diskette. To

do this, answer 'y1 when ready.

At the the conclusion of the copying process, the number of

free blocks on the destination disk is displayed.

4.1.3 DISK ADDR CHANGE

With this program, the device address of a disk drive can be

changed through software. After starting the program, turn

all drives off except for the one you wish to change. Now

enter the old and new device addresses.

284

Anatomy of the 1541 Disk Drive

After this, the address is changed and the other drive can

be turned back on.

The following drives can be changed with this program:

2031

2040

4040

4040

8050

8050

8250

DOS

DOS

DOS

DOS

DOS

DOS

DOS

V2.6

VI. 1

V2.1

V2.7

V2.5

V2.7

V2.7

4.2.4 DIR

This is a small help program with the following

possibilites:

d - display the directory on the screen

> - With this character, a disk command can be given

in shortened form (for example, >N:TEST,KN to

format a diskette)

q - exit the program

s - display the error channel

These possibilities are also found in DOS 5.1, along with

other commands.

4.2.5 VIEW BAM

With this utility program you can view the usage of diskette

blocks on the screen. This table displays the sectors in

columns and the tracks in rows. Crosses indicate free blocks

and reverse crosses indicate allocated blocks. fn/a' means

that these blocks do not exist on the track.

After outputting the table, the diskette name and the number

of free blocks is displayed.

4.2.6 CHECK DISK

The utility program CHECK DISK tests every block on the

diskette by writing to and reading from it. The current

285

Anatomy of the 1541 Disk Drive

block and the total number of tested blocks is displayed on
the screen.

4.2.7 DISPLAY T&S

If you are interested in the construction of the individual

blocks of the disk and want to display these on the screen,

this utility program will help you. After starting the
program you give the desired track and sector. This will

then be sent to the printer or screen. The DISK-MONITOR

contained in this book is a easier to usef because it allows
you to change blocks and save them again.

4.2.8 PERFORMANCE TEST

This program makes it possible to test the mechanics of the
VIC-1541 disk drive. To accomplish thisf all the access
commands are executed, in the following order:

1. Disk is formatted

2. A file is opened for reading

3. Data are written to this file

4. The file is closed again

5. This file is opened for reading

6. The data are read

7. The file is closed again

8. The file is erased

9. Track 35 is written

10. Track 1 is written

11. Track 35 is read

12. Track 1 is read

After each access of the disk the error channel is

displayed. In this manner, it can be established which
access of the disk is not executed properly.

When using this program, use only diskettes containing no
important data because the entire diskette is erased during
the testing.

286

Anatomy of the 1541 Disk Drive

4.3 BASIC-Expansion and Programs for easy Use of the 1541

4.3.1 Input strings of desired length from the disk

Reading data from the disk with the INPUT# statement has one

major disadvantage - only data items having fewer than 88

characters can be read. This is because the input buffer of

the computer is limited. In addition, not all characters can

be read with the INPUT# statement. If a record contains a

comma or colon, BASIC views it as a separating character and

the remainder of the input is assigned to the next variable.

If the INPUT# statement has only one variable, the remainder

is ignored and the next INPUT# statement continues reading

past the next carriage return (CHR$(13)). The alternative,

to read the input with a GET# statement but results in much

slower input.

To avoid these disadvantages, we can use a small machine

language routine.

We will change the INPUT# statement, so that we can specify

the number of characters to be read. To distinguish it from

the normal INPUT# statement, we name the command INPUT*. The

syntax looks like this:

INPUT* lfn, len, var

Lfn is the logical file number of the previously OPENed

file, len is the number of characters to be read, and var is

the string variable into which the characters are to be

read. A program excerpt might look like this:

100 OPEN 2,8,2,"FILE"

110 INPUT* 2,100,A$

This reads a string of 100 characters from the opened file

into A$. This procedure is especially suited for relative

files, because a complete record can be read with one

command after positioning the record pointer. The

partitioning of record into fields can be accomplished with

the MID$.function. An elegant method of creating records is

described in the next section.

With this procedure it is no longer necessary to end a

record with a carriage return. You can especially make use

of the maximum record length with relative files:

100 OPEN 1,8,15

110 OPEN 2,8,2, "REL-FILE,L,"+CHR$(20)

120 PRINT#1, "P"+CHR$(10)+CHR$(0)+CHR$(l)

130 PRINT#2, "12345678901234567890";

140 PRINT#1, "P"+CHR$(10)+CHR$(0)+CHR$(l)

287

Anatomy of the 1541 Disk Drive

150 INPUT* 2f20,A$

160 PRINT A$

12345678901234567890

Here is the assembler listing for the machine language

program. It resides in the cassette buffer just like a

loader program in BASIC for the Commodore 64 and VIC 20.

; INPUT* LFN,LEN,A$

INPUT EOU $85

STAR EOU $AC

BASVEC EOU $308

CHRGET EOU $73

CHRGOT EOU CHRGET + 6

110:

150:

160:

170:

180:

190:

210:

220:

380:

390:

400:

410:

420:

430:

440:

450:

460:

470:

240:

250:

260:

270:

280:

290:

300:

310:

320:

330:

490:

500:

510:

530:

540:

550:

560:

570:

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033E

0340

0343

A9

AO

8D

8C

47

03

08 03

09 03

; C64 VERSION

CHKIN

BASIN

CHKCOM

INTER

EXECOLD

INPUTOLD

FINDVAR

STRRES

FRESTR

GETBYT

; VIC 20

CHKIN

BASIN

CHKCOM

INTER

EXECOLD

INPUTOLD

FINDVAR

STRRES

FRESTR

GETBYT

EOU

EOU

EOU

EOU

EOU

EOU

EOU

EOU

EOU

EOU

$E11E

$E112

$AEFD

$A7AE

$A7E7

$ABBF

$B08B

$B475

$B6A3

$B79E

VERSION

EOU

EOU

EOU

EOU

EOU

EOU

EOU

EOU

EOU

EOU

$E11B

$E10F

$CEFD

$C7AE

$C7E7

$CBBF

$D08B

$D475

$D6A3

$D79E

; COMMON LABELS

;

VARADR EOU $49

CLRCH EOU $FFCC

PARA EOU $61

INIT

ORG 828

LDA #<TEST

LDY #>TEST

STA BASVEC

STY BASVEC+1

288

Anatomy of the 1541 Disk Drive

580: 0346 60 RTS

600:

610:

620:

630:

640:

650:

660:

670:

680:

680:

690:

700:

710:

720:

730:

730:

740:

750:

760:

760:

770:

780:

790:

800:

810:

820:

830:

840:

850:

860:

870:

880:

890:

900:

910:

910:

0347

034A

034C

034E

0351

0354

0357

0359

035B

035E

0361

0364

0367

036A

036D

036E

036F

0372

0375

0377

0379

037C

037D

0380

0382

0385

0387

0388

038A

038B

038E

0390

0391

0393

0395

0398

20

C9

F0

20

4C

20

C9

FO

20

4C

20

20

20

20

8A

48

20

20

85

84

20

68

20

AO

B9

91

88

10

C8

20

91

C8

C4

DO

20

4C

73

85

06

79

E7

73

AC

06

BF

AE

9B

IE

FD

9E

FD

8B

49

4A

A3

75

02

61

49

F8

12

62

61

F6

CC

AE

00

00

A7

00

AB

A7

B7

El

AE

B7

AE

BO

B6

B4

00

El

FF

A7

TEST

FOUND

OKSTAR

STORE

FETCH

JSR

CMP

BEQ

JSR

JMP

JSR

CMP

BEO

JSR

JMP

JSR

JSR

JSR

JSR

TXA

PHA

JSR

JSR

STA

STY

JSR

PLA

JSR

LDY

LDA

STA

DEY

BPL

INY

JSR

STA

INY

CPY

BNE

JSR

JMP

CHRGET

#INPUT

FOUND

CHRGOT

EXECOLD

CHRGET

#STAR

OKSTAR

INPUTOLD

INTER

GETBYT-3

CHKIN

CHKCOM

GETBYT

CHKCOM

FINDVAR

VARADR

VARADR+1

FRESTR

STRRES

#2

PARA,Y

(VARADR)

STORE

BASIN

(PARA+1)

PARA

FETCH

CLRCH

INTER

; TO THE OLD

ROUTINE

; NEW INPUT

ROUTINE

; GET FILE

NUMBER

; LENGTH

; NOTICE

; SEARCH FOR

VARIABLE

; LENGTH

; RESERVE PLACE

FOR STRING

,Y

; Y=0

,Y

;TO INTERPRETER

LOOP

Here are the BASIC programs for entering the machine

language program for the INPUT* statement.

INPUT* , 64 Version

100 FOR I = 828 TO 922

110 READ X : POKE I ,X s

120 DATA 169, 71,160,

S=S+X : NEXT

3,141, 8, 3,140, 9, 3, 96, 32

289

Anatomy of the 1541 Disk Drive

130 DATA 115, 0,201,133,240, 6, 32f121, 0, 76,231,167

140 DATA 32,115, 0,201,172,240, 6, 32,191,171, 76,174
150 DATA 167, 32,155,183, 32, 30,225, 32,253,174, 32,158

160 DATA J.83,138, 72, 32,253,174, 32,139,176,133, 73,132
170 DATA 74, 32,163,182,104, 32,117,180,160, 2,185, 97

180 DATA 0,145, 73,136, 16,248,200, 32, 18,225,145, 98
190 DATA 200,196, 97,208,246, 32,204,255, 76,174,167
200 IF S <> 11096 THEN PRINT "ERROR IN DATA i!" : END
210 SYS 828 : PRINT "OK."

'INPUT* , VIC 20 VERSION

100 FOR I = 828 TO 922

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 169, 71,160, 3,141, 8, 3,140, 9, 3, 96, 32

130 DATA 115, 0,201,133,240, 6, 32,121, 0, 76,231,199

140 DATA 32,115, 0,201,172,240, 6, 32,191,203, 76,174
150 DATA 199, 32,155,215, 32, 27,225, 32,253,206, 32,158
160 DATA 215,138, 72, 32,253,206, 32,139,208,133, 73,132

170 DATA 74, 32,163,214,104, 32,117,212,160, 2,185, 97

180 DATA 0,145, 73,136, 16,248,200, 32, 15,225,145, 98

190 DATA 200,196, 97,208,246, 32,204,255, 76,174,199

200 IF S <> 11442 THEN PRINT "ERROR. IN DATA ! Ifl : END

210 SYS 828 : PRINT "OK."

4.3.2 Easy Preparation of Data Records

If you have worked with relative files before, you know that

a definite record length must be established. This record is
usually divided into several fields which likewise begin at

a definite position within the record, and have a set
length.

If you create a new record, for example, a separate INPUT

statement is generally used for each field. Before the

complete record can be written, it must be assembled

properly. Each field must be checked for proper length. If

it is longer than then the planned length of the

corresponding, data field, the remainder must be truncated to

the proper length. Here are two new BASIC commands that are

excellently suited for this task. These new commands are

written in machine language and are initialized with a SYS

command. You can then use them as any other BASIC commands.

The first command has the name !STR$ and serves to create a
string with the length of the data record.

A$ = «STR$(100,M ")

290

Anatomy of the 1541 Disk Drive

creates a string with 100 blanks and puts it in the variable
A$.

