

THE ANATOMY OF THE
1541 DISK DRIVE

A Complete Guide to Using
The Commodore Disk Drive

Authors: Lothar Englisch
Norbert Szczepanowski

Edited by: Greg Dykema
Arnie Lee

ABACUS SOFTWARE
P.O. BOX 7211
GRAND RAPIDS, MI 49510

Second English Printing, June 1984
Printed in U.S.A
Copyright (C)1983 Data Becker GmgH
Merowingerstr. 30
4000 Dusseldorf W. Germany
Copyright (C)1984 Abacus Software
P.0O. Box 7211
Grand Rapids, MI 49510

This book is copyrighted. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of ABACUS Software, Inc.

ISBN 0-916439-01-1

PREFACE

The VIC-1541 disk drive represents a very efficient external
storage medium for the Commodore user. It is an affordable
peripheral. 1In order to get the most from your 1541, you
need the appropriate information. In months of 1long,
detailed work, Lothar Englisch and Norbert Szczepanowski
have discovered many secrets of the 1541,

This book progresses from simple storage techniques, to
direct access commands , to program chaining techniques,
Beginners will welcome the numerous sample programs that are
fully explained in clear text. Machine language programmers
will particularly like the detailed documentation listing of
the Disk Operating System (DOS).

This book contains many useful and ready-to-run programs
that need only be typed in. Some of these programs
are: routines for extending BASIC, helpful routines such as
spooling, efficient address management, a complete household
budget planner and an easy-to-use DOS monitor to manipulate
individual sectors. Have fun with this book and your VIC-
1541 disk drive.

TABLE OF CONTENTS

Chapter 1: Programming the VIC-154l.cecececccccccccscccocsssl

1.1

Getting Started.ceceessescececcccccoccoacsssssssssncssal
1.1.1 The Disk Operating SysSteM...ecceeseeocececccescccsel
1.1.2 The TEST/DEMO DiSKette@.eeeeeescosossoocooooocceel
1.1.3 Formatting New DisketteS.eeeeceececeosconssacseesl
1.1.4 Some Facts about a 1541 DiSKett€.eeseeeceessccese3l

toring Programs on DiSkette..eeeeeesccccceccssoscecssceed
SAVE - Storing BASIC ProQramS..cccsceccccscccceed
LOAD - Loading BASIC ProQgramMS..ccececccccsssscssssd
VERIFY - Checking Stored programsS..cccccesscssssd
SAVE "@:..." Replacing ProgramS...c.ceeseescececees5
Loading Machine Language ProgramS...ccceceesceeeeb
Storing Machine Language ProgramS.....oeeeecsoces?

AU W N

1 Transmitting Commands to the Disk Drive........10
2 NEW - Formatting DisketteS.eeeeecececccoceoceoeall
3 Reading the Error Channel...cececcecesccsscesseal2
4 1LOAD "$",8 Loading the Directory...eeeeseeessel3
5 SCRATCH - Deleting FileS.:eeeeeeccccocessnssoessld
6 RENAME - Renaming Fil€S.eeseececceccsosecoccccecssl’
7 COPY - Copying FileS.ceeseescensocecccecssscneslb
8 INITIALIZE - Intitializing the Diskett€....ee..16
9 VALIDATE - "Cleaning up" the Diskett€.eceeeveesl?
10 2 * =~ The WildCArdS.ceesceccecsccoscseseosonsalB

ntial Data StOrag€..eeescscescscsoncecscsssscseeel
The PrinCiple.cccecececscscsescssccocscsosccssss2l
OPENing a Sequential Fil€.sesesescecceccscesesa2l
Transferring Data between Disk and Computer....24
Adding Data to Sequential FileS..eeeeeescocoess2?
CLOSEing a Sequential Fil€iieeeeececeocsseoesse28
Redirecting the Screen OUtPUt.c.eeeoesceccecsse29
Sequential Files as Tables in the Computer.....30
Searching TableS..ceceessssessacssoccososesonsel
Simple Sorting Of TableS..seseesscccescsceeesss35
Mailing List Management with Sequential

Data StOrag@cecceccccccssscescsscscescscscosssel8
.11 Uses for Sequential StOrag€.ceceeeeeccscocssssseeds

HOOJAU S WN O

o

¢5.1 The PrinCiple...ceeecccesccccscesccsscesoossecssdb
«5.2 The Advantage over Sequential StOrage..........47
«5.3 OPENing a Relative Fil€svecesoececocsesonansessd?
«5.4 Preparing the Data for Relative Storage€........50
«5.5 Transferring Dat@..cceeeececcessecocccacccssssssssb
5.6 CLOSEing a Relative Fil€.ieeeeeseesssossesceessbS
.5.7 Searching Records with the Binary Method.......55
.5.8 Searching Records with a Separate Index File...58
*5.9 Changing ReCOrdS...c.coespscecesccncsccscscnseabl
+5.10 Expanding a Relative Fil€.eeeeeoooeeesooccecessb2

1.5.11 Home Accounting with Relative Data Storage.....64
;.6 Disk Error Messages and their CauseS..ccceecececcccceel2

1.7 Overview of Commands with a Comparison of
BASIC 2.0 = BASIC 4.0 = DOS 5.lcccccccccccccccccesel?

Chapter 2: Advanced Programming...ceccceceesccccccccssceseB2
2.1 The Direct Access of any Block of the Diskette........82

2.2 The Direct Access COMMANdS..csesecoscscscccscscscscescsdb
2.2.1 The Block-Read Command.:.eceecccesscccscscscccccscesBb
2.2.2 The Block-Pointer Command.scceessscsccsscsssssses8?
2.2.3 The Block-Write Command.ccesccesccscsscccscsessBB
2.2.4 The Block-Allocate Command..ceecceccoccsscscsecss89
2.2.5 The Block-Free Command.:eeecececcsscesssccccscsccssd0
2.2.6 The Block-Execute COMMand..ccceccscscccssocssss?l

2.3 Uses Of Direct ACCESS.esessecsscsosssssoscsssascccsssensd2

2.4 Accessing the DOS - The Memory CommandS.ceecececccosessedd

2.4.1 The Memory-Read Command..cececscscccoscccccccceasdd
2.4.2 The Memory-Write Command...cccccceesescocsceesssd5
2.4.3 The Memory-Execute Command..csceccscocccscsocessd6
2.4.4 The User COMMANdS..ceesscccccscsccssccccssoceesd?

Chapter 3: Technical InformatioOn.ececcecescssccosescsceosassd9d

3.1 The Construction the VIC=154l.cceccecccccssccsccsscneed9
3.1.1 Block Diagram of the Disk Drive.cececececcccess99
3.1.2 DOS Memory Map — ROM, RAM, I/O.cccccsceescssssl00

3.2 Operation of the DOS - An OVerview..eceeseceosceesssal0d

3.3 The Structure of the Diskett€...eecececessccccccceessllb
3.3.1 The BAM of the VIC 154l.ccccccccccccscscsceessllb
3.3.2 The DirecCtOryiceecececcscssccccccccscsssscssseall?
3.3.3 The Directory FOrmat..ccceeececcscsssccccsssssssl09

3.4 The Organization of Relative Files.;.................114

3,5 DOS 2.6 ROM LiStingS.ceeesscsssccccccscscsccccccsccceseeallB

Chapter 4: Programs and Tips For Utilization
Of the VIC-154l.cccsccesccccccccssscocccnncnceelb9

4.1 Utility ProgramS..ceeesseeccccsscsccosscssosscnsssessses2b9
4.1.1 Displaying all File ParameterS.cceceecccccscess269
4.1.2 Scratch-protect Files - File Protect....eess..273
4.1.3 Backup Program - Copying a Diskette...eeeee...278
4.1.4 Copying Individual Files to another Diskette..280

4.4

4.5
4.6

4.1.5 Reading the Directory from within a Program...281

The Utility Programs on the TEST/DEMO DiSKaeoeeoeeo....283
4.2.]1 DOS S5.lecececececcsocscacocossscsecsssnssnoceses283
4,2,2 COPY/ALL¢teueececscssscssocossoccnscsnonsneses284
4.2.3 DISK ADDR CHANGE e eevecoccecorsssosccccoscceeea8Bd
40204 DIRtuececosoceocososssocscsccsanocseoncnsacseellS
4.2.5 VIEW BAM:uoevuouoneooooooooancsoossonocncoasses2B5
4.2.6 CHECK DISKeteeossesoocoosooaocosnosecoseosesceese285
4,.2.7 DISPLAY X1 1
4.2.8 PERFORMANCE TESTeeeseneccocoscsnssnsancssssness86

BASIC-Expansion and Programs for

' Easy Use Of the 154l.ccieecccscoccccccncsenssa287
4.3.1 Input Strings of desired Length from the Disk.287
4.3.2 Easy Preparation of Data ReCOrAS...eceesceecsss290
4.3.3 spooling - Printing Directly from the Disk....295

Overlay Technique and Chaining
Machine Language PrOgramS.....eeecsceccscoseess299

Merge - Appending BASIC ProOQGramS..c.eceeececesccceecss302

Disk-Monitor for Commodore 64 and VIC 20...ccccees...304

‘Chapter 5: The Larger CBM DiSKS..eeeeseeseesoosceacecssssaldl?

5.1
5.2

IEEE-Bus and Serial BUS..eeeeseeecccceosscosccsscssseldl?

Comparison of all CBM DiSk DrivVeS....seeecececceceses319

Anatomy of the 1541 Disk Drive

Chapter 1: Programming the VIC-1541

l.1 Getting Started

There it sits, your new Commodore VIC-1541 disk drive. It's
fast and efficient but also intimidating. But have no fear.
We will instruct you in the ways of disk programming. The
first part of this book gives the beginner an intensive look
at the VIC-1541. At least one example follows each command,
thereby explaining its functions and capabilities. You will
be surprised how easy the operation of your disk drive can
be, when you understand the "basics".

The beginner probably uses the disk drive mainly to store
programs., Perhaps he has not realized that there are many
other ways to use the disk drive. This book attempts to
uncover these other ways.

Experienced programmers should not ignore the first chapter,
There may be some sections that may shed light on disk
usage. This is especially true concerning relative files and
data management.

1.1.1 The Disk Operating System

The disk drive is a rather complicated device which
coordinates mechanical hardware. and electronic circuitry to
allow the storage of data on the diskette. When the
Commodore 64 or VIC-20 needs to read from or write to the
disk drive, it sends commands to the disk drive along the
heavy black cable that connects the drive to the computer,
The commands sent by the Commodore 64 or VIC-20 are under-—
stood at the disk drive by a by a built in program called
the Disk Operating System (DOS).

The DOS is a lengthy program contained on ROM in the disk
drive and carries out the activities of the disk drive as
commanded by the Commodore 64 or VIC-20. The version of DOS
contained in the VIC-1541 carries the designation CBM DOS
V2.6,

The Commodore 64 and VIC-20 contain a version of BAS1C
called COMMODORE BASIC 2.0. Other versions of BASIC (e.g.
BASIC 4.0 found of the Commodore 8032) have more advanced
disk commands which the VIC-1541 can also understand. In
order to use these advanced disk commands, you have to
simulate them using BASIC 2.0.

At the end of the chapter is a listing of the BASIC 2.0

Anatomy of the 1541 Disk Drive

commands with corresponding commands of the easier BASIC
4,0, as found on the larger Commodore computers.

1.1.2 The TEST/DEMO Diskette

The VIC-1541 disk drive is packaged with a diskette called
TEST/DEMO. Some of the programs contained on it cannot be
used without adequate knowledge of the way the disk drive
works. For now, lay this diskette aside.

The TEST/DEMO diskette is described in detail later.

1.1.3 Pormatting New Diskettes

Brand new diskettes must be prepared before using them to
store data. Preparing them is called formatting.

What does formatting mean? Each disk drive mechanism has its
own special characteristics. A diskette is divided into
tracks and information is written along each track (similar
to the grooves of a phonographic record). The number of
tracks per diskette is varies from one manufacturer to
another. Each track is divided into sectors, whose number
can also vary.

During formatting empty sectors are written to the diskette.
A sector is written to each track and sector location and
each sector receives its own "address". This allows the DOS
to identify its position on the diskette. A sector is also
given a code so that the DOS can recognize if this diskette
was formatted by this type of disk drive. The code for the
VIC-1541 disk drive is 2A. The remainder of the sector
(called a block) is used to store data and accommodates
~ exactly 256 characters.

The final purpose of formatting is to construct the
directory for the diskette. The directory is a "table of
contents” of the files stored on the diskette. There is also
a special data block (called the bit availability map or
BAM) which indicates if a given block on the diskette is
already in use or available for use. The directory and BAM
are kept on track 18 of the diskette.

Anatomy of the 1541 Disk Drive

l.1.4 Some Facts about a 1541 Diskette

Diskette:

Number of Tracks: 35

Sectors per Track: 17 to 21 (depending on track)

Bytes per block: 256 ‘

Total number of blocks: 683

Number of free blocks 644 (the directory occupies
the remainder)

Entries in the directory: 144 per diskette

Mechanism: .

- intelligent peripheral with its own processor and control
system

- connection to serial bus from CBM 64 or VIC-20, device
number 4-15 (8. standard)

Anatomy of the 1541 Disk Drive

1.2 Storing Programs on Diskette

The most common use of the disk drive is for storage of
programs, Storing programs with a disk drive is considerably
easier than with a cassette recorder., The greatest advantage
of the disk drive is the speed of data transfer to and from
the computer. Here's a comparison:

saving a 3 Kbyte program takes:
- 75 seconds with the VIC-1530 Datasette
- 12 seconds with the VIC-1541 disk drive

An additional advantage is that a diskette can store more
programs than the cassette. To load a program, you can
consult the directory to view the selection of programs.
Even though the cassette drive allows you to store more than
one program on a tape, searching for that program is very
time consuming.

Before trying any of the following examples in this chapter,
you should remember that the diskette must be previously
formatted as explained in section 1.3.2 in order to be able
to save programs onto it.-

1.2.1 SAVE - Storing BASIC Programs

Perhaps you previously owned a datasette on which you stored
programs, In this case the commands to save programs onto
diskette should be familiar to you. The SAVE command for the
disk drive is essentially the same as for the cassette
drive. You need only tell the computer that the program is
to be saved onto the disk drive and not on cassette. This
is done by adding the device number (usually 8) to the
command SAVE., Normally the drive is preset to respond to
this device number, Now write a small BASIC program and save
it with the command:

SAVE"TEST",8

type in a the NEW command so the program in the computer's
memory is erased. In the following section you will learn
how the program can be retrieved.

1.2.2 LOAD - Loading BASIC Programs

As with the SAVE command, this command is similar to the
LOAD command for the datasette with the addition of the
device number. Now load in the previously saved program
with:

i

Anatomy of the 1541 Disk Drive

LOAD "TEST",8

You can check the program by using the LIST command. Any
previous program in memory has now been replaced by the
program "TEST". It is possible to load a program into the
memory without replacing the previous program in memory.
Combining two program in memory is called "merging" An
example of merging is presented in a later section.

1.2.3 VERIFY - Checking Stored Programs

When you have saved a program on disk with the SAVE command,
it is often desirable to make sure that the program was
written error-free. You can do this by using the VERIFY
command, It has the following format:

VERIFY"filename",8

Earlier you saved a program with SAVE "TEST",8. This pro-
gram should still be in memory. Using VERIFY, the program in
memory is checked against the program stored on diskette. If
both programs are identical, the computer responds with OK.

To try this out, type a few BASIC lines and then give the
following commands: .

SAVE "TEST2",8
VERIFY "TEST2",8

Your computer will respond with OK if it is performing
correctly.

1.2.4 SAVE"@:..." - Replacing Programs

If you try to save your small TEST program on the disk
again, the computer will respond with a FILE EXISTS error
and will not complete the SAVE., The operating system of the
VIC-1541 disk drive does not allow two programs to be saved
under the same name. This is logical because the computer

would not be able to distinguish between two programs with
_the same name. ' ’

Howeyer you may want to update a program on diskette that was
previously saved. There are three ways to accomplish this:

1. save the program under a different name
2. First erase the o0ld program from the disk and save tte
new one under the o0ld name

Anatomy of the 1541 Disk Drive

3. Use the addition @: in front of the file name in the SAVE
command

This is used as follows:
SAVE"@:=TEST",8

If you forget to use the characters @: in front of the
filename, and try to save a program whose name is already
contained on the diskette, you get the FILE EXISTS error.