The next command places our data field in the previously

created string. For example, if you want to assign the

variable N$ containing the last name as a field of 25

characters at position 1 in the string A$, our new command
looks like this:

MID$ (A$fl,25) N$

Here the MID$ command is used as a so-called pseudo-variable

on the left side of the assignment statement. What happens

here is as follows:

The variable N$ replaces the first 25 characters of A$. If

the variable N$ is longer than 25 characters, only the first

25 characters are replaced and the rest are disregarded. If

N$ is shorter than 25 characters, only as many characters

are replaced as N$ contains. The original characters in £$
remain (blanks, in our case). That is exactly as we wanted.
Now we can program the following:

200

210

220

230

240

250

260

270

280

290

300

310

320

330

Here

135:

140:

150:

160:

170:

180:

190:

200:

205:

210:

220:

226:

229:

230:

231:

INPUT "LAST NAME "; L$

INPUT "FIRST NAME "; F$

INPUT "STREET

INPUT "CITY

INPUT "STATE

INPUT "ZIP CODE

A$ = !STR$ (92,

MID$ (A$,l,25)

MID$ (A$,26,20)

MID$ (A$,46,20)

MID$ (A$,66,15)

MID$ (A$,81,2)

MID$ (A$,83,9)

PRINT!2, A$

is the machine

C800

C800

C800

C800

C800

C800

C800

C800

C800

C800

C800

C800

C800

C800

C800

"; S$

"; C$

"; T$

n7 Z$

= L$

= F$

= S$

= C$

= T$

= Z$

language program for the

CHKOPEN

CHKCLOSE

CHKCOM

FRMEVL

CHKSTR

FRESTR

YFAC

CHRGET

CHRGOT

GETBYT

INTEGER

DESCRPT

STRADR

ADR2

ORG

EOU

EOU

EOU

EOU

EOU

EOU

EOU

EOU

EOU

EQU

EOU

EOU

EOU

EOU

$C800

$AEFA

$AEF7

$AEFD

$AD9E

$AD8F

$B6A3

$B3A2

$73

CHRGET+6

$B79B

$B1AA

$64

$62

$FB

291

Anatomy of the 1541 Disk Drive

232:

233:

234:

235:

236:

237:

238:

240:

241:

242:

243:

245:

248:

248:

248:

248:

248:

250:

250:

250:

251:

251:

251:

251:

252:

252:

252:

253:

900:

900:

910:

920:

920:

930:

940:

950:

960:

970:

980:

990:

1000:

1010:

1020:

1030:

1040:

1050:

1060:

1070:

1080:

C800

C800

C800

C800

C800

C800

C800

C800

C800

C800

C800

C800

C800

C802

C804

C807

C80A

C80D

C80F

C811

C814

C816

C818

C81B

C81E

C821

C823

C825

C828

C82B

C8 2E

C831

C832

C833

C836

C839

C8 3B

C83D

C840

C842

C844

C846

C849

C84C

C84E

C850

C852

C854

C855

A9

A0

8D

8C

4C

A9

85

20

C9

FO

20

4C

20

C9

FO

4C

20

20

20

8A

48

20

20

24

30

20

A5

DO

A5

4C

20

FO

AO

Bl

85

68

20

OD

C8

OA

OB

6B

00

OD

73

21

06

79

8D

73

C4

03

08

73

FA

9E

FD

9E

OD

OC

AA

64

24

65

52

82

1A

00

22

03

7D

03

03

C8

00

00

AE

00

AF

00

AE

B7

AE

AD

Bl

C8

B7

B4

ADR1

LEN1

LEN2

NUMBER

START

TYPFLAG

STRCODE

ILLQUAN

SYNTAX

POSCODE

VECTOR

TEMP

TESTIN

TEST2

• STRING$

STRING

STR

STR2

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

LDA

LDY

STA

STY

JMP

LDA

STA

JSR

CMP

BEQ

JSR

JMP

JSR

CMP

BEQ

JMP

$FB+2

3

4

5

6

13

$C4

$B248

$AF08

$B9

$30A

LEN1

#<TESTIN

#>TESTIN

VECTOR

VECTOR+1

MIDSTR

#0

TYPFLAG

CHRGET

TEST2

CHRGOT

$AE8D

CHRGET

#STRCODE

STRING

SYNTAX

FUNCTION

JSR

JSR

JSR

TXA

PHA

JSR

JSR

BIT

BMI

JSR

LDA

BNE

LDA

JMP

JSR

BEQ

LDY

LDA

STA

PLA

JSR

CHRGET

CHKOPEN

GETBYT+3

CHKCOM

FRMEVL

TYPFLAG

STR

INTEGER

DESCRPT

ILL

DESCRPT+1

STR2

$B782

ILL

#0

($22)rY

TEMP

$B47D

;OPEN PAREN

;NOTICE LEN

;STRING

;HIGH BYTE

; >255

; LOW BYTE,

LENGTH

;SETSTR

TYPFLAG TO

NUMERIC

;LENGTH 0

;FIRST CHAR

;LENGTH

;FRESTR

292

1090:

1100:

1110:

1120:

1120:

1130:

1140:

1150:

1160:

C858

C859

C85B

C85D

C85E

C860

C862

C865

C868

A8

FO

A5

88

91

DO

20

4C

4C

07

03

62

FB

CA

F7

48

B4

AE

B2

LOOP

STR3

ILL

Anatomy of the 1541 Disk Drive

TAY

BEO STR3

LDA TEMP

DEY

STA (STRADR),Y ; CREATE

STRING

BNE LOOP

JSR $B4CA ;BRING STRING

IN DESCRIPTOR STACK

JMP CHKCLOSE

JMP ILLQUAN

; MID$(STRINGVAR,POSfLEN) = STRING EXP

; MID$(STRINGVAR,POS) = STRING EXP

200:

210:

240:

250:

255:

260:

270:

280:

290:

325:

330:

355:

360:

370:

372:

375:

378:

400:

410:

420:

430:

440:

450:

460:

470:

480:

490:

500:

505:

510:

520:

530:

535:

535:

540:

545:

545:

C86B

C86B

C86B

C86B

C86B

C86B

C86B

C86B

C86B

C86B

C86B

0003

0004

0005

0007

0007

0007

C86B

C86D

C86F

C872

C875

C876

C879

C87B

C87D

C880

C883

C886

C889

C88C

C88E

C890

C892

C894

C897

C899

A9

A0

8D

8C

60

20

C9

F0

20

4C

20

20

20

85

84

85

84

20

AO

Bl

76

C8

08

09

73

CA

06

79

E7

73

FA

8B

64

65

49

4A

A3

00

64

03

03

00

00

A7

00

AE

BO

B6

MIDCODE

EXECUT

EXECOLD

VARNAM

VARADR

DESCRPT

TESTSTR

GETVAR

SETSTR

TEST

GETBYT

LENGTH

POSITION

VARSTR

COMP

POINT2

MIDSTR

MIDTEST

MID

EOU

EOU

EOU

EOU

EOU

EOU

EQU

EOU

EOU

EOU

EOU

ORG

DST

DST

DST

EOU

EOU

LDA

LDY

STA

STY

RTS

JSR

CMP

BEO

JSR

JMP

JSR

JSR

JSR

STA

STY

STA

STY

JSR

LDY

LDA

$CA

$308 ;VECTOR FOR

STATEMENT EXECUTE

$A7E7

$45

$49

$64

$AD8F

$B08B

$AA52

$AEFF

$B79E

3

1

1

2

$B2

$50

#<MIDTEST

#>MIDTEST

EXECUT

EXECUT+1

CHRGET

#MIDCODE

MID

CHRGOT

EXECOLD

;CODE FOR MID$

;? YES

;EXECUTE

NORMAL STATEMENT

CHRGET

CHKOPEN

GETVAR

DESCRPT

DESCRPT+1

VARADR

VARADR+1

FRESTR

#0

(DESCRPT),

;NEXT CHAR

;OPEN PAREN

;GET VAR

Y

293

Anatomy of the 1541 Disk Drive

545:

545:

550:

560:

560:

560:

570:

570:

570:

600:

610:

620:

630:

650:

650:

660:

660:

665:

665:

665:

670:

670:

680:

690:

700:

710:

715:

715:

715:

717:

717:

717:

720:

730:

770:

780:

790:

800:

800:

800:

800:

800:

800:

810:

810:

820:

840:

850:

860:

870:

880:

880:

910:

C89B

C89C

C89E

C8A1

C8A3

C8A5

C8A7

C8A8

C8AA

C8AC

C8AF

C8B2

C8B3

C8B5

C8B6

C8B8

C8BB

C8BD

G8BF

C8C1

C8C3

C8C6

C8C9

C8CA

C8CC

C8CF

C8D1

C8D2

C8D3

C8D5

C8D7

C8D9

C8DB

C8DE

C8E0

C8E3

C8E6

C8E9

C8EB

C8ED

C8EF

C8F0

C8F2

C8F4

C8F5

C8F7

C8F9

C8FB

C8FD

C8FF

C901

C902

C904

48

F0

20

A0

Bl

85

C8

Bl

85

20

20

8A

F0

CA

86

20

C9

DO

A9

DO

20

20

8A

DO

4C

85

68

38

E5

C5

BO

85

20

A9

20

20

20

AO

Bl

85

88

Bl

85

88

Bl

FO

C5

BO

85

A5

18

65

85

2E

52

01

49

05

49

06

FD

9E

17

04

79

29

04

FF

OC

FD

9E

03

48

03

04

03

02

03

F7

B2

FF

9E

A3

02

64

51

64

50

64

D3

03

02

03

05

04

05

AA

AE

B7

00

AE NEXT

B7

B2 ILL

STORE

AE OK

AE

AD

B6

OKI

PHA

BEO

JSR

LDY

LDA

STA

INY

LDA

STA

JSR

JSR

TXA

BEO

DEX

STX

JSR

CMP

BNE

LDA

BNE

JSR

JSR

TXA

BNE

JMP

STA

PLA

SEC

SBC

CMP

BCS

STA

JSR

LDA

JSP

JSR

JSR

LDY

LDA

STA

DEY

LDA

STA

DEY

LDA

BEO

CMP

BCS

STA

LDA

CLC

ADC

STA

ILL

SETSTR

#1

(VARADR),Y

VARSTR

(VARADR) ,Y

VARSTR+1

CHKCOM

GETBYT

ILL

POSITION

CHRGOT

#")"

;LENGTH

;PUT STRING IN

RAM

;VAR ADDR

;GET POS

;END OF

EXPRESSION?

NEXT

#$FF

STORE

CHKCOM

GETBYT

*+5

ILLOUAN

LENGTH

POSITION

LENGTH

OK

LENGTH

CHKCLOSE

#COMP

TEST

FRMEVL

FRESTR

#2

(DESCRPT),

POINT2+1

(DESCRPT),

POINT2

(DESCRPT),

ILL

LENGTH

OKI

LENGTH

VARSTR

POSITION

VARSTR

;MAX LENGTH

;GET LEN

;CLOSE PAPEN

;GET EXP

Y

Y

Y

;0 THEN ERROR

294

Anatomy of the 1541 Disk Drive

910:

920:

940:

950:

950:

960:

970:

970:

980:

C906

C908

C90A

C90C

C90D

C90F

C911

C913

C915

90

E6

A4

88

Bl

91

CO

DO

4C

02

06

03

50

05

00

F7

AE A7

LOOP

BCC

INC

LDY

DEY

LDA-

STA

CPY

BNE

JMP

*+4

VARSTR+1

LENGTH

(POINT1)fY

CHARS

(VARSTR)fY

#0

LOOP

$A7AE ;TO

;TRANSFER

FROM STRING

;EXP TO VAR

INTERPRETER

LOOP

For those who have no monitor or assembler for the Commodore

64, we have written a loader program in BASIC.