If you are replacing a program on a diskette then the DOS
carries this out as follows:

1. A free block is designated as the first block of the
program and its location is stored in the directory entry
of the old copy.

2. The new copy of the program is stored in a free area of
the diskette.

3. All of the blocks of the old copy are marked as free.

1.2.5 Loading Machine Language Programs

Machine language programs are handled a little differently
from BASIC programs, A machine language program is trans-
ferred to the computer by using a secondary address of 1.
When secondary address 1 is used, the program is loaded
"absolutely", that is, loaded into memory beginning at the
address specified in the first two bytes of the disk file.
An example:

LOAD “"MACHPGRM",8,1
loads the machine language program at an absolute address.

For example, the program may be set up to load at the
decimal address 49152, and is started by the command : SYS
49152, Should you load a machine language program without
the secondary address, you will most likely see the message
"SYNTAX ERROR IN" if you type RUN.

Likewise, trying to LIST the machine language program will
display nonsense. Unfortunately, machine language programs
are not differentiated from BASIC programs in the directory.
Both have the file type PRG. ’

Usually, if typing RUN results in SYNTAX ERROR IN, you
know that the program is not written in BASIC and should be
treated as a machine language program. In this case it must
be loaded with the command LOAD “program®,8,1. It cannot be

Anatomy of the 1541 Disk Drive

started with RUN however! You must first find the execution
address of this program,

In a later section is a program that lists all the file
parameters of a program. One of the parameters is a load
address, This load address is usually the initial execution
address of the program and can be called with the command
SYS load address. You can find the load address of a program
with the following program:

10 OPEN 1,8,2,"programname,S,R"

20 GET#1,X$:IF X$="" THEN X$=CHRS$(0)
30 LB=ASC(XS$)

40 GET#1,X$:IF XS$="" THEN X$=CHRS(0)
50 HB=ASC(XS$)

60 CLOSE 1

70 AD=HB*256+LB

80 PRINT"LOAD ADDRESS:";AD

The program shows the load address of "programname", Here
the program file is opened as a sequential data file. The
starting address is stored as the first two bytes of the
file and read using the GET command and appropriately con-
structed. The first byte is the low byte and the second byte
the high byte of the two-byte address, If the function of
this program is unclear, handling sequential files clarified
in the next sections,

1.2.6 storing Machine Language Programs

Machine language programs are usually written with an assem-
bler or a machine language monitor and saved using this

program. Machine language programs can also be written from
BASIC with the individual bytes of the program written in
decimal values in DATA statements. A machine language pro-

gram written in BASIC with the help of DATA statements
follows:

10 sA=starting address

20 EA=ending address

30 FOR I=SA TO EA

40 READ X

50 POKE I,PEEK(X)

60 NEXT I

80 DATA L T T

90 DATA tevcevovoseosossnasoccccnnonenosanes

In this example, the decimal value of the starting address
is placed in line 10 and the ending address in line 20. The
decimal values of the individual bytes of the machine
language program are typed into the DATA statements of the

7

Anatomy of the 1541 Disk Drive

program, separated by commas.

Naturally, you can save any machine language program that
you f£ind in this book in the form of a BASIC program. This
is, however, a tedious and complicated process. A more
elegant and time-saving method is to store the machine
language program in true form. This way, you can immediately
execute the program after LOADing without requiring any
complicated conversion.

The following program will save such a program that is
already in memory:

10 SA=starting address

20 EA=ending address

30 OPEN 1,8,1,"programname"”

40 HB=INT(SA/256) :LB=SA-HB*256
50 PRINT#1,CHRS(LB);CHRS (HB);
60 FOR I=SA TO EA

70 PRINT#1,CHRS (PEEK(I));

80 NEXT I

90 CLOSE 1

This routine assumes that the machine language program is
already in the memory of the computer. If a program is
already encoded into DATA statements, the following routine
can be used to produced a pure machine language program:

10 SA=starting address

20 EA=ending address

30 OPEN 1,8,1,"programname"”

40 HB=INT(SA/256) :LB=SA-HB*256

50 PRINT#1,CHRS(LB);CHRS (HB);

60 FOR I=SA TO EA

70 READ X

80 PRINT#1,CHRS(X);

90 NEXT I

100 CLOSE 1

110 DATA cceececesccccccsccscccccnne
120 DATA tccocsscocvccccscsscosossnes

Here the addresses and DATA statements are filled in also.
The above program writes a machine language program to
diskette which can later be loaded with the command LOAD
*"programname”,8,1. Then the program can be executed with
the command: SYS (starting address). Machine language pro-
grams can also be loaded and executed from a BASIC program.
Such a program might have this form:

10 IF A=0 THEN A=1:LOAD"programname"”,8,1
20 SYS (starting address)

The IF command in line 10 is puzzling at first. It must be
present because after performing a LOAD from within a pro-
gram, the BASIC interpreter begins executing again at the

Anatomy of the 1541 Disk Drive

first line of the new BASIC program. Because the machine
language program doesn't usually overlay the BASIC program
in memory, the original BASIC program remains intact and is
therefore is re-executed., If you use the routine:

10 LOAD"programname"”,8,1
20 SYS (starting address)

the program continues to LOAD "programname" again, and the
SYS command is never executed., If the variable A is present,
the program branches to line 20 at the end of the first
command on line 10. This loader can be placed on the
diskette together with the machine language program. To
execute the machine language program, you need only give the
commands:

LOAD"loader",8
RUN

This has the advantage that the starting address of the
machine language program need not be known, because it is
included in the SYS of the loader.

Anatomy of the 1541 Disk Drive

1.3 Disk System Commands

As already mentioned, the VIC-1541 disk drive is similar to
the the earlier, larger disk drives of the Commodore family
- the CBM 4040, 8050, 8250. They are all intelligent peri-
pheral device with their own processor and control system.
The Disk Operating System (DOS) occupies no space in the
memory of the Commodore 64 or VIC-20 and yet offers a flex-
ible set of efficient commands. These commands effectively
expand the builtin commands of your Commodore computer.

Because the disk drive is an intelligent peripheral, the
commands of the DOS can be executed independently of the
computer, But because the commands are not found in the
version of BASIC supplied in the Commodore 64 or VIC-20,
you will have to communicate to the disk using a special
method. When the commands are sent to the disk drive, the
DOS interprets and carries out the desired task.

1.3.1 Transmitting commands to the Disk Drive

Commands intended for the disk drive, are sent over a
channel. You can communicate with the disk drive over any of
the 15 available channels. But channel 15 is reserved as the
command channel. Data transfer over this channel takes place
as follows:

- opening the channel” (OPEN)
- data transfer (PRINT)
- close the channel (CLOSE)

In the OPEN command you specify a logical file number
(arbitrary between 1 and 127), a device number of the disk
drive (usually 8) and the secondary address (15 for the
command channel)., You can also send a command to the device
as illustrated below:

OPEN 1fn,8,15,"command”
or .
OPEN 1fn,8,15:PRINT#1£fn, "command®

The number 8 is the device number of the disk .drive and the
number 15 is the secondary address or channel number. The
parameter 1fn is the logical file number which is used in
subsequent commands (PRINT#, INPUT#, GET#). It can be a
number in the range 1-127. The "command" can either follow
the OPEN statement directly, or can be transferred with a

PRINT# command following the opening. Any number of system
commands can be transmitted until the channel is closed, but

must be referenced by the logical file number used in the
OPEN command.

10

Anatomy of the 1541 Disk Drive

1.3.2 NEW - Formatting Diskettes

The command to format a diskette is called NEW and can, as
every other command, be abbreviated to its first letter (N).
As already mentioned, the command can follow an OPEN command
or be given in a PRINT# command. The NEW command has the
following format:

NEW:diskname, id

The parameter diskname may contain up to 16 characters and
is stored in the header of the diskette directory. The
parameter ID (identification) consists of two arbitrary
characters, so that the DOS can recognize if a different
diskette has been used. Since you can freely choose the id,
this allows you to uniquely identify each diskette., Here is
an example for formatting a disk: :

OPEN 1,8,15,"NEW:ABCDISK,KL"
The command can be abbreviated to:
OPEN 1,8,15,"N:ABCDISK,KL"

You need only use the command once - when you first use a
brand new diskette, Formatting takes about 80 seconds. For-
matting uses the processor of the 1541 drive while the
processor of the computer is not needed; you can continue to
work with the computer.

To use the command with a PRINT# statement, the following
commands must be given:

OPEN 1,8,15 to open the channeI
PRINT#1,"N:ABCDISK,KL"

The number 1 in the PRINT# command is the logical file
number corresponding to the OPEN command. Other commands may
also be transmitted over this channel after the PRINT#
statement, When no more commands are to be transmitted, the
channel must be closed. This is accomplished through the use
of the CLOSE statement. Give the following command after
formatting: ’

CLOSE 1

Now the command channel is closed. The number 1 is again the
logical file number of the corresponding OPEN command.

11

Anatomy of the 1541 Disk Drive

1.3.3 Reading the Error Channel

When the Commodore 64 or VIC-20 is incorrectly programmed,
it responds with an error message. Disk commands are carried
out and verified by the processor of the disk drive.
Therefore the computer cannot directly display error
messages that are detected by the disk drive, Errors are
indicated by the flashing red LED on the disk drive. In
order to determine which error has occurred, the computer
must read the error from channel 15. Therefore channel 15
must be OPENed, if this has not already been done. Then the
error can be read with the INPUT# command. An error is sent
back to the computer in four fields -

Field 1: Error number
Field 2: Description of the error (string)
Field 3: Track number
Field 4: Sector number

The track and sector information may indicate where the
error occurred (if these fields are relevant to the
command). These four fields of the error message must be
read into four variables. You can use an INPUT# statement
followed by four variables. An example of reading the errcr
channel:

OPEN 1,8,15 (if not already done)
INPUT#1,EN,DES,TR,SE
CLOSE 1

The INPUT# statement must be entered from within a program.
It is not proper to issue an INPUT# statement from command
mode.

10 OPEN 1,8,15

20 INPUT#1,EN,DES,TR,SE

30 PRINT EN;DES;TR;SE (to display the error)
40 CLOSE 1

To understand the operation of this program, first create
the following error:

OPEN 1,8,15,"NEW ABCDISK,T1"
CLOSE 1

When you have given these commands, the red LED on the disk
drive begins to blink. Did you spot the error? A colon is
missing from the command NEW. Now type the program to read
the error channel and type RUN. The error will appear on the
screen:

34 SYNTAX ERROR 0 O

The 34 is the number of the error, which is explained later.
The track and sector fields are 0 because this information

12

Anatomy of the 1541 Disk Drive

is not relevant to this error.

If you read the error channel when an error had not
occurred, the message:

0OOKO O

is returned. In any case, if the red LED on the drive
blinks, check the syntax of the command, since most errors
can be easily recognized. Otherwise, you can simply read the
error channel to find the error which the DOS has detected.
A detailed description of the error message and their causes
follows in section 1.6.

1.3.4 LOAD"$",8 - Loading the Directory

The directory is a "table of contents" of the diskette. All
the files on the diskette are cataloged here. Be sure to
note that loading the directory has a disadvantage: any
program previously in memory is overlayed by the directory
information. The directory is loaded by typing:

LOAD "s$",8

and can be viewed with the LIST command. Try LOADing the
directory of the TEST/DEMO diskette that accompanies your
disk drive. Insert this diskette into the disk drive and
enter: LOAD "$",8 to load the directory. Then display the
directory by using the LIST command. What follows should be
shown on the screen

0 "1541test/demo " zx 2a
13 "how to use" prg
5 "how part two" prg
4 "vic-20 wedge" prg
1 "c-64 wedge" prg
4 "dos 5.1" prg
11 “copy/all" prg
4 "disk addr change" prg
4 "dir" prg
6 "view bam" prg
4 "check disk" prg
14 "display t&s" prg
9 "performance test" prg
5 "sequential file" prg
13 "random file" prg

A lot of information is kept in the directory. Let's look at
the first line, the header of the directory. The number 0 in
this line means that the directory is of the diskette in
drive 0. Other disk drives such as the 4040, contain two
disk drives - drive 0 or drive 1. On the 1541 the drive

13

Anatomy of the 1541 Disk Drive

number is always 0. Next follows the name and ID of the
diskette as set up by formatting. The characters 2A sym-
bolize the disk format. If this format is not 2A then this
diskette was not formatted with a 1541 drive.

Next are the individual file names, their lengths in blocks
in the first column and the file type in the last column.
This diskette contains three different file types:

PRG These are PROGRAM files, written in either
BASIC or machine language .

SEQ Sequential data files, explained later

REL This is another form of data storage, also
explained later

The length of the files is given in blocks. Each block
contains 256 bytes. You can find the approximate size a
program. by subtracting 2 bytes from each 256-byte block
that the file occupies. Finally at the end of the directory
is the number of free blocks remaining on the disk. When you
add the lengths of the files and the number of free blocks,
the result is the total number of available blocks on a
diskette (664).

If you own a printer, this directory can be printed as you
would print a program listing. Use the following commands:

OPEN 1,4 open the printer

CMD 1 the printer is now linked to the
screen .

LIST the directory will be printed

PRINT#1 send a RETURN to the printer

CLOSE 1 close the printer again

It is assumed that the directory is already loaded with the
LOAD"$",8 command before these commands are executed. By
inserting a wildcard when loading the directory, you can
cause only part of the directory to be loaded, such as only
the programs. This is explained in section 1.3.10

1.3.5 SCRATCH - Deleting Files

Sometimes an unneeded file must be removed from the
diskette. The SCRATCH command is provided for doing so.
Before using this command, you must be sure that the name
given in the SCRATCH command corresponds with the file to be
deleted. An unintentionally deleted file can ruin many hours
or even days of work, so be careful before using the SCRATCH
command.

14

\

Anatomy of the 1541 Disk Drive

To delete a file, the following format should be used:
PRINT#1£fn,"SCRATCH: filenamel, filename2,..."

More than one file can be deleted by using a single command.

But remember that only 40 characters at a time can be sent

over the transmission channel to the disk drive.

For example, to erase a file with the name TEST, the
following commands are used:

OPEN 1,8,15,"S:TEST"
CLOSE 1

If channel 15 is already open, only the PRINT# command is
required: :

PRINT#1,"S:TEST"
It is possible to delete the entire contents of a diskette.
This is discussed in section 1.3.10, the wildcard character
(*):

PRINT#1,"S:*"
But be very careful! Make sure that you do not need any of
the files on the diskette before using this command. After
completing the operation the error channel transfers the
message:

01 FILES SCRATCHED nn 00

where nn is the number of deleted files. This message can be
read with the routine given in section 1.3.3.

1.3.6 RENAME - Renaming Files
You can also change the name of a file on the diskette. The
command RENAME is provided for this purpose. It has tte
following format:

RENAME : newname=oldname

For example, if you want to change the name of the file from
TEST to PEST you would use the following commands:

OPEN 1,8,15,"R:PEST=TEST"
CLOSE 1 '

or

15

Anatomy of the 1541 Disk Drive

OPEN 1,8,15
PRINT#1,"R:PEST=TEST"
CLOSE 1

Note that you cannot rename a file until it is CLOSEd.

1.3.7 COPY - Copying Files

Using this command, a file can by copied on a diskette.
Several different sequential files can be used to create a
new file. If, for example, you have a data record for each
month of your household expenses and they have the names
EXP.01, EXP.02, etc. you can combine them into quarters
(EXP.01 for example) with this command. The COPY command has
the format:

CcoPY:newfile=oldfilel,oldfile2,...
So, the named data records can be combined as follows:

OPEN 1,8,15,"C:EXP.01=EXP.01,EXP.02,EXP.03"
CLOSE 1

This method of combining data records cannot be used for
programs. Only a single program can be copied on the
diskette. Also the name of the new file must not already
exist on the diskette.