100 FOR I = 51200 TO 51479

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 169, 13,160,200,141, 10, 3,140, 11, 3, 76,107

130 DATA 200,169, 0,133, 13, 32,115, 0,201, 33,240, 6.

140 DATA 32,121, 0, 76,141,174, 32,115, 0,201,196,240

150 DATA 3, 76, 8,175, 32,115, 0, 32,250,174, 32,158

160 DATA 183,138, 72, 32,253,174, 32,158,173, 36, 13, 48

170 DATA 12, 32,170,177,165,100,208, 36,165,101, 76, 82

180 DATA 200, 32,130,183,240, 26,160, 0,177, 34,133, 3

190 DATA 104, 32,125,180,168,240, 7,165, 3,136,145, 98

200 DATA 208,251, 32,202,180, 76,247,174, 76, 72,178,169

210 DATA 118,160,200,141, 8, 3,140, 9, 3, 96, 32,115

220 DATA 0,201,202,240, 6, 32,121, 0, 76,231,167, 32

230 DATA 115, 0, 32,250,174, 32,139,176,133,100,132,101

240 DATA 133, 73,132, 74, 32,163,182,160, 0,177,100, 72

250 DATA 240, 46, 32, 82,170,160, 1,177, 73,133, 5,200

260 DATA 177, 73,133, 6, 32,253,174, 32,158,183,138,240 -

270 DATA 23,202,134, 4, 32,121, 0,201, 41,208, 4,169

280 DATA 255,208, 12, 32,253,174, 32,158,183,138,208, 3

290 DATA 76, 72,178,133, 3,104, 56,229, 4,197, 3,176

300 DATA 2,133, 3, 32,247,174,169,178, 32,255,174, 32

310 DATA 158,173, 32,163,182,160, 2,177,100,133, 81,136

320 DATA 177,100,133, 80,136,177,100,240,211,197, 3,176

330 DATA 2,133, 3,165, 5, 24,101, 4,133, 5,144, 2

340 DATA 230, 6,164, 3,136,177, 80,145, 5,192, 0,208

350 DATA 247, 76,174,167

360 IF S <> 31128 THEN PRINT "ERROR IN DATA !!" : END

370 SYS 51200 : PRINT "OK."

4.3.3 Spooling - Printing Directly from the Disk

If you have a printer connected to your computer in addition

to the disk drive, you can use a special characteristic of
the the serial bus.

It is possible to send files directly from disk to the

295

Anatomy of the 1541 Disk Drive

printer, without the need to transfer it byte by byte with
the computer. For example, if you have text saved as a
sequential file, and you want to print it on the printer,
the following program allows you to do so:

100 OPEN 1,4 : REM PRINTER

110 OPEN 2,8,2, "0:TEST" : REM TEXT FILE

120 GET#2, A$: IF ST = 64 THEN 140

130 PRINT#1, A$; : GOTO 120

140 CLOSE 1 : CLOSE 2

150 END

Characters are sent from the disk to the printer until the

end of file is recognized. Then the two files are closed ard
the program ended.

The following is done when spooling:

First both files are opened again. Then a command to receive
data (Listen) is sent to the printer, while the disk drive
receives the command to send data (Talk). Data are sent
automatically from the disk to the printer until the end of
file is reached. During this time, the computer can be used
without interferring with the transfer of data. Only the use
of peripheral devices is not possible during this time.

In practice, this is done with a small machine language

program. When you want to start printing, you call the

program and give the name of the file which you want to
send.

SYS 828, "TEXT"

OPENS the file TEXT on the diskette and sends it to the

printer. As soon as the transfer is begun, the computer
responds with READY, again and you can use it, as long as no

attempt is made to access the serial bus. You can prove that

the computer is no longer needed for transfer by pulling out

the bus cable to the disk, so that the diskette is connected

only to the printer. When the spooling is done, the disk

file is still open (the red LED is still lit). You can CLOiE

the file and turn the printer off and then back on, and give

the SYS command without a filename (the cable to the.disk
must be attached, of course).

SYS 828

With same command you can stop a transfer in progress. The

machine language program in the form of a loader program for

the Commodore 64 and the VIC 20 is found at the end.

Here are some hints for use:

We have successfully used the printer spooling with a

Commodore 64 and a VIC 20 with a printer such as the the VIC

296

Anatomy of the 1541 Disk Drive

1525. Attempts using an Epson printer with a VIC interface

as well as the VIC 1526 did not succeed. The serial bus, in

contrast with the parallel IEEE bus, appears to be capable

of spooling only with limitations. This is why it is

necessary to turn the printer off after spooling, because it

still blocks the bus. We would be happy if you would inform

us of your experience with other printers.

110:

130:

140:

142:

144:

160:

170:

175:

180:

190:

200:

202:

204:

230:

240:

260:

280:

300:

310:

320:

330:

340:

350:

360:

370:

380:

390:

400:

410:

411:

412:

413:

420:

430:

435:

435:

435:

510:

520:

530:

540:

550:

560:

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033C

033F

0341

0344

0347

0349

034B

034D

034F

0351

0354

0357

0359

035C

035F

0361

0364

0367

036A

036D

036F

0371

0373

0374

0376

20

F0

20

20

A6

F0

A9

A2

A0

20

20

A9

20

20

A2

20

20

20

20

A9

85

85

60

A9

85

79

33

E7

54

B7

38

02

08

02

BA

CO

04

Bl

BE

02

C6

BE

85

97

00

99

98

01

98

00

FF

E2

FF

FF

FF

ED

FF

ED

EE

EE

; 1541 -

;

CHRGOT

LISTEN

ATNRES

CLOCK

DATA

CLOSE

CLALL

SETFIL

GETNAME

OPEN

CHKIN

UNTALK

UNLISTEN

FNLEN

INDEV

NMBFLS

ERROR

?

OFF

64

EOU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

ORG

JSR

BEQ

JSR

JSR

LDX

BEQ

LDA

LDX

LDY

JSR

JSR

LDA

JSR

JSR

LDX

JSR

JSR

JSR

JSR

LDA

STA

STA

RTS

LDA

STA

SPOOL

$79

$FFB1

$EDBE

$EE85

$EE97

$FFC3

$FFE7

$FFBA

$E254

$FFC0

$FFC6

$FFAB

$FFAE

$B7

$99

$98

. $AF08

828

CHRGOT

OFF

CLALL

GETNAME

FNLEN

SYNTAX

#2

#8

#2

SETFIL

OPEN

#4

LISTEN

ATNRES

#2

CHKIN

ATNRES

CLOCK

DATA

#0

INDEV

NMBFLS

#1

NMBFLS

;ATN HI

;CLOCK HI

;DATA HI

;GET FILENAME

;INPUT DEVICE

;NO. OF FILES

;SYNTAX ERROR

;MORE CHARS

;SPOOL DONE

;OPEN FILE

;PRINTER

;DISK

297

Anatomy of the 1541 Disk Drive

570:

580:

620:

630:

640:

0378

037B

037E

0380

0383

20

20

A9

4C

4C

AE

AB

02

C3

08

FF

FF

FF

AF SYNTAX

JSR

JSR

LDA

JMP

JMP

UNLISTEN

UNTALK

#2

CLOSE

ERROR

Here is the BASIC loader program for the Commodore 64,

100 FOR I = 828 TO 901

110 READ X : POKE IfX : S=S+X : NEXT

120 DATA 32,121, 0,240, 51, 32,231,255, 32, 84,226

130 DATA 166,183,240, 56,169, 2,162, 8,160, 2, 32

140 DATA 186,255, 32,192,255,169, 4, 32,177,255, 32

150 DATA 190,237,162, 2, 32,198,255, 32,190,237, 32

160 DATA 133,238, 32,151,238,169, 0,133,153,133,152

170 DATA 96,169, 1,133,152, 32,174,255, 32,171,255

180 DATA 169, 2, 76,195,255, 76, 8,175

190 IF S <> 9598 THEN PRINT "ERROR IN DATA !!" : END

200 PRINT "OK."

For the VIC 20, use the following program:

100 FOR I = 828 TO 901

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 32,121, 0,240, 51, 32,231,255, 32, 81,226

130 DATA 166,183,240, 56,169, 2,162, 8,160, 2, 32

140 DATA 186,255, 32,192,255,169, 4, 32,177,255, 32

150 DATA 197,238,162, 2, 32,198,255, 32,197,238, 32

160 DATA 132,239, 32,160,228,169, 0,133,153,133,152

170 DATA 96,169, 1,133,152, 32,174,255, 32,171,255

180 DATA 169, 2, 76,195,255, 76, 8,207

190 IF S <> 9648 THEN PRINT "ERROR IN DATA !!" : END

200 PRINT "OK."

298

Anatomy of the 1541 Disk Drive

4.4 Overlay Technique and Chaining Machine Language Programs

A proven programming technique involves the creation of a

menu program which then loads and executes other programs"

based on the user's choice. There are two variations:

preserving or clearing the old variables in the chained
program.

It is possible to pass the old variables if the calling

program is as large or larger than the chained program. If a

program is chained from another program, the pointer to the

end of the previous program remains intact, and the new

program loads over the old.

In this example, we would get the following result:

100 REM PROGRAM 1

110 REM THIS PROGRAM IS LARGER THAN THE SECOND

120 A = 1000

130 LOAD "PROGRAM 2n,8

100 REM PROGRAM 2

110 PRINT A

1000

If the chained program is larger than the original program,

part of the variables are overwritten and contain

meaningless values. Moreover, when the variables that the

program destroyed are assigned new values, part of the

program is also destroyed. .

There are two characteristics of passing variables from the

previous program that should be noted - for strings and for

functions.

Any string variables that are defined as constants enclosed

in quotes in the first program, will have a problem. The

string variable pointer points to the actual text in the

program. If, for example, a string is defined in the first

program with the following assignment

100 AS = "TEXT"

the variable pointer points to the actual text within line

number 100. When chaining, the next program does not chance

this pointer. New text is now at the original location, so

the variable has unpredictable contents. We can easily work

around this, however. We need only ensure that the text is

copied from the program into string storage where text

variables are normally stored. You can do this as follows:

100 AS = "TEXT" + ""

299

Anatomy of the 1541 Disk Drive

By concatenating an empty string, you force the contents of

the variable to be copied to the string storage area.

Similar considerations apply to function definitions,

because here also the pointer points to the definition

within the program. Here you must define the function again

in the second program, for. example:

100 DEF FN A(X) =0.5 * EXP (-X*X)

If you want to chain a program, you can continue to use the

old variables provided the second program is not longer than

the first. If the chained program is longer, and we do not

want to preserve the old variables, there is a trick we can

use.

We need only set the end-of-program pointer to the end of

the new program immediately after loading. This can be done

with two POKE commands:

POKE 45, PEEK(174) : POKE 46, PEEK (175) : CLR

The CLR command is absolutely necessary. This line should be

the first line in the chained program. This allows us to

chain a large program without transfer of variables.

Another, not so elegant method involves writing the load

command in the keyboard buffer so the program will

automatically be loaded in the direct mode. To do this, we

write the LOAD and RUN commands on the screen and fill the

keyboard buffer with 'HOME1 and carriage returns. An END

statement must come after this in the program. The control

system then gets the contents of the keyboard buffer in the

direct mode and reads the LOAD and RUN commands that control

the loading and execution of the program. Because this

occurs in the direct mode, the end address of the program is

automatically set, the variables are erased and the program

is started with the RUN. The disadvantage of this method is

that since the LOAD command must appear on the video screen,

any display will be destroyed. In practice it looks like

this:

1000 PRINT CHP$(147)"LOAD"CHR$(34)"PROGRAM 2"CHR$(34)",8 "

1010 PRINT : PRINT : PRINT : PRINT

1020 PRINT "RUN"

1030 POKE 631,19 : POKE 632,13 : POKE 633,13

1040 POKE 634,13 : POKE 635,13 : POKE 636,13

1050 POKE 198,6 : END

You can see that this procedure is more complicated than the

previous one; it is only mentioned for the sake of

completeness. With the first procedure, only the LOAD

command need be programmed in line 1000:

1000 LOAD "PROGRAM 2",8

300

Anatomy of the 1541 Disk Drive

There is another technique for chaining machine language

programs.

If a machine language program is to be used from a BASIC

program, it must usually be loaded at the beginning of the

BASIC program. You must take note of two things:

First of all, you must make sure that the machine language

program loads to a specific place in memory. If you load a

program without additional parameters, the control system

treats it as a BASIC program and loads it at the starting

address of the BASIC RAM, generally at 2049 (Commodore 64).

Machine language programs can only be run, however, when

they are loaded at the address for which they were written.

This absolute loading can be accomplished by adding the

secondary address 1:

LOAD "MACH-PRG11,8,1

But remember that when loading a program from within another

program, BASIC attempts to RUN the program from the

beginning. This leads to an endless loop when loading

machine language programs, because the operating system

thinks that a new BASIC program has been chained:

100 LOAD "MACH-PRG",8,1

Here we can make use of the fact that the variables are

preserved when chaining. If we program the following, we

have reached our goal:

100 IF A=0 THEN A=l : LOAD "MACH-PRG",8,1

110 ...