The COPY command is seldom used. This is because copying
files onto the same diskette usually makes no sense. The
only sensible use of the command is to combine several
sequential or user files into a single file,

Copying files from one diskette to another diskette is much
more sensible. This is indispensible for data security. If
you own two disk drives, you can assign the device number 9
to one of them and use the program COPY/ALL to copy files
from one to the other. This program is found on the
TEST/DEMO diskette.

We have also thought of you who have only one disk drive. A

utility program is included in section 4.1 to allow you to
copy individual files and even the entire diskette,

1.3.8 INITIALIZE - Initializing the Diskette
The DOS requires a BAM (Block Allocation Map) to be present

on each disk. The BAM is a layout of the usage of the
blocks on each diskette, It marks each block on the diskette

16

Anatomy of the 1541 Disk Drive

as free for use or allocated (already in use). If you change
diskettes in the drive and the new diskette has the same id
as the old diskette, the DOS will not recognize the fact
that you have changed diskettes. The BAM of the new diskette

will be different, but the DOS will still be working with
the old BAM.

Therefore, each diskette should be given a unique id when
you format it. It is a good practice to give each diskette a
different id. You can force the disk drive to read the BAM
of a new diskette by issuing the INITIALIZE command. This
command has the following format:

PRINT#1£fn, "INITIALIZE"™
or shortened to

PRINT#1fn,"1"
Example:

OPEN 1,8,15,"1"
CLOSE 1

If you change diskettes and also change data records, then
we strongly recommend that you use the INITIALIZE command
after changing the diskettes, to be safe.

1.3.9 VALIDATE - "Cleaning Up" the Diskette

The command VALIDATE frees all allocated blocks that are not
assigned to normally CLOSEd files. For example, if you OPEN
a file, and transfer data to that file, but forget to CLOSE
the file, the VALIDATE command can be used to free the data
blocks that were written to. If you use the direct access
commands, be sure to allocate them (using the BLOCK-ALLOCATE
command) or the VALIDATE command will free them again.

The command has an additional function: If a file is deleted
using the SCRATCH command, the file type in the first byte
of the file entry is set to 0. It no longer appears in the
directory. If you now change this byte back to its old file
type with the DOS monitor (described later) or other direct
access commands, VALIDATE will restore the file. If it has
not been overwritten, it will be the same as before the
SCRATCH command. The command has the following format:

PRINT#1£fn,"VALIDATE"
or the shorter form

PRINT#1£fn,"vV"

17

Anatomy of the 1541 Disk Drive

An example:

OPEN 1,8,15,"vV"
CLOSE 1

If you have a diskette such that the sum of the file lengtts
plus the number of free blocks does not equal the total
number available (664), use the VALIDATE command to restore
it.

Another example: If you want to store a program or data
record that uses more than the number of free blocks, the
DOS will give the error DISK FULL. If the disk had shown
some blocks free before, the number is now zero. The
VALIDATE command will restore the original free blocks.

1.3.10 ? * - The Wildcards

There are two wildcard characters - the asterisk (*) and the
characters of the first file on the disk that begins with
the characters which precede the asterisk. An example:

LOAD"TEST*",8

This command loads the first program that begins with the
first four letters "TEST". The command:

LOAD"*",8

loads the first program on the diskette because there are no
characters in front of the asterisk. The asterisk in the
SCRATCH command has a different effect. If used in the
SCRATCH command, not only the first file will be deleted,
but all files. For instance, the command:

OPEN 1,8,15,"S:TEST*"
CLOSE 1

erases all files beginning with the the letters "TEST". This
must be taken into account! Loading the directory with an
asterisk can also select certain files. An example:

LOAD"$A*",8

loads only the directory of the files that begin with the
letter "A".

The DOS offers an additional use of the asterisk that has
not been mentioned yet. It can also select file types if the
asterisk is followed by the first letter of the desired file
type. Here is a summary:

18

Anatomy of the 1541 Disk Drive

*=g selects only sequential files
*= selects program files

*= selects relative files

*=U selects user-files

For example, the command:
LOAD "$*=p",8

causes only the directory entries of programs to be loaded
and shown when you type LIST. This can also be used with the
SCRATCH command to delete all sequential files, for
instance. Here is the command:

OPEN 1,8,15,"S:*=5"
CLOSE 1

With the gquestion mark, certain characters of a file name
can be declared "not relevant”. To illustrate the function
of the question mark, here are two examples of shortened
file names and their effects:

A??2?2?2? - refers to a six-letter filename of whicth
first character is A
??2?TEST - refers to an eight-character filename, the

last four letters of which are TEST

A combination of asterisks and question marks is allowed.
You should notice, however, that an asterisk followed by
question marks has no meaning. Two examples of combinations
of asterisks and question marks:

?2222.* - refers to all file names that have four
characters before a period

TEST.?2?* - refers to all file names having at least 7
characters, of which the first five are
TEST.

TEST-?2201%*=8 - refers to all sequential files whose names

have at least nine characters, the first
five being TEST- and the eighth and ninth
being 01

19

Anatomy of the 1541 Disk Drive

1.4 Sequential Data Storage

A disk drive need not be used exclusively for storing pro-
grams. If you have written a program that manages a large
quantity of data, you need a fast way of organizing it.
Sequential data storage is not the fastest, but it is the
easiest method of managing data. This method is comparable
to sequential storage on a cassette, which can be maintained
in ‘a program as such:

1. Load the program
2. Read the entire data file into the memory of the computer
3. Work with the data in memory (change, delete, combine)

4, Write the new file on an external medium (cassette,
diskette)

5. Exit the program

The maximum number of data items that the program can handle
depends on the size of the computer's memory, because a
single data item cannot be changed or erased directly on the
cassette or diskette, To that end, the entire set of data
items must be read in, changed, and then rewritten again.
Reading and rewriting the data occurs remarkably faster on a
disk drive than on cassette,

It is worth mentioning that programs which work with
sequential data on cassettes can be easily modified to work
with disk. Only the corresponding OPEN commands need be
changed.

1.4.1 The Principle

A sequential data file consists of several data records that
are further divided into fields. The following is a name and
address file and illustrates the principle of sequential
data storage. Individual names and addresses comprise the
data records of this file. A record consists of several
fields (last name, first name, etc.). The structure of the
file looks something like this:

Field 1 Field 2 Field 3 Field 1 Field 2 : Field 3

20

Anatomy of the 1541 Disk Drive

Only two records are shown above. The data records of a file
are stored one after another (sequentially) as are the the
fields within each record. The fields and records may be of
any length. For example, field 1 of record 1 may be longer
than field 1 of record 2. This is possible because the
fields are separated from each other by a special character
(the RETURN character), which is generated by the PRINT#
statement. When read back into the computer by the INPUT#
statement, the RETURN character is recognized as a field
separator.

Each field is associated with a variable when written with a
PRINT# statement or read with an INPUT# statement.

How does the computer know, when reading the data, where
each field ends? Each field ends with a RETURN character.
The RETURN character has the decimal ASCII value 13. An
example of a telephone directory file illustrates this. Our
telephone directory file has three fields:

FIELD 1 : LAST NAME
FIELD 2 : FIRST NAME
FIELD 3 : TELEPHONE EXTENSION

Let's look at a section of this previously written file (the
character + symbolizes a RETURN):

Position: 1111111111222222222233333333334444444
1234567890123456789012345678901234567890123456

Data: SMITH+JOHN+236+LONG+TIM+121+HARRIS+SAM+654+. ..

You can see that the fields are of different lengths and are
all separated by a RETURN character. This RETURN character
is automatically written after the data field by a PRINT#
statement, ‘provided the PRINT# statement is not followed by
a semicolon (which suppresses the RETURN character).

These data items are assigned to the variables with an
INPUT# statement. After that, another INPUT# must follow in
order to read the next field, and so on. The following
sections explain the fundamentals of writing programs using
sequential data storage.

1.4.2 oOpening a Sequential Data File

To create a sequential data file, you must first OPQN the
file. When opening a file to be written to, the following is
carried out:

l. The diskette is checked torsee if an existing file has

21

Anatomy of the 1541 Disk Drive

the same name. If so, the error message FILE EXISTS is
given by the DOS.

2. The file entry in the directory is written. In the file
type it is noted that this file is not yet CLOSEd. This
appears in a directory listing with an asterisk which
preceeds the file type. :

3, A free block is found, into which the first data items
are written. The address (track and sector) of this free
block is stored in the file entry of the directory.