When the program is started with RUN, A has the value zero

and the assignment after the THEN is executed, A contains

the value 1 and the machine language program is then LOADed.

When the program begins again after LOADing the program

MACH-PRG, A has the value 1 so the next line is executed.

The procedure is similar if you have several machine

language programs to load.

100 IF A=0 THEN A=l : LOAD "PROG 1",8,1

110 IF A=l THEN A=2 : LOAD "PROG 2",8,1

120 IF A=2 THEN A=3 : LOAD "PROG 3",8,1

130

The first time through, PROG 1 will be loaded, the next

time, PROG 2, and so on. Once all the programs are loaded,

execution continues with line 130.

301

Anatomy of the 1541 Disk Drive

4.5 Merge - Appending BASIC Programs

Certainly you have thought about the possibility of

combining two separate BASIC programs into one. Without
further details this is not possible, because loading the

second program would overwrite the first. With the knowledge

of how BASIC programs are stored in memory and on the

diskette, you can develop a simple procedure to accomplish
this task.

BASIC programs are stored in memory as follows:

NL NH pointer to the next program line, lo hi

LL LH line number, lo hi

XX YY ZZ tokenized BASIC statements

00 end-of-line marker

At the end of the program are two additional zero bytes:

00 00 a total of 3 zero bytes

Programs are also saved in this format. Where the program

starts and ends lies in two pointers in page zero:

PRINT PEEK(43) + 256 * PEEK(44)

gives the start of BASIC, 2049 for the Commodore 64,

PRINT PEEK(45) + 256 * PEEK(46)

points to the byte behind the three zero bytes.

Because a program is always loaded at the start of BASIC,

contained in the pointer at 43/44, one can cause a second

program to load at the end of the first. In practice, we

must proceed as follows:

First we load the first program into memory.

LOAD "PROGRAM l"r8

Now get the value of the ending address of the program.

A = PEEK(45) + 256 * PEEK(46)

This value is decremented by two so that the two zero bytes
at the end of the program are known.

A = A - 2

Now, note the original value of the start of BASIC.

PRINT PEEK(43), PEEK(44)

Next, set the start of BASIC to this value.

302

Anatomy of the 1541 Disk Drive

POKE, A AND 255 : POKE 44, A / 256

Now, LOAD the second program.

LOAD "PROGRAM 2",8

If you set the start of BASIC back to the original value, 1

and 8 for the Commodore 64 (as shown above with the PRINT

commands), you have the complete program in memory and can

view it with LIST or save it with SAVE.

POKE 43,1 : POKE 44,8

The following should be noted when using this method:

The appended program may contain only line numbers that are

greater than the largest line number of the first program.

Otherwise these line numbers can never be accessed with GOTO

or GOSUB and the proper program order cannot be guaranteed.

This procedure is especially well suited for constructing a

subroutine library for often used routines, so they need not

be typed in each time. It will work out best if you reserve

specific line numbers for the subroutines, such as 20000-

25000, 25000-30000, and so on. If you want to merge several

programs in this manner, you must first load the program

with smallest line numbers, and then the program with the

next highest numbers, etc.

303

Anatomy of the 1541 Disk Drive

4.6 Disk Monitor for the Commodore 64 and VIC 20

In this section we present a very useful tool for working

with your disk drive, allowing you to load, display, modify,
and save desired blocks on the diskette.

For reasons of speed, the program is written entirely in

machine language. The following commands are supported:

* Read a block from the disk

* Write a block to the disk
* Display a block on the screen

* Edit a block on the screen

* Send disk commands

* Display disk error messages

* Return to BASIC

The program announces its execution (automatically by the

BASIC load program) with

DISK-MONITOR VI.0

and waits for your input. If you enter •§•, the error

message from the disk will be displayed, for example

00, ok,00,00

If you want to send a command to the disk, enter an '@»

followed by the command.

You can initialize a diskette with

You can send complete disk commands in this manner, that you

would otherwise send with

OPEN 15,8,15

PRINT# 15,"command"

CLOSE 15

For example, you can erase files, format disks, and so on.

The most important function of the disk monitor is the

direct access of any block on the diskette. For this, you

use the commands R and W. R stands for READ and reads a

desired block, W stands for WRITE and writes a block to the

disk. You need only specify the track and sector you want to

read. These must be given in hexadecimal, exactly as the

output is given on the screen. If, for example, you want to

read track 18, sector 1 (the first directory block), enter
the following command:

>R 12 01

304

Anatomy of the 1541 Disk Drive

Each input must be given as a two-digit hex number,

separated from each other with a blank.

In order to display the block, use the command M. We receive

the following output:

DISK-MONITOR VI.0

>M

>:00 12 04 82 11 01 47 52 41 GRA

>:08 46 49 4B 20 41 49 44 2E FIX AID.

>:10 53 52 43 A0 A0 00 00 00 SRC ...

>:18 00 00 00 00 00 00 15 00

>:20 00 00 82 13 00 48 50 4C HPL

>:28 4F 54 2E 53 52 43 A0 A0 OT.SRC

>:30 A0 A0 A0 A0 A0 00 00 00 ...

>:38 00 00 00 00 00 00 05 00

>:40 00 00 82 13 03 56 50 4C VPL

>:48 4F 54 2E 53 52 43 A0 A0 OT.SRC

>:50 A0 A0 A0 A0 A0 00 00 00

>:58 00 00 00 00 00 00 09 00

>:60 00 00 82 13 09 4D 45 4D MEM

>:68 2E 53 52 43 A0 A0 A0 A0 .SRC

>:70 A0 A0 A0 AO AO 00 00 00

>:78 00 00 00 00 00 00 06 00

>:80 00 00 82 13 08 4D 45 4D MEM

>:88 2E 4F 42 4A AO AO AO AO .OBJ

etc.

Let's take a closer look at the output. The first hex number

after the colon gives the address of the following 8 bytes

in the block, 00 indicates the first byte in the block (the

numbering goes from 00 to FF (0-255)). 8 bytes follow the

address (4 on the VIC 20). In the right half are the

corresponding ASCII characters. If the code is not printable

($00 to $1F and $80 to $9F), a period is printed. When you

give the command M, as above, the entire block is displayed.

Because the block does not fit on the screen completely, it

is possible to display only part of it. You can give an

address range that you would like to display. If you only

want to see the first half, enter:

>M 00 7F

The second half with:

>M 80 FF

With the VIC 20, you can view quarters of the block. If you

now wish to change some data, you simply move the cursor to

the corresponding place, overwrite the appropriate byte, and

press RETURN. The new value is now stored and the right half

is updated with the proper ASCII character.

To write the modified block back to the diskette, you use

the command W. Here also you must give the track and sector

305

Anatomy of the 1541 Disk Drive

numbers in hexadecimal.

>W 12 01

writes the block back to track 18, sector 1, from where we

had read the block previously.

If you want to get back to BASIC, enter X and the computer

will respond with READY.. If you then want to use the disk
monitor again, you need not load it again. Just type SYS

49152 for the C64 or SYS 6690 for the VIC 20.

A warning:

Be sure to make a copy of any diskette that you work with in

this way. Should you make an error when editing or writing a

block, you can destroy important information on the disk so

that it can no longer be used in the normal manner. You

should make it a rule to only work with a copy.

Here you find an assembler listing of the program. After

this are the BASIC loader programs for the Commodore 64 and

VIC 20.

;

? disk monitor vie 20 / cbm 64

190:

200:

210:

220:

230:

240:

250:

260:

270:

280:

290:

300:

310:

320:

330:

340:

350:

360:

370:

380:

390:

400:

410:

420:

430:

440:

cooo

cooo

COOO

COOO

COOO

COOO

COOO

COOO

cooo

cooo

cooo

cooo

cooo

cooo

cooo

cooo

cooo

cooo

cooo

cooo

cooo

cooo

0200

0201

0202

0203

PROMPT

NCMDS

INPUT

TALK

SECTALK

IEEEIN

UNTALK

LISTEN

SECLIST

IEEEOUT

UNLIST

WRITE

OPEN

CLOSE

SETPAR

SETNAM

CHKIN

CKOUT

CLRCH

CR

QUOTE

OUOTFLG

SAVX

WRAP

BAD

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

ORG

BYT

BYT

BYT

„>„

6

$FFCF

$FFB4

$FF96

$FFA5

$FFAB

$FFB1

$FF93

$FFA8

$FFAE

$FFD2

$FFC0

$FFC3

$FFBA

$FFBD

$FFC6

$FFC9

$FFCC

13

$22

$D4

$200

0

0

0

;NUMBER OF

COMMANDS

;BASIC INPUT

BUFFER

306

Anatomy of the 1541 Disk Drive

450:

460:

470:

480:

490:

500:

510:

520:

610:

620:

630:

640:

650:

660:

670:

680:

690:

700:

710:

710:

710:

720:

730:

740:

750:

760:

770:

780:

790:

800:

840:

850:

860:

870:

880:

890:

900:

910:

960:

970:

980:

990:

1000:

1000:

1000:

1010:

1020:

0204

0205

0205

0205

0205

0205

0205

0205

COOO

G000

COOO

C002

C005

C008

C009

COOB

COOD

COOF

con

CO 14

C016

C019

C01C

C01E

CO 20

C022

C024

C026

CO 29

C02B

C02E

C031

C032

C035

C036

C037

C038

C03A

C03D

C03F

C042

C045

C048

C049

C04B

C04E

C050

A2

BD

20

E8

EO

DO

A2

A9

20

A9

8D

20

C9

FO

C9

FO

A2

DD

DO

8E

BD

48

BD

48

60

CA

10

4C

85

20

B9

20

C8

DO

EE

C6

DO

00

85

D2

12

F5

OD

3E

EB

00

01

33

3E

F9

20

F5

05

6A

OC

00

70

76

EC

OD

97

62

EO

DC

03

01

97

ED

C2

FF

CO

02

Cl

CO

02

CO

CO

CO

CO

C2

CO

02

FROM

TO

STATUS

SA

FA

FNADR

FNLEN

TMPC

COUNT

READY

INIT

MSGOUT

START

ST1

SO

SI

S2

BYT

BYT

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

LDX

LDA

JSR

INX

CPX

BNE

LDX

LDA

JSR

LDA

STA

JSR

CMP

BEQ

CMP

BEQ

LDX

CMP

BNE

STX

LDA

PHA

LDA

PHA

RTS

DEX

BPL

JMP

; SUBROUTINE

0

0

$90 •

$B9

$BA

$BB

$B7

$97

8 ;# OF

$E37B

#0

MESSAGE,X

WRITE

? SECONDARY

ADDRESS

;DEVICE # :

;FILENAME ADR

;LEN OF

FILENAME

BYTES PER LINE

;$E467 FOR VIC

#ASCDMP-MESSAGE

MSGOUT

#CR

#PROMPT

WRTWHR

#0

WRAP

RDOC ;READ

#PROMPT

ST1

#" " ;READ

ST1

#NCMDS-1 ?