4. The number of blocks in the file is set to 0, because no
blocks of the file have been written yet.

The OPEN command specifies for what purpose (mode) the file
is to be used (reading or writing). The format of the OPEN
command looks like this:

OPEN 1fn,8,sa,"filename,filetype,mode"

When the logical file number is between 1 and 127, a PRINT#
statement sends a RETURN character to the file after each
variable. If the logical file number is greater than 127
(128-255), the PRINT# statement sends an additional line-
feed after each RETURN. This is necessary for printers, for
example, that do not provide an automatic line-feed after a
RETURN character.

The secondary address (sa) can be a value between 2 and 14.
The secondary address indicates the channel over which the
computer is to transfer data to and from the disk drive.
Secondary addresses 0 and 1 are reserved by the DOS for
saving and loading programs, Secondary address 15 is desig-
nated as the command and error channel. Should several files
be open at once, they must all use different secondary
addresses, as only one file can use a channel. If, however,
a file is opened with the secondary address of a previously
opened file, the previous file is closed.

A maximum of 3 channels can be opened with the VIC-1541 at a
time. When utilizing relative data files, the DOS requires 2
channels per file. Therefore, the following maximum
combinations are possible:

- 1 relative and 1 sequential file
or - 3 sequential files

When specifying the filename to be written to (in the OPEN
command), you must be sure that the file name does not
glready exist on the diskette. If a file that already exists
is to be to opened for writing, an at sign followed by a
colon (@:) must be placed in front of the file name (same as
in the SAVE command)., For example:

22

Anatomy of the 1541 Disk Drive

OPEN 1,8,2,"@:ADDRESSES,S,W"

The file type must be given when the file is opened. The
file type may be shortened to one of following:

- sequential file
- user file

- program

- relative file

"wacn

User files are sequential files that are listed in the
directory with the file type USR. It is not a data file in
the true sense. This file type is usually used when output
that normally goes to the screen (BASIC listing, directory)

is sent to the disk. In section 1.4.6 you find a description
of this technique.

The last parameter (mode) establishes ﬁow the channel will
used. There are four possibilities:

W - Write a file (WRITE - section 1.4.3)

R - Read a file (READ - section 1.4.4)

A - Add to a sequential file
(APPEND - section 1.4.4)

M - read a file that has not been closed
("discovered" by us in the DOS listing and
explained in section 1.4.5)

Now open a sequential file with the name SEQU.TEST for
writing:

OPEN 1,8,2,"SEQU.TEST,S,W"
If you novw load the directory with LOAD"$",8 and then LIST
it, you see this file listed with an asterisk before the
file type:

0 SEQU.TEST *SEO

But you are no longer allowed to close this file! After a
file is OPENed and data written to it, it must be closed
before the directory is loaded!
While a file is open, the command/error channel 15 may be
opened, but when channel 15 is closed, all other channels
are closed as well. You must take note of this,

Now some examples of the OPEN command:

OPEN 1,8,2,"SEQU.TEST,S,R" - open a sequential file for
reading

OPEN 2,8,3,"SEQU.TEST,U,W" - open a user file for writing

OPEN 3,8,4,"TEST,P,R" - open a program file for
reading

23

Anatomy of the 1541 Disk Drive

OPEN 4,8,5,"SEQU,TEST,S,A" - open a sequential file for
appending data
OPEN 5,8,6,"CSTMRS.1983,S,M" - open the unclosed customer

file for reading

1.4.3 Transferring Data Between Disk and Computer

After opening a file for writing, you transfer data to be
stored to the diskette with the PRINT# statement. This
statement transmits an additional RETURN that is required
for separating data. In the following example, a file is
OPENed, data written to it, and CLOSEd again, PRINT# céen
also be used as a direct command, that is, outside of the
program, so the following commands can be typed one after
the other and executed. Now open a file with the name
"TEST":

OPEN 1,8,2,"TEST,S,W"

You should notice that the red LED on the disk drive was
lit. It signals the fact that a file was OPENed. You can now
write to the file named TEST. Here is how we would write a
name and address record consisting of 4 fields:

PRINT#1,"SAM"
PRINT#1,"HARRIS"
PRINT#1,"2001 MAIN STREET"
PRINT#1,"ANYTOWN"

Now these data items have been written to the file so we can
close the file with CLOSE 1. The red LED should go out. In
order to read this data again, you must open the file in the
read mode (R). Because the INPUT# statement cannot be used
directly, a small program must be written:

10 OPEN 1,8,2,"TEST,S,R"
20 INPUT#1,FNS

30 INPUT#1,LNS -

40 INPUT#1,STS

50 INPUT#1,CT$

60 CLOSE 1

70 PRINT"FIRST NAME: ";FNS$
80 PRINT"LAST NAME: "; LNS
90 PRINT"STREET: ";STS
100 PRINT"CITY: ";CT$

The program is simple to explain:

Line 10 The file TEST is opened for reading

24

Anatomy of the 1541 Disk Drive

Lines 20-50 The data are read in the same order as they
were written. Variables are used so that the
data can be printed later.

Line 60 The file is closed.
Lines 70-100 The data are printed out on the screen.

When you enter this program and type RUN, the data will
appear as written earlier, on the screen:

FIRST NAME: SAM

LAST NAME: HARRIS

STREET: 2001 MAIN STREET
CITY: ANYTOWN

Four INPUT# statements were used to read the data because
the name and address record is composed of four fields. But
when a record is written that has, say, 20 fields, it is
very time-consuming to type out 20 INPUT# statements. A loop
can make this much simpler. This is obvious in this example:

10 OPEN 1,8,2,"TEST,S,R"
20 FOR I=1 TO 4
30 INPUT#1,D$(I)

40 NEXT I

50 CLOSE 1

60 PRINT"FIRST NAME: ";D$(1)
70 PRINT"LAST NAME: ":D$(2)
80 PRINT"STREET: ";D$(3)
90 PRINT"CITY: ";DS$(4)

Here, instead of four separate string variables, an array
with index 1-4 is used. It should be noted that in BASIC
2.0, if an index higher than 10 is used, the array must be
dimensioned with a DIM statement. Should we want to read in
20 fields, the statement DIM D$(20) must be given before any
are read. ,

There are still more ways of shortening input and output of
data. With the INPUT statement for keyboard input, several
variables can be given in one line, separated by commas. For
example: :

INPUT FNS$,LNS$,TE

With this statement, three variables must be entered, such
as:

NICHOLAS ,MULLER, 7465
The read data can be printed on the screen with:

PRINT FNS,LNS,TE

25

Anatomy of the 1541 Disk Drive

In this manner, sequential data can be written and later
read back in again. The only difference is that the string
variables containing the data to be written must be
separated by commas enclosed in quotes. For example, if you
wish to write the previous variables to a file, the PRINT#
statement command must changed as follows:

PRINT#1,FN$®,"LNS$" ,"TE

Numeric variables need only be separated with a comma from
the other variables. To read the data, use the command:

INPUT#1,FV$,LNS,TE

Because the maximum number of characters read by an INPUT#
statement may not exceed 88, this method of reading is only
marginally useful. If a field in a record is more than 88
characters long, a different statement must be used. This is
the GET# statement, which reads each individual character,
one at a time., Suppose you want to read a record of which a
field is 100 characters long. This record can be placed in a
string variable with the following routine:

10 OPEN 1,8,ccuueuncacses
20 Ds=""

30 FOR I=1 TO 100

40 GET#1,X$

50 D$=D$+X$

60 NEXT I

70 GET#1,X$

80 CLOSE 1

At the end of this program, the string variable D$ will
contain the 100 characters of the data field. After opening
a sequential data file, the DOS establishes'a pointer that
always points to next character to be read. We assume that
the data was written with a PRINT# statement without a
trailing semicolon, so that a RETURN was written at the end
of the data item., After reading the first 100 characters,
the pointer points to this RETURN. The next GET# in line 70
is necessary to read the RETURN found at the end of the
field. Then the next GET# statement can read the next field
and not the RETURN.