INPUT LINE

OVER BLANK

COMPARE WITH

COMMAND TABLE

CMDSfX

S2

SAVX ;# OF

ADRH,X

ADRL,X

SI ;LOOP

START

TO DISPLAY

; THE DISK CONTENTS

DM

DM1

DM2

STA

JSR

LDA

JSR

INY

BNE

INC

DEC

BNE

TMPC

SPACE

BUFFER,Y

WROB

DM2

WRAP

TMPC

DM1

CMDS IN TABLE

;JUMP ADDR TO

STACK

OF ALL CMDS

;GET BYTE FROM

BUFFER

307

Anatomy of the 1541 Disk Drive

1030: C052 60 RTS

; READ BYTES AND WRITE TO MEMORY

1060:

1070:

1080:

1090:

1100:

1110:

1120:

1130:

1140:

1150:

1160:

1190:

1200:

1210:

1220:

1230:

1240:

1250:

1260:

1270:

1280:

1290:

1300:

1310:

1320:

1330:

1340:

1350:

1360:

1370:

1380:

1370:

1370:

1370:

1370:

1370:

1380:

1390:

1400:

1410:

1410:

1410:

1420:

1430:

1440:

1450:

1460:

1470:

1470:

C053

C056

C058

C05B

C05C

C05E

C05F

C062

C064

C065

C067

C06A

C06B

C06C

C06D

C06E

C06F

C070

C071

C072

C073

C074

C075

C076

C077

C078

C079

C07A

C07B

C07C

C07E

C081

C082

C085

C088

C08A

C08C

C08F

C091

C094

C097

C099

C09B

C09E

C0A0

C0A3

C0A6

C0A9

COAC

20

90

99

C8

C6

60

20

A9

2C

A9

4C

3A

57

52

4D

40

58

CO

Cl

Cl

CO

Cl

E3

CO

90

90

7B

3E

7A

AO

8C

88

8C

20

C9

FO

20

90

8D

20

C9

FO

20

90

8D

AC

20

20

98

FE

03

EO

97

62

20

OD

D2

00

03

04

CF

OD

17

FE

12

03

CF

OD

08

FE

03

04

03

C6

D6

CO

C2

CO

FF

02

02

FF

CO

02

FF

CO

02

02

C2

C2

BYT

BY3

SPAC2

SPACE

CRLF

JSR

BCC

STA

I NY

DEC

RTS

JSR

LDA

BYT

LDA

JMP

; COMMAND AND

CMDS

ADRH

ADRL

DSPLYM

DSP1

DSP2

ASC

ASC

ASC

ASC

ASC

ASC

EQU

EQU

EOU

EQU

EOU

EOU

EQU

EOU

EOU

EOU

EOU

EOU

LDY

STY

DEY

STY

JSR

CMP

BEO

JSR

BCC

STA

JSR

CMP

BEO

JSR

BCC

STA

LDY

JSR

JSR

TYA

RDOB

BY3 ;BLANK?

BUFFER,Y ?WRITE BYTE IN

BUFFER

TMPC

SPACE

#" M
$2C

#CR

WRITE

ADDRESS TABLE

':' ?EDIT MEM CONTENTS

'W1 ;WRITE BLOCK

•R1 ;READ BLOCK

'M1 ;DISLPAY BYTES

•@' ;DISK COMMAND

•X1 ;EXIT

>ALTM-1

>DIRECT-1

>DIRECT-1

>DSPLYM-1

>DISK-1

>READY-1

<ALTM-1

<DIRECT-1

<DIRECT-1

<DSPLYM-1

<DISK-1

<READY-1

#0

FROM

TO

INPUT

#CR

DSP1

RDOB ;PEAD START

ADDRESS

DSP1

FROM

INPUT

#CR

DSP1

RDOB ;READ END ADR

DSP1

TO

TO

TESTEND

ALTRIT

308

Anatomy of the 1541 Disk Drive

1480:

1490:

1500:

1510:

1520:

1530:

1550:

1570:

1580:

1590:

1600:

1610:

1610:

1620:

1620:

1630:

1640:

1650:

1710:

1720:

1730:

1740:

1750:

1760:

1770:

1780:

1790:

1800:

1820:

1830:

1840:

1850:

1860:

1870:

1880:

1890:

1900:

1910:

1920:

1950:

1960:

1970:

1980:

1990:

2000:

2010:

2020:

2030:

2040:

COAD

COBO

C0B3

C0B5

C0B8

COBB

COBE

C0C1

C0C4

C0C6

C0C7

C0C9

COCB

COCE

C0D1

C0D4

C0D6

C0D9

CO DC

CODD

CODE

CODF

COEO

C0E1

C0E4

C0E5

C0E6

•C0E8

COEB

CO EC

COED

COFO

C0F1

C0F4

C0F5

C0F7

C0F9

COFB

COFD

COFE

C100

C103

C106

C108

C10A

C10D

C10F

cm

C112

20

20

A9

20

20

4C

4C

20

90

A8

A9

85

20

20

20

DO

20

4C

48

4A

4A

4A

4A

20

AA

68

29

20

48

8A

20

68

4C

18

69

90

69

69

60

A9

8D

20

C9

DO

20

C9

DO

18

60

DC

62

08

3D

97

A6

OD

FE

F8

08

97

33

33

53

F8

97

OD

F4

OF

F4

D2

D2

F6

02

06

3A

00

02

33

20

09

33

20

OF

CO

CO

CO

C2

CO

CO

CO

Cl

Cl

CO

C2

CO

CO

CO

FF

FF

02

Cl

Cl

BEQSl

;EDIT

ALTM

A5

;WRITE

WROB

JSR

JSR

LDA

JSR

JSR

JMP

JMP

MEMORY;

JSR

BCC

TAY

LDA

STA

JSR

JSR

JSR

BNE

JSR

JMP

WROB

SPACE

#COUNT

DM

ASCDMP

DSP2

START

;ADDRESS

;OMIT FOR VIC

;8 OR 4

;DISPLAY

;ASCII DUMP

;ABS JUMP

READ ADDRESS AND DATA

RDOB

BEQSl

#COUNT

TMPC

RDOC

RDOC

BYT

A5

ASCDMP

START

;READ ADDR

;# OF BYTES

;OMIT FOR VIC

BYTE AS HEX NUMBER

PHA

LSR

LSR

LSR

LSR

JSR

TAX

PLA

AND

JSR

A

A

A

A

ASCII

#$0F

ASCII

; WRITE CHARACTERS IN X

WRTWHR

ASCII

ASCI

; READ

RDOB

RDOB1

PHA

TXA

JSR

PLA

JMP

CLC

ADC

BCC

ADC

ADC

RTS

WRITE

WRITE .

#$F6

ASCI

#6

#$3A

HEX BYTE AND PUT

LDA

STA

JSR

CMP

BNE

JSR

CMP

BNE

CLC

RTS

#0

BAD ;READ

RDOC

#'
RDOB2

RDOC ;READ

#•
RDOB3

;CY=0

;CONVERT TO

ASCII

AND A

IN A

NEXT CHAR

NEXT CHAR

309

Anatomy of the 1541 Disk Drive

2050:

2060:

2070:

2080:

2090:

2100:

2110:

2120:

2130:

2140:

2150:

2160:

2170:

2180:

2190:

2200:

2210:

2220:

2230:

2240:

2250:

2260:

2270:

2280:

2320:

2330:

2340:

2350:

2350:

2360:

2370:

2380:

2390:

2400:

2410:

2420:

2430:

2440:

2440:

2450:

2460:

2470:

2480:

2490:

2500:

2510:

2510:

2520:

2530:

2540:

2550:

2560:

C113

C116

C117

C118

C119

C11A

CUD

C120

C123

C126

C127

C128

C12A

C12B

C12D

C12E

C130

C132

C133

C136

C138

C13A

C13B

C13C

C13F

C142

C144

C146

C148

C14A

C14D

C14F

C151

C154

C156

C158

C15B

C15E

C160

C162

C165

C167

C16A

C16D

C16F

C171

C172

C174

C176

C179

C17B

C17D

20

0A

0A

0A

0A

8D

20

20

OD

38

60

C9

08

29

28

90

69

60

20

C9

DO

68

68

4C

20

C9

DO

A9

85

20

A9

85

20

A9

85

20

20

24

70

20

DO

20

4C

C9

FO

48

A9

85

20

A9

85

20

28

02

33

28

02

3A

OF

02

08

CF

OD

F8

OD

CF

OD

27

00

90

65

08

BA

B4

6F

B9

96

A5

90

05

D2

F4

AB

OD

24

ID

08

BA

Bl

6F

B9

93

Cl

02

Cl

Cl

02

FF

CO

FF

CO

FF

FF

FF

FF

FF

CO

FF

FF

RDOB2

RDOB3

HEXIT

HEX09

RDOC

;

; DOS

DISK

ERRIN

ENDDSK

DSKCMD

JSR

ASL

ASL

ASL

ASL

STA

JSR

JSR

ORA

SEC

RTS

CMP

PHP

AND

PLP

BCC

ADC

RTS

JSR

CMP

BNE

PLA

PLA

JMP

SUPPORT

JSR

CMP

BNE

LDA

STA

JSR

LDA

STA

JSR

LDA

STA

JSR

JSR

BIT

BVS

JSR

BNE

JSR

JMP

CMP

BEQ

PHA

LDA

STA.

JSR

LDA

STA

JSR

HEXIT

A

A

A

A

BAD

RDOC

HEXIT

BAD

;CY=

#$3A

#$0F

HEX09

#8

INPUT

#CR

HEX09

START

INPUT

#CR

DSKCMD

#0

STATUS

CRLF

#8

FA

TALK

#15+$60

SA

SECTALK

IEEEIN

STATUS

ENDDSK

WRITE

ERRIN

UNTALK

START

#'$
ERR1

#8

FA

LISTEN

#15+$60

SA

SECLIST

1

;0-9

;PLUS 9 (C-l)

;READ CHAR

;CR?

;NO, RETURN

;DISK COMMANI

;ERASE STATUJ

;DISK ADDR

;SA 15

;SEC ADDR

,- CATALOG.

310

Anatomy of the 1541 Disk Drive

2560:

2570:

2580:

2590:

2600:

2610:

2630:

2640:

2640:

2650:

2660:

2670:

2670:

2680:

2690:

2690:

2690:

2690:

2690:

2700:

2710:

2720:

2730:

2740:

2750:

2760:

2770:

2770:

2780:

2790:

2790:

2800:

2810:

2820:

2830:

2840:

2850:

2860:

2860:

2870:

2880:

2890:

2900:

2910:

2910:

2920:

2920:

2920:

2920:

2930:

2930:

2930:

C180

C181

C184

C187

C189

C18B

C18E

C191

C194

C197

C199

C19C

C19F

C1A2

C1A4

C1A7

C1AA

C1AD

C1AF

C1B1

G1B3

C1B6

C1B8

C1BB

C1BD

C1C0

C1C3

C1C4

C1C6

C1C9

C1CC

C1CF

C1D2

C1D4

C1D7

C1D9

C1DC

C1DF

C1E0

C1E2

C1E5

C1E7

C1EA

C1ED

C1F0

C1F2

C1F5

C1F8

C1FB

C1FE

C201

C204

68

20

20

C9

DO

20

4C

20

20

90

8D

20

20

90

8D

20

AD

C9

F0

A9

20

A2

20

A2

20

9D

E8

DO

20

20

4C

20

A2

20

A2

BD

20

E8

DO

20

A9

20

4C

8D

A2

AD

20

8E

8D

AD

20

8E

A8

CF

OD

F6

AE

OD

33

FE

F5

27

33

FE

EA

2A

49

00

01

IE

31

ED

OD

C6

00

CF

EO

F7

CC

6E

OD

2C

OD

C9

00

EO

D2

F7

CC

32

ED

C9

20

OF

27

78

27

28

2A

78

2A

FF

FF

FF

CO

Cl

CO

C2

Cl-

CO

C2

C2

02

Cl

FF

FF

C2

FF

C2

CO

C2

FF

C2

FF

FF

Cl

Cl

C2

C2

C2

C2

C2

C2

C2

C2

CMDOUT

ERR1

DIRECT

DIRIN

ENDDIR

DIRWRITE

DIROUT

SENDCMD

PLA

JSR

JSR

CMP

BNE

JSR

JMP

JSR

JSR

BCC

STA

JSR

JSR

BCC

STA

JSR

LDA

CMP

BEQ

LDA

JSR

LDX

JSR

LDX

JSR

STA

INX

BNE

JSR

JSR

JMP

JSR

LDX

JSR

LDX

LDA

JSR

INX

BNE

JSR

LDA

JSR

JMP

STA

LDX

LDA

JSR

STX

STA

LDA

JSR

STX

IEEEOUT

INPUT

#CR

CMDOUT

UNLIST

START

RDOC

RDOB ;READ TRACK

ERR1

TRACK

RDOC

RDOB

ERR1

SECTOR

OPNDIR

SAVX

#1

DIRWRITE

#fl

SENDCMD ;SEND BLOCK

READ COMMAND

#13

CHKIN

#0

INPUT

BUFFER,X

DIRIN

CLRCH

CLSDIR

START

BUFPNT ;SET BUFFER

POINTER

#13

CKOUT

#0

BUFFER,X

WRITE

DIROUT

CLRCH

#f2

SENDCMD ;SEND BLOCK

WRITE COMMAND

ENDDIR

CMDSTR+1

#15

TRACK

NUMBASC

TRACK

TRACK+1

SECTOR

NUMBASC

SECTOR

311

Anatomy of the 1541 Disk Drive

2930:

2940:

2940:

2950:

2960:

2970:

2980:

2980:

2990:

3000:

3010:

3020:

3030:

3040:

3050:

3060:

3070:

3080:

3090:

3090:

3100:

3110:

3120:

3130:

3130:

3140:

3150:

3160:

3170:

3180:

3190:

3190:

3200:

3210:

3220:

3230:

3240:

3250:

3260:

3270:

3280:

3290:

3300:

3310:

3230:

3330:

3340:

3350:

3360:

3370:

3380:

C207

C20A

C20C

C20F

C211

C214

C217

C218

C21A

C21C

C21F

C227

C22A

C22C

C22E

C231

C233

C236

C239

C23A

C23C

C23E

C241

C249

C24B

C24C

C24E

C251

C253

C256

C259

C25B

C25C

C25E

C261

C263

C265

C267

C26A

C26D

C26E

C270

C273

C275

C278

C27A

C27B

C27D

C27F

C280

C282

8D

A2

20

A2

BD

20

E8

E0

DO

4C

55

31

30

00

00

A2

20

A2

BD

20

E8

E0

DO

4C

42

20

20

A9

A8

A2

20

A9

20

20

A9

A8

A2

20

A9

A2

A0

20

4C

23

A9

20

A9

4C

A2

38

E9

90

E8

B0

69

2B

OF

C9

00

IF

D2

OD

F5

CC

31

33

20

00

00

OF

C9

00

41

D2

08

F5

CC

2D

31

30

OF

08

BA

00

BD

CO

OD

08

BA

01

6D

C2

BD

CO

OD

C3

OF

C3

30

OA

03

F9

3A

C2

FF

Cl

FF

FF

3A

20

20

FF

C2

FF

FF

50

33

FF

FF

FF

FF

FF

FF

FF

FF

COMDOUT

CMDSTR

TRACK

SECTOR

BUFPNT

PNTOUT

BUFTXT

OPNDIR

DADR

CLSDIR

NUMBASC

NUMB1

NUMB2

STA

LDX

JSR

LDX

LDA

JSR

INX

CPX

BNE

JMP

ASC

BYT

BYT

LDX

JSR

LDX

LDA

JSR

INX

CPX

BNE

JMP

ASC

LDA

TAY

LDX

JSR

LDA

JSR

JSR

LDA

TAY

LDX

JSR

LDA

LDX

LDY

JSR

JMP

.BYT

LDA

JSR

LDA

JMP

LDX

SEC

SBC

BCC

INX

BCS

ADC

SECTOR+1

#15

CKOUT

#0

CMDSTR,X

WRITE

#BUFPNT-CMDSTR

COMDOUT

CLRCH

•Ul:13 0 f

0,0,$20

0,0

#15

CKOUT

#0

BUFTXT,X

WRITE

#OPNDIR-BUFTXT

PNTOUT

CLRCH

'B-P 13 0'.

#15

#8

SETPAR

#0

SETNAM

OPEN

#13

#8

SETPAR

#1

#<DADR

#>DADR

SETNAM

OPEN

'#

#13

CLOSE

#15

CLOSE

#'0 ;HEX # TO AS

#10

NUMB 2

NUMB1

#$3B s'91 + 1

312

Anatomy of the 1541 Disk Drive

3390:

3400:

3410:

3430:

3440:

3440:

3440:

3450:

3460:

3470:

3480:

3490:

3500:

3510:

3520:

3530:

3540:

3550:

3560:

3570:

3570:

3580:

3580:

3590:

3600:

3610:

3620:

3620:

3630:

3640:

3650:

3660:

3660:

3660:

3670:

3680:

3690:

3700:

3730:

C284

C285

C286

C297

C298

C299

C29B

C29C

C29F

C2A1

C2A4

C2A6

C2A9

C2AB

C2AD

C2AF

C2B1

C2B3

C2B6

C2B9

C2BB

C3BD

C2BE

C2BF

C2C1

C2C3

C2C6

C2C9

C2CB

C2CE

C2D0

C2D1

C2D2

C2D3

C2D6

C2D9

C2DB

C2DD

C2E0

60

0D

44

4B

4F

54

20

2E

98

38

E9

A8

20

A9

20

A2

B9

29

C9

BO

A9

DO

B9

20

A9

85

C8

CA

DO

A9

4C

AD

DO

CC

BO

60

68

68

4C

20

A9

A2

4C

49

2D

4E

4F

56

30

08

62

12

D2

08

EO

7F

20

04

2E

03

EO

D2

00

D4

E5

92

D2

01

06

04

01

OD

65

3A

3E

EB

53

4D

49

52

31

CO

FF

C2

C2

FF

FF

02

02

CO

CO

CO

MESSAGE

ASCDMP

AC2

AC3

AC4

TESTEND

ENDEND

ALTRIT

BUFFER

RTS

EOU

ASC

TYA

SEC

SBC

TAY

JSR

LDA

JSR

LDX

LDA

AND

CMP

BCS

LDA

BNE

LDA

JSR

LDA

STA

INY

DEX

BNE

LDA

JMP

LDA

BNE

CPY

BCS

RTS

PLA

PLA

JMP

JSR

LDA

LDX

JMP

DST

CR

'DISK-MONITOR VI.0'

#COUNT

SPACE

#18

WRITE

#COUNT

BUFFER,Y

#$7F

#'
AC 3

#• .
AC4

BUFFERfY

WRITE

#0

OUOTFLG

AC 2

#146

WRITE

WRAP

ENDEND

TO

ENDEND

START

CRLF

#':
#PROMPT

WRTWHR

256 ;256

FOR

;RVS ON

;RVS OFF

BYTE BUFFER

BLOCK

Here is the BASIC program for entering the disk monitor if
you do not have an assembler.

313

Anatomy of the 1541 Disk Drive

DISK-MONITOR, C64 VERSION

100 FOR I = 49152 TO 49887 •

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 162, 0,189 ,133 ,194 , 32,210,255,232,224, 18,208
130 DATA 245,162, 13,169, 62, 32,235,192,169, 0,141, 1

140 DATA 2, 32, 51,193,201, 62,240,249,201, 32,240,245
150 DATA 162, 5,221,106,192,208, 12,142, 0, 2,189,112
160 DATA 192, 72,189,118,192, 72, 96,202, 16,236, 76, 13

170 DATA 192,133,151, 32, 98,192,185,224,194, 32,220,192

180 DATA 200,208, 3,238, 1, 2,198,151,208,237, 96, 32

190 DATA 254,192,144, 3,153,224,194,200,19.8,151, 96, 32
200 DATA 98,192,169, 32, 44,169, 13, 76,210,255, 58, 87

210 DATA 82, 77, 64, 88,192,193,193,192,193,227,192,144
220 DATA 144,123, 62,122,160, 0,140, 3, 2,136,140, 4

230.DATA 2, 32,207,255,201, 13,240, 23, 32,254,192,144
240 DATA 18,141, 3, 2, 32,207,255,201, 13,240, 8, 32

250 DATA 254,192,144, 3,141, 4, 2,172, 3, 2, 32,198

260 DATA 194, 32,214,194,152, 32,220,192, 32, 98,192,169
270 DATA 8, 32, 61,192, 32,151,194, 76,166,192, 76, 13

280 DATA 192, 32,254,192,144,248,168,169, 8,133,151, 32
290 DATA 51,193, 32, 51,193, 32, 83,192,208,248, 32,151

300 DATA 194, 76, 13,192, 72, 74, 74, 74, 74, 32,244,192

310 DATA 170,104, 41, 15, 32,244,192, 72,138, 32,210,255

320 DATA 104, 76,210,255, 24,105,246,144, 2,105, 6,105

330 DATA 58, 96,169, 0,141, 2, 2, 32, 51,193,201, 32

340 DATA 208, 9, 32, 51,193,201, 32,208, 15, 24, 96, 32

350 DATA 40,193, 10, 10, 10, 10,141, 2, 2, 32, 51,193

360 DATA 32, 40,193, 13, 2, 2, 56, 96,201, 58, 8, 41

370 DATA 15, 40,144, 2,105, 8, 96, 32,207,255,201, 13

380 DATA 208,248,104,104, 76, 13,192, 32,207,255,201, 13

390 DATA 208, 39,169, 0,133,144, 32,101,192,169, 8,133

400 DATA 186, 32,180,255,169,111,133,185, 32,150,255, 32

410 DATA 165,255, 36,144,112, 5, 32,210,255,208,244, 32

420 DATA 171,255, 76, 13,192,201, 36,240, 29, 72,169, 8

430 DATA 133,186, 32,177,255,169,111,133,185, 32,147,255

440 DATA 104, 32,168,255, 32,207,255,201, 13,208,246, 32
450 DATA 174,255, 76, 13,192, 32, 51,193, 32,254,192,144

460 DATA 245,141, 39,194, 32, 51,193, 32,254,192,144,234
470 DATA 141, 42,194, 32, 73,194,173, 0, 2,201, 1,240

480 DATA 30,169, 49, 32,237,193,162, 13, 32,198,255,162

490 DATA 0, 32,207,255,157,224,194,232,208,247, 32,204

500 DATA 255, 32,110,194, 76, 13,192, 32, 44,194,162, 13

510 DATA 32,201,255,162, 0,189,224,194, 32,210,255,232

520 DATA 208,247, 32,204,255,169, 50, 32,237,193, 76,201

530 DATA 193,141, 32,194,162, 15,173, 39,194, 32,120,194

540 DATA 142, 39,194,141, 40,194,173, 42,194, 32,120,194

550 DATA 142, 42,194,141, 43,194,162, 15, 32,201,255,162

560 DATA 0,189, 31,194, 32,210,255,232,224, 13,208,245
570 DATA 76,204,255, 85, 49, 58, 49, 51, 32, 48, 32, 0

580 DATA 0, 32, 0, . 0,162, 15, 32,201,255,162, 0,189

590 DATA 65,194, 32,210,255,232,224, 8,208,245, 76,204

600 DATA 255, 66, 45, 80, 32, 49, 51, 32, 48,169, 15,168

610 DATA 162, 8, 32,186,255,169, 0, 32,189,255, 32,192

314

Anatomy of the 1541 Disk Drive

620 DATA 255,169, 13,168,162, 8, 32,186,255,169, 1,162

630 DATA 109,160,194, 32,189,255, 76,192,255, 35,169, 13

640 DATA 32,195,255,169, 15, 76,195,255,162, 48, 56,233

650 DATA 10,144, 3,232,176,249,105, 58, 96, 13, 68, 73

660 DATA 83, 75, 45, 77, 79, 78, 73, 84, 79, 82, 32, 86

670 DATA 49, 46, 48,152, 56,233, 8,168, 32, 98,192,169

680 DATA 18, 32,210,255,162, 8,185,224,194, 41,127,201

690 DATA 32,176, 4,169, 46,208, 3,185,224,194, 32,210

700 DATA 255,169, 0,133,212,200,202,208,229,169,146, 76

710 DATA 210,255,173, 1, 2,208, 6,204, 4, 2,176, 1

720 DATA 96,104,104, 76, 13,192, 32,101,192,169, 58,162

730 DATA 62, 76,235,192

740 IF S <> 90444 THEN PRINT "ERROR IN DATA !!" : END

750 SYS 49152

DISK-MONITOR, VIC 20 VERSION

In order to allow this program to be run on the VIC 20, it was

split into two parts. Enter each program separately, saving the
first under the name "DOS LOADER.1" and second under "DOS

LOADER.2". To load the disk monitor, load the first program and

start it with RUN. If all data are correct, the second program

will automatically be loaded and the disk monitor started.

100 POKE 55, 6690 AND 255 : POKE 56, 6690 / 256 : CLR

105 FOR I = 6690 TO 7056 : REM DOS LOADER.1

110 READ X : POKE I,X : S=S+X ! NEXT

120 DATA 162, 0,189,164, 28, 32,210,255,232,224, 18,208

130 DATA 245,162, 13,169, 62, 32, 7, 27,169, 0,141, 1

140 DATA 2, 32, 79, 27,201, 62,240,249,201, 32,240,245

150 DATA 162, 5,221,140, 26,208, 12,142, 0, 2,189,146

160 DATA 26, 72,189,152, 26, 72, 96,202, 16,236, 76, 47

170 DATA 26,133,151, 32,132, 26,185, 0, 29, 32,248, 26

180 DATA 200,208, 3,238, 1, 2,198,151,208,237, 96, 32

190 DATA 26, 27,144, 3,153, 0, 29,200,198,151, 96, 32

200 DATA 132, 26,169, 32, 44,169, 13, 76,210,255, 58, 87

210 DATA 82, 77, 64, 88, 26, 27, 27, 26, 27,228,223,175

220 DATA 175,157, 90,102,160, 0,140, 3, 2,136,140, 4

230 DATA 2, 32,207,255,201, 13,240, 23, 32, 26, 27,144

240 DATA 18,141, 3, 2, 32,207,255,201, 13,240, 8, 32

250 DATA 26, 27,144, 3,141, 4, 2,172, 3, 2, 32,229

260 DATA 28, 32,245, 28,152, 32,248, 26,169, 4, 32, 95

270 DATA 26, 32,182, 28, 76,200, 26, 76, 47, 26, 32, 26

280 DATA 27,144,248,168,169, 4,133,151, 32, 79, 27, 32
290 DATA 117, 26,208,248, 32,182, 28, 76, 47, 26, 72, 74

300 DATA 74, 74, 74, 32, 16, 27,170,104, 41, 15, 32, 16

310 DATA 27, 72 ,138 , 32 ,210 ,255 ,104 , 76,210,255, 24,105
320 DATA 246,144, 2,105, 6,105, 58, 96,169, 0,141, 2

330 DATA 2, 32, 79, 27,201, 32,208, 9, 32, 79, 27,201

340 DATA 32,208, 15, 24, 96, 32, 68, 27, 10, 10, 10, 10

350 DATA 141, 2, 2, 32, 79, 27, 32, 68, 27, 13, 2, 2

360 DATA 56, 96,201, 58, 8, 41, 15, 40,144, 2,105, 8

315

Anatomy of the 1541 Disk Drive

370 DATA 96, 32 ,207,255 ,201> 13,208,248,104,104, 76, 47

380 DATA 26, 32,207,255,201, 13,208, 39,169, 0,133,144

390 DATA 32,135, 26,169, 8,133,186, 32,180,255,169,111

400 DATA 133,185, 32,150,255, 32,165,255, 36,144,112, 5

410 DATA 32,210,255,208,244, 32,171,255, 76, 47, 26,201

420 DATA 36,240, 29, 72,169, 8,133

430 IF S <> 35614 THEN PPINT "ERPOR IN DATA !!" : END

440 LOAD "DOS LOADER.2",8

100 CLR : FOR I = 7057 TO 7422 : REM DOS LOADER.2

110 READ X : POKE I,X : S=S+X : NEXT

120 DATA 186, 32,177,255,169,111,133,185, 32,147,255,104

130 DATA 32,168,255, 32,207,255,201, 13,208,246, 32,174

140 DATA 255, 76, 47, 26, 76, 47, 26, 32, 79, 27, 32, 26

150 DATA 27,144,245,141, 70, 28, 32, 79, 27, 32, 26, 27

160 DATA 144,234,141, 73, 28, 32,104, 28,173, 0, 2,201

170 DATA 1,240, 30,169, 49, 32, 12, 28,162, 13, 32,198

180 DATA 255,162, 0, 32,207,255,157, 0, 29,232,208,247

190 DATA 32,204,255, 32,141, 28, 76, 47, 26, 32, 75, 28

200 DATA 162, 13, 32,201,255,162, 0,189, 0, 29, 32,210

210 DATA 255,232,208,247, 32,204,255,169, 50, 32, 12, 28

220 DATA 76,232, 27,141, 63, 28,162, 15,173, 70, 28, 32

230 DATA 151, 28,142, 70, 28,141, 71, 28,173, 73, 28, 32

240 DATA 151, 28,142, 73, 28,141, 74, 28,162, 15, 32,201

250 DATA 255,162, 0,189, 62, 28, 32,210,255,232,224, 13

260 DATA 208,245, 76,204,255, 85, 49, 58, 49, 51, 32, 48

270 DATA 32, 0, 0, 32, 0, 0,162, 15, 32,201,255,162

280 DATA 0,189, 96, 28, 32,210,255,232,224, 8,208,245

290 DATA 76,204,255, 66, 45, 80, 32, 49, 51, 32, 48,169

300 DATA 15,168,162, 8, 32,186,255,169, 0, 32,189,255

310 DATA 32,192,255,169, 13,168,162, 8, 32,186,255,169

320 DATA 1,162,140,160, 28, 32,189,255, 76,192,255, 35

330 DATA 169, 13, 32,195,255,169, 15, 76,195,255,162, 48

340 DATA 56,233, 10,144, 3,232,176,249,105, 58, 96, 13

350 DATA 68, 73, 83, 75, 45, 77, 79, 78, 73, 84, 79, 82

360 DATA 32, 86, 49, 46, 48,152, 56,233, 4,168, 32,132

370 DATA 26,169, 18, 32,210*255,162, 4,185, 0, 29, 41

380 DATA 127,201, 32,176, 4,169, 46,208, 3,185, 0, 29

390 DATA 32,210,255,169, 0,133,212,200,202,208,229,169

400 DATA 146, 76,210,255,173, 1, 2,208, 6,204, 4, 2

410 DATA 176, 1, 96,104,104, 76, 47, 26, 32,135, 26,169

420 DATA 58,162, 62, 76, 7, 27

430 IF S <> 39496 THEN PRINT "ERROR IN DATA !!" : END

440 SYS 6690

316

Anatomy of the 1541 Disk Drive

Chapter 5: The Larger CBM Disks

5.1 IEEE-Bus and Serial Bus

Standard Commodore 64's and VIC 20's have a serial bus over

which they communicate with peripheral devices such as the

VIC 1541 disk drive as well as printers and plotters.

The principle of the bus makes it possible to chain

peripherals. Each device has its own device address over
which one can communicate with it. The standard address of

the disk is 8, a printer is usually 4. The device address is

identical to the primary address in the OPEN command. For
instance,

OPEN 1,4

opens a channel to the printer. In order to open several

disk files at once, another address, the secondary address,
serves to distinguish them. The disk has 16 secondary

addresses at its disposal, from 0 to 15. Three secondary

addresses are reserved, while the other 13 can be freely
used:

Secondary address 0 is used for loading programs.

Secondary address 1 is used for saving programs.

Secondary address 15 is the command and error channel.

The secondary addresses from 2 to 14 can be used for opening
files as desired.

The transfer of information between the Commodore 64 and the

VIC 1541 occurs serially over this bus. Serial means that

the the data is sent a bit at a time over just one wire.

Data within the computer arid disk drive are stored and

manipulated in 8 bit groups called bytes. When a byte is

sent serially, each individual bit must be sent over the

data line. In order that the sender and receiver can stay in

step, a so-called 'handshake1 line is needed. If we look at

the pin-out of the serial bus, we find 6 wires:

Pin

1

2

3

4

5

6

Function

SRQ IN

ground

ATN

CLCK

DATA

RESET

If the computer wants to send data to the disk drive, the

317

Anatomy of the 1541 Disk Drive

ATN (attention) line is set. When this signal is high, all

peripherals on the bus stop their work and read the next

byte. The data is sent bit-wise over the DATA line. So that

the receivers know when the next bit comes, a signal is also

sent along the CLCK (clock) line. This transmitted byte is

the device address. If this value does not correspond with

the device address of a receiving peripheral, the rest of

the data is ignored. If, however, the device is addressed, a

secondary address may be transmitted. Along with the device

address (0 to 31), the device is informed by means of the

other three bits whether it is supposed to receive data

(LISTEN) or send data (TALK). Following this, data is sent

from the computer or from the addressed device.

The RESET line resets all attached devices when the computer

is turned on. Over the SRO IN (service request) line,

peripheral devices can inform the bus controller (in our

case, the computer), if data is ready, for example. However,

this line is not checked by the control system in the

Commodore computers.

If one wants to attach several disk drives to the same

computer, each must have a different peripheral address. If

this is done only occasionally, the program DISK ADDR CHANGE

can be used, as described in section 4.2.3. The new address

(9 for example), remains only until the device is turned

off. If the change should be permanent, it can be changed

with DIP switches in the drive.

The principle of transfer of data over the IEEE 488 bus is

similar to the serial bus function. The important difference

is that the data is transmitted over 8 data lines in

parallel, not serial. In addition, more handshake lines are

needed, so the IEEE bus requires a 24-line cable. The main

advantage of the IEEE 488 bus is its ability to transmit a
byte at a time, resulting in a higher rate of transfer.

Measurements indicate that the IEEE-bus is about 5 times

faster than the serial bus: 1.8 Kbyte/second vs. 0.4
Kbyte/second. Loading a 10K program with the VIC 1541 takes

about 25 seconds; on the identical 2031, it takes less than
6. This reason alone is enough to warrant outfitting your
computer with an IEEE bus.

At the same time, it is possible to use all the other

peripherals that the large CBM computers can access.

318

Anatomy of the 1541 Disk Drive

5.2 Comparison of all CBM Disk Drives

In the following table you find the technical data of all

CBM disk drives compared.

The Technical Data of all Commodore Disk Drives

Model 1541 2031 4040 8050 8250

DOS version(s)

Drives

Heads per drive

Storage capacity

Sequential files

Relative files

Buffer storage (KB)

Tracks

Sectors per track

Bytes per block

Free blocks

Directory and BAM

(track)

Directory entries

2.6

1

1

170 K

168 K

167 K

2

35

17-21

256

664

18

144

2.6

1

1

170 K

168 K

167 K

2

35

17-21

256

664

18

144

2.1/

2.7

2

1

340 K

168 K

167 K

4

35

17-21

256

1328

18

144

2.5/

2.7

2

1

1.05 M

521 K

183 K/

518 K

4

77

23-29

256

4104

38/39

224

2.7

2

2

2.12 M

1.05 M

1,04 M

4

77

23-29

256

8266

38/39

224

Transfer rate (KB/s)

internal 40 40 40 40 40

over ser./IEEE bus 0.4 1.8 1.8 1.8 1.8

Access time (ms)

Track to track 30 30 30 5 5

Average time 360 360 360 .125 125

Revolutions/minute 300 300 300 300 300

Overview of the "large" CBM drives

The VIC 1541 disk drive has the smallest storage capacity of

the CBM disks, but it is also the only drive that can be

connected directly to the Commodore 64 and VIC 20 over the
serial bus.

The functions, construction, and operation are identical to

those of the CBM 2031 drive. The only difference from the
VIC 1541 is the parallel IEEE bus instead of the serial bus.

319

Anatomy of the 1541 Disk Drive

This results in an increase in the transfer rate to the

computer of a factor of 5. To connect a Commodore 64 or VIC

20, one needs an IEEE interface, as with all other CBM

drives. The storage format of the 2031 is compatible to the

1541; both have 170K per disk. Diskettes can be written with

one device and read with the other. This is true for the

next drive in the line, the CBM 4040. The 4040 is a double

drive with 170K per drive.