In the above example, we used data records with a constant
length of 100 characters. According to the rules of sequer-
tial access, the length of data records need not be con-
stant. Since the INPUT# statement can only read a maximum of
88 characters, we will use the GET# statement to recognize
tge RETURN as the end of a field. Such a routine looks like
this:

10 OPEN 1,8,ccceescosccssccnccnnne
20 s$=""

30 GET#1,X$

40 IF X$=CHRS(13) THEN 80

26

Anatomy of the 1541 Disk Drive

50 S$=S$+X$

60 IF ST<>64 THEN 30
70 CLOSE 1:END

80 PRINT S$

90 GOTO 20

Here a file with variable record length is read and printed
on the screen. Naturally, you can use the data in other ways
instead of printing it on the screen.

To avoid the problem of reading data records of more than 88
characters, divide the record into several parts, which you
can combine after reading them.

1.4.4 Adding Data to Sequential Files

If you want to add data to a sequential file, you have to
read the entire file into memory, add the data, and write
the new file back to the diskette again, This is a very
time-consuming process, For this reason, the DOS offers an
easier alternative to add to a sequential data file without
reading the entire file. This is made possible through the
OPEN mode A (Append). If you have a sequential data file, as
in the previous section, you can add data to it by selecting
the A mode in the OPEN command. An example follows.

Give the following commands:

OPEN 1,8,2,"TEST2,S,W"
PRINT#1,"1. DATA RECORD"
CLOSE 1

Now you have a sequential data file containing one data
record. This file can be expanded with two more records as
follows:

OPEN 1,8,2,"TEST2,S,A"
PRINT#1,"2. DATA RECORD"
PRINT#1,"3. DATA RECORD"
CLOSE 1

Now the file TEST2 has three data records. You can check
this with the following program:

100 OPEN 1,8,2,"TEST2,S,R"
110 FOR I=1 TO 3

120 INPUT#1,DR$

130 PRINT DR$

140 NEXT I

150 CLOSE 1

After the program starts, the data records is read and
printed on the screen.

27

Anatomy of the 1541 Disk Drive

You can see that the append A mode makes it quick and easy
to expand a sequential data files.

1.4.5 Closing a Sequential File

OPENed data files can be closed with the CLOSE command. This
command has the format:

CLOSE 1fn

The parameter 1fn is the logical file number of the file
that was used in the OPEN statement. Should several files
need to be closed a CLOSE statement must be given for each
one. When the last file is closed, the red LED on the drive
goes out.

As you already know, data is sent to the disk drive over a
channel., This channel uses storage inside the disk (called a
buffer) in which the data transmitted by the computer is
stored. When this buffer is full, its contents are written
to the diskette.

When the file is closed, any data still in the buffer is
written to the diskette. An unclosed file is incomplete and
is also not recognized by the DOS as a properly closed file.
The DOS allows no read access in the R (Read) mode and
responds WRITE FILE OPEN when trying to read an unclosed
file,

This could be a problem if the DQS did not allow read access
to a file. For this reason, the DOS offers the M mode. A
file that is marked as an improperly closed file can be read
in this mode. It is logical to then write these records to a
second file which can then be properly closed. In this way
one can "rescue" a file.

The following program will transfer an improperly closed
gile (original file) to a correctly closed file (destination
ile): ’

100 INPUT"ORIGINAL FILE NAME";S$
110 INPUT"DESTINATION FILE NAME";D$
120 OPEN 1,8,2,S$+",5,M"

130 OPEN 2,8,3,D$+",S,W"

140 INPUT#1,X$

150 PRINT#2,X$

160 IF ST<>64 THEN 140

170 CLOSE 1:CLOSE 2

180 OPEN 1,8,15,"S:"+S$

190 CLOSE 1

At the completion of the program, the unneeded original file

28

Anatomy of the 1541 Disk Drive

is deleted (scratched).

1.4.6 Redirecting the Screen Output

Any output appearing on the video screen (PRINT, LIST, etc)
can be redirected to a sequential data file. This is accon-
plished through the CMD command, which has the following
format:

CMD 1fn

For this to occur, a file of type USR must be opened. To
transfer a BASIC program listing, for instance, as a
sequential file on diskette, use the following commands:

OPEN 1,8,2,"TEST.LIST,U,W"
CMD 1

LIST

CLOSE 1

The command CLOSE 1 causes further output to be sent to the
screen,

Storing a program as a sequential file on disk is very
useful, if, for example, you would like to read a program
with a word processor to edit it. It is assumed that the
word processor in this case reads data stored in ASCII code.

This is how the listings in this book were transferred from
a Commodore 64 to a Commodore 8032.

In order to print this file on the screen again, you need
the following routine:

10 OPEN 1,8,2,"TEST.LIST,U,R"
20 GET#1,XS$

30 PRINT X$

40 IF ST<>64 THEN 20

50 CLOSE 1

This routine is a loop that reads every character (byte) of
the file and displays it on the screen. The end of the file
is signalled by the status variable which is set to 64 at
the end. To send a sequential file to the printer, use the
following program:

10 OPEN 1,8,2,"TEST.LIST,U,R"
20 OPEN 2,4

30 GET#1,X$

40 PRINT#2,X$

50 IF ST<>64 THEN 30

60 CLOSE 1

29

Anatomy of the 1541 Disk Drive

Here it assumed that the printer is connected as device
address 4. :

1.4.7 Sequential Files as Tables in the Computer

Sequential data files must reside completely in the computer
for data management. Most of the time, a two dimensional
table can be used. This table is also called an array or
matrix, because a data element can be addressed through the
input of two coordinates. To this end, you use a two dimen-
sional variable, which must be reserved with a DIM state-
ment. The first dimension corresponds to the data record,
the second dimension to the field inside the record. The
following diagram shows an example of a table:
Field 1 Field 2 Field 3

1 |
Record 1 9 D$(1,1) 1 D$(1,2) 1 D$(1,3) 1

1 1

Record 2 ¢ D$(2,1) % D$(2,2) ¢ D$(1,3) 3
Record 3§ DS(3.1) 8 DS(3,2) 4 D$(3,3) g
Record 4 g D$(4,1) 9 DS(4,2) 1 DS$(4,3) i
Record 5 : D$(5,1) 9 D$(5,2) q D$(5,3) i
Record 6 § DS(6.1) 4 D$(6,2) 4 DS(6,3) 1

1 g

This table is a file composed of six records which have
three fields each. The variable D$ is reserved with DIM
D$(6,3). To read a sequential file as a table, it is
necessary to create such a file with, for example, six
records with three fields each. For this purpose, use the
following program:

100 OPEN 1,8,2,"TABFILE,S,W"
110 FOR X=1 TO 6

120 PRINT CHRS$(147)

130 PRINT"RECORD ";X

140 PRINT"-==-e===- "

150 FOR Y=1 TO 3

160 PRINT"FIELD ";Y;": ";
170 INPUT XS$

180 PRINT#1,X$

190 NEXT Y

200 NEXT X

.210' CLOSE 1

Two nested loops are used here, whose variables are numbered

with the record and field. Enter six data records. When the
program is done, these records will be contained on the

30

Anatomy of the 1541 Disk Drive

diskette with the filename of TABFILE. A tip: save this
program with SAVE"TABPROG",8 so you can use it later.

This file can now be loaded into the computer as a table.
Two nested loops indexed for the table are necessary:

100 OPEN 1,8,2,"TABFILE.SEQ,S,R"
110 DIM D$(6,3)

120 FOR X=1 TO 6

130 FOR Y=1 TO 3

140 INPUT#1,D$(X,Y)

150 NEXT Y

160 NEXT X

170 CLOSE 1

This program places data into the table. You can check this
with a PRINT statements, to see if the data has been stored
in the right place. Because each field can be addressed with
indices, you can give a command like PRINT D$(1,2) to see
the second field of record one. It is meaningful to be able
to display the fields of a given record. Use the following
routine for this purpose, after you have saved the previous
program: ’

100 INPUT"RECORD NUMBER: ";X
110 PRINT" "
120 PRINT"FIELD 1: ";DS$(X,1)
130 PRINT"FIELD 2: ";D$(X,2)
140 PRINT"FIELD 3: ";D$(X,3)

Notice that the first index (the record number) after the
question is used as the variable in the field output. The
second index (field number) is then constant.