The advantage of a double drive lies not only in the

increased storage capacity, but also in the ability to

transfer data from drive to drive. It is possible to copy

complete programs and files using the existing 1541 command.

OPEN 1,8,15, "Cl:TEST=0:TEST" or

COPY "TEST",DO TO "TEST",D1

copies the file TEST from drive 0 to drive 1 with the same

name. In this manner one can concatenate several files on

different drives. The most important capability of double

drives is the ability to duplicate entire diskettes. This

is accomplished by a command from the computer; the drive

automatically formats the disk and then makes a track ty

track copy from one drive to the other. The command to do

this is worded:

OPEN 1,8,15, "Dl=0" or

BACKUP DO TO Dl

The process takes less than 3 minutes on the 4040; during

this time the computer may be used since the disk drive

performs the entire operation by itself.

The two other CBM drives, the CBM 8050 and the CBM 8250

operate in double density (77 tracks). Disks written with

the 1541 or 4040 are not compatible with the 8050/8250.

Programs and data can be copied with the COPY/ALL program,

which transfers from one format to another. This is the

reason these drives have greater storage capacity: 1 MB for

the 8050 and 2 MB for the 8250. The doubled capacity of the

8250 comes about because both sides of the disk are used

(double-sided); it has two reads/write heads per drive. In

order to be able to use the whole capacity for relative

files (see section 3.4), a so-called 'super side-sector1 was

introduced, which contains pointers to 127 groups of 6 side-

sector blocks each. Through this, a relative file can

(theoretically) hold 23 MB of data. These drives can be

connected to a Commodore 64 or VIC 20 over an IEEE bus, so

that these computers can also access several megabytes.

An additional advantage of the large CBM drives is their

larger buffer storage. It is possible to have more files

open simultaneously than on the VIC 1541. Up to 5 sequential

320

Anatomy of the 1541 Disk Drive

files or 3 relative files may be open at any one time, as

well as combinations of the two, of course.

With the 8050/8250 format, tracks 38 and 39 are used for the

BAM and directory. The disk name and format marker are in

track 39 sector 0.

>:00 26 00 43 00 00 00 43 42 &.C...CB

>:08 4E 20 38 30 35 30 A0 A0 M 8050

>:10 A0 A0 A0 A0 A0 A0 A0 A0

>:18 30 31 A0 32 43 A0 A0 A0 01 2C

The track/sector pointer to the first BAM block (track 38

sector 0) is in bytes 0 and 1. Byte 2 contains the format

marker 'C. Bytes 3 through 5 are unused. The disk name is

in 6 to 21, filled with shifted spaces, in our case CBM

8050. Bytes 24 and 25 contain the id '01', while bytes 26

and 27 contain the DOS format 2C.

The BAM no longer occupies just one block, but is dispersed

over track 38; sectors 0 and 3 are used in the 8050, the

8250 used sectors 6 and 9 in addition. Because more sectors

are use per track, the BAM entry for each track has been

enlarged to 5 bytes. The first byte still contains the

number of free sectors per track and the following bytes

contain the bit model of the free and allocated sectors (0 =

sector allocated, 1 = sector free). Here we have the

contents of track 38 sector 0

>:00 26 03 43 00 01 33 ID FF

>:08 FF FF IF ID FF FF FF IF

>:10 ID FF FF FF IF ID FF FF

>:18 FF IF ID FF FF FF IF ID

>:20 FF FF FF IF ID FF FF FF

>:28 IF ID FF FF FF IF ID FF

>:30 FF FF IF ID FF FF FF IF

>:38 ID FF FF FF IF ID FF FF

>:40 FF IF ID FF FF FF IF ID

>:48 FF FF FF IF ID FF FF FF

>:50 IF ID FF FF FF IF ID FF

>:58 FF FF IF ID FF FF FF IF

>:60 ID FF FF FF IF ID FF FF

>:68 FF IF ID FF FF FF IF ID

>:70 FF FF FF IF ID FF FF FF

>:78 IF ID FF FF FF IF ID FF

>:80 FF FF IF ID FF FF FF IF

>:88 ID FF FF FF IF ID FF FF

>:90 FF IF ID FF FF FF IF ID

>:98 FF FF FF IF ID FF FF FF

>:A0 IF ID FF FF FF IF ID FF

>:A8 FF FF IF 18 FC F3 EF IF

>:B0 00 00 00 00 00 00 00 00

>:B8 00 00 00 00 00 00 00 OF

>:C0 F4 93 46 1A 18 6C FB FF

>:C8 IF 00 00 00 00 00 00 00

321

Anatomy of the 1541 Disk Drive

>:D0 00 00 00 00 00 00 00 00

>:D8 05 00 00 4D 04 IB FF FF

>:E0 FF 07 IB FF FF FF 07 IB

>:E8 FF FF FF 07 IB FF FF FF

>:F0 07 IB FF FF FF 07 IB FF

>:F8 FF FF 07 IB FF FF FF 07

Bytes 0 and 1 point to the next BAM block, track 38 sector

3, Byte 2 contains the format marker ICI again. The track

numbers belonging to this BAM section are in bytes 4 and 5;

here tracks 1 through 51. At position 6 we find the 5 byte

entry for each track. The next BAM block is constructed

similarly. The last BAM block always points to the first

directory block: track 39 sector 1.

Four BAM blocks are needed for the 8250: track 38 sector 0

contains the tracks 1 to 51, track 38 sector 3 contains 52

to 100, track 38 sector 6 contains track 101 through 150 and

track 38 sector 9 pertains to tracks 151 to 154.

The directory track, track 39, contains 28 free blocks; up

to 28*8=224 directory entries can be stored, in contrast to

144 for the 1541/4040. The construction of the directory is

alike for all formats. The following table illustrates the

track/sector layout:

1541 4040

Tracks 1 - 17 : 0 - 20

18- 24 : 0 - 18

25- 30 : 0 - 17

31- 35 : 0 - 16

Blocks

Free blocks

683

664

1

40

54

65

78

117

131

142

8050

- 39

- 53

- 64

- 77

8250

-116

-130

-141

-154

2083

2052

/ 8250

: 0 -

: 0 -

: 0 -

: 0 -

only

: 0 -

: 0 -

: 0 -

: 0 -

: 4186

: 4133

28

26

24

22

28

26

24

22

sectors

322

Anatomy of the 1541 Disk Drive

OTHER BOOKS AVAILABLE:

The Anatomy of the Commodore 64 - is our insider's guide to
your favorite computer. This book is a must for those of you

who want to delve deep into your micro. This 300+ page book

is full of information covering all aspects of the *64.
Includes fully commented listing of the ROMs so you can

investigate the mysteries of the BASIC interpreter,
kernal and operating system. It offers numerous examples of

machine language programming and several samples that make
your programming sessions more enjoyable and useful.

ISBN# 0-916439-00-3 Available now: $19.95

The Anatomy of the 1541 Disk Drive - unravels the mysteries
of working the the Commodore 1541 disk drive. This 320+ page

book starts by explaining program, sequential and relative

files. It covers the direct access commands, diskette
structure, DOS operation and utilties. The fully commented

ROM listings are presented for the real "hackers". Includes
listings for several useful utilities including BACKUP,
COPY, FILE PROTECTOR, DIRECTORY. This is the authoritive
source for 1541 disk drive information.

ISBN* 0-916439-01-1 Available now: $19.95

Tricks & Tips for the Commodore 64 - presents a collection

of easy-to-use programming techniques and hints. Chapters
cover advanced graphics, easy data entry, enhancements for

advanced BASIC, CP/M, connecting to the outside world and

more. Other tips include sorting, variable dumps, and POKEs

that do tricks. All-in-all a solid set of useful features.

ISBN# 0-916439-03-8 Available June 29th: $19.95

Machine Language Book of the Commodore 64 - is aimed at the

owner who wants to progress beyond BASIC and write faster,

more memory efficient programs in machine language. The book

is specifically geared to the Commodore 64. Learn all of the

6510 instructions as they apply to the '64. Access ROM
routines, I/O, extend BASIC, more. Included are listings of
three full length programs: an ASSEMBLER; a DISASSEMBLER;
and an amazing 6510 SIMULATOR so the reader can "see"the
operation of the '64.

ISBN# 0-916439-02-X Available now: $14.95

Optional program diskette: $14.95

OTHER TITLES COMING SOON!!!

323

GETTHE MOSTOUTOFYOUR

orVIC-2Ocomputer

ULTUUM8!C-64...Add 50
conifn&ndsi Qrsphics,
music, TURTLE endgame
fSStliTGS.Tut&nZ. OOHIO ptlJS.

TAPE $24.95 DI8X $27.95

ASSEMBLER-MONITORS

High speed language
development. Eleven func-
tion editor. Screen 6

source file. DI8X

MERCURE-64...Slmpl8,

powerful (Bo management
with fast design, entry

SSTVtSSk

8YHTHY-64... Sets the standard for an of the rest.
Best 64-synthesizer anywhere. Samples and manual.
CASSETTE $24.95 DISK $27.85. Also avaBable: 3 great
companion music albums; Clamed, ChiMmn, and
Ragtime Sing-Along. DISK $12.95 Each.

GRAPHICS DESIGNERS... IMMIIE IMHU«MK
Mdri dbi fl

CHARTPAK-64...Profes-

sional qualfly pis. flne and
bar charts. Menu driven. In-

ZOOM PA8CAL-64...Pro- SUPER DI8X UTILITY-64...
duces 6502 machine code Speedcopy4 ways: Total,
for speed. Floating Mint. In- Bam, Amend or File. Oump

GRAPHICS D

Menu-driven Learn all instructions.
Access ROM routines, I/O.
Listings for Assembler.

_.„ SIMULATOR, more.

TAS-64... Full featured «»+PA8E BOOK $14.95
technical analysis for stock ANATOMY OF A COMM0-
market evaluations. Manual DORE-64 Complete guide,
or entire update capability FuDcommentROMSBst.de-
thru DJNRS.Printer hard- tailed internals, desafittons.
copy. Disk $84.95 300 PAGE BOOK $18.95

CHAHTFlOT-64...Same fine
features as CHARTPAK-64
with high quality output to

Stf*' $84.95
ANATOMY OF THE 1541
DISKDRIVE Explains se-
Giisntisl rflndom 2nd pro*

gram files, DOS, full ROM
fisting, sample programs.
320 pp. book $19.95

P00L-64«0...Piay Fullrack XREF-64...Sorted BASIC
or nine ball using hires cross-reference on screen or
graphics. VTc-20 required 8K printer Fast ML Sort. Add

expander. your own tokens.
tape $14.95 disk $17.95 disk only $17.95

MASTER-64...lndexed files; powerful screen manag-
ment; excellent printer gsnerator; programmer's aid;
BASK 4.0 commands; machine language monitor. NO
RUNTIME ROYALTIES. 150 pp. manual for program

FREECATALOG Ask for a listing of other
Abacus Software for Commodore-64or Vlc-20
DISTRIBUTORS „„._. .

I AVSuStan.30

Australia:

CW ELECTRONICS
416 Logan Road

AVAILABLE AT COMPUTER STORES, OR WRITE:

Abacus HiSoftware
P.O. BOX 7211 GRAND RAPIDS, MICH. 49S10
For postage & handling, add S2.50 (U.S. and Canada), add $5.00 j
for foreign. Make payment in U.S. dollars by check, money order
or charge card. (Michigan Residents add 4% sales tax.) I

FOR QUICK SERVICE PHONE 616-241-5510

^ DEALER INQUIRIES INVITED

THE

ANATOMY

OF THE

1541 DISK DRIVE
This in depth guide for the Commodore 1541 diskdrive

owner u travels the mysteries of using (he !5J1 for pro-

tjrrVns sequential and relative files wilh plenty of

worhing examples This book includes several useful

UtMhes — DISK MONITOR. FILE PROTECTOH,

BACKUP. MERGE and more- Tt^ Anatomy also

discusses Ihe Jntemals ofthe W*k Oper*Hrt9 *v*l*m

wilh the complele fully commented ROM listings.

Abacus ii
Software

Ml -19S1D