This table can now be altered as desired. Add the following
lines to the preceeding program:

160 PRINT" "

170 INPUT"FIELD TO CHANGE:";Y

180 INPUT"NEW CONTENTS: ";D$(X,Y)
190 PRINT"OK"

200 PRINT"FURTHER CHANGES (Y/N)?"
210 GET XS$:IF X$="" THEN 210

220 IF X$="Y" THEN 100

230 IF X$="N" THEN END

240 GOTO 210

Here the number of the field to be changed is used as the
second index, which is adjacent to the index of the desired
record to input the new table element,

This modified table must now be written to the diskette

again. You can use the following routine. Don't forget to
save the previous edit program first!

31

Anatomy of the 1541 Disk Drive

100 OPEN 1,8,2,"@:TABFILE,S,W"
110 FOR X=1 TO 6

120 FOR Y=1 TO 3

130 PRINT#1,D$(X,Y)

140 NEXT Y

150 NEXT X

160 CLOSE 1

This routine also is relatively short because of the use of
nested loops. The @: in line 10 is necessary in order to
overwrite the existing file.

Accessing data through the use of the table is very fast.
The access time is independent of the size of the table. The
size of the table and therefore the quantity of data is
dependent on the memory capacity of the computer, however.
The large storage area of the Commodore 64 is excellent for
table management. If you write a data management program
that occupies 8K bytes, then 30K bytes still remain for
storing data. If you consider that storing a name and
address record of about 80 characters, you can still store
384 records in memory! And this with an access time that
cannot be surpassed by refined data management techniques
(indexed sequential, relative). But with larger quantities
of data, sequential storage is no longer feasible.

1.4.8 Searching Tables

As mentioned in the table processing section, each data
record of a table can be indexed. Because the table is two
dimensional, the first index selects the data record. If a
record of the table is to be changed or accessed, the
operator must know the record number. The record number can
be a part or customer number. There are files, however, for
which there is no suitable method of numbering. In such
files, the number of the record must be found through a

search of all the records., Here is a practical example:

First of all, create a data file with the following program.
Names and telephone numbers are saved in the example:

100 OPEN 1,8,2,"TELEDAT,S,W"

110 PRINT CHR$(147)

120 INPUT"LAST NAME :";LNS

130 INPUT"FIRST NAME :";FN$

140 INPUT"AREA CODE :";ACS

150 INPUT"NUMBER " ;NUS

160 PRINT"INFORMATION CORRECT (Y/N)2"

170 GETXS$:IF X$="" OR X$<>"Y" AND X$<>"N" THEN 170
180 IF X$="N" THEN 110

190 PRINT#1,LNS","FNS$","ACS$","NUS

32

Anatomy of the 1541 Disk Drive

200 PRINT"MORE INPUT (Y/N)?"

210 GETXS$:IF X$="" OR X$<>"Y" AND XS$<>"N" THEN 200
220 IF X$="N" THEN 240

230 GOTO 110

240 CLOSE 1

Program Documentation:

Line 100 The sequential file "TELEDAT" is opened for
writing
Line 110 The screen is cleared

Lines 120-150 The four fields are entered from the keyboard

Lines 160-180 If the data are not correct, they can entered

again
Line 190 The four fields are written to disk
Lines 200-220 Here the execution of the program can be
ended
Line 230 Input will be continued
Line 240 The file opened in line 100 is closed

Type this program in, RUN it, and enter some data. Save the
the program on diskette, so you can combine it with other
routines later if you like. In the last section of this
chapter, is a complete program for managing your telephone
numbers,

If you have entered some data, you would probably like to
find a telephone number. To do so, you could print the
entire file on the screen or printer and find it yourself.
This is, however, a wasteful method, especially if you have
entered many records.

The search for the telephone number corresponding to a given
name can be performed by the computer. It runs through the
whole list, looking for the desired name. Once found, it
gives you the complete record which contained that name. The
following routine accomplishes this: :

100 OPEN 1,8,2,"TELEDAT,S,R"

110 DIM D$(100,4) :X=1

120 INPUT#1,D$(X,1),D$(X,2),D$(X,3),D$(X,4)
130 IF ST<>64 THEN X=X+1:GOTO 120

140 CLOSE 1

150 PRINT CHR$(147)

160 PRINT"DESIRED NAME: ";N$

170 FOR I=1 TO X

180 ID D$(I,1)=NS THEN 210

190 NEXT I

33

Anatomy of the 1541 Disk Drive

200 PRINT"NAME NOT FOUND!":GOTO 280
210 PRINT"NAME FOUND:"

220 PRINT"-——=———=——- " ~
230 PRINT"LAST NAME: ";D$(I,1)

240 PRINT"FIRST NAME: ";DS$(I,2)

250 PRINT"AREA CODE: ";D$(I,3)

260 PRINT"NUMBER: ";D$(1,4)

270 PRINT"-—=——--—-=- "

280 PRINT"MORE (Y/N)?"

200 GETXS$:IF X$="" OR X$<>"Y" AND X$<>"N" THEN 290
300 IF X$="Y" THEN 150

310 PRINT"PROGRAM DONE":END

Program Documentation

Line 100 The sequential file "TELEDAT" is opened for
reading

Line 110 The table is dimensioned for 100 records and
the index is set to one

Line 120 The data records are read into the table

Line 130 The status variable ST is checked for end of

file (indicated by a value of 64). If the
end has not been reached, the index is
incremented and a new record is read.

Line 140 The file opened in line 100 is closed
Line 150 The screen is cleared
Line 160 . The last name to be searched for is read from

the keyboard and placed in the variable N$

Lines 170-190 The loop searches the table of records,
checking the name fields against the desired
name. If the position is found, the program
branches to the output routine

Line 200 The name was not found

Lines 210-270 The record containing the desired name is
displayed

Lines 280-310 The possibility to search for a new name is
allowed

You will notice that this search is quite fast when the data
is already loaded into the computer. Searching the
computer's memory is faster than searching the diskette. The
program can be easily changed to search for a desired field
other than the name. You might want to search for an area
code, for instance. The first program stops the search when
the first matching data record is found. This is not always

34

Anatomy of the 1541 Disk Drive

desired, however, If, for instance, you wish to search the
table looking for a particular area code and want all
matches to be displayed, a different routine is needed. The
routine must continue the search after the first match is
found. The next program takes care of this:

100 OPEN 1,8,2,"TELEDAT,S,R"

110 DIM D$(100,4) :x=1

120 INPUT#1,DS$(X,1),D$(X,2),D$(X,3),DS$(X,4)
130 IF ST<>64 THEN X=X+1:GOTO 120

140 CLOSE 1

150 PRINT CHRS(147)

160 PRINT"AREA CODE TO SEARCH FOR: ";ACS
170 FOR I=1 TO X

180 IF DS$(I,3)=AC$ THEN 210

190 NEXT I

200 PRINT"END OF DATA!":GOTO 270
210 PRINT" "

220 PRINT"LAST NAME: ":D$(I,1)
230 PRINT"FIRST NAME: ":DS$(I,2)
240 PRINT"AREA CODE: ":D$(I,3)
250 PRINT"NUMBER: ":;DS$(I,4)
260 PRINT" "

270 PRINT"MORE (Y/N)?"

280 GETX$:IF X$="" OR X$<>"Y" AND X$<>"N" THEN 280
290 IF X$="Y" THEN 190

300 PRINT"SEARCH DONE!":END

Here the search is continued if a record with the
appropriate area code is found. This happens in line 290,
which branches back to the loop instead of ending the
program, After searching all of the records, the program
responds END OF DATA. If you understand the operation of
this program, you can now develop a search for the last
name., With the help of the previous programs, this should
present no difficulty. :

1.4.9 simple Sorting of Tables

In data processing, it is often necessary to sort data into
numeric or alphabetic order. This has always been a time
consuming task, which the programmer has tried to shorten ty
using better sorting methods. Sorting is certainly a time
consuming task when performed with the programming language
BASIC, which is relatively slow.

Why should we sort the data at all? Suppose you had a
telephone book in which the names were not ordered. You
would have search the entire book from beginning to end to
find a name., Sorting offers advantages when searching data.
The computer can also search sorted data faster.

35

Anatomy of the 1541 Disk Drive

There are several search methods which differ mainly in
their speed of execution. The simplest method compares each
data item with every other. If a table is supposed to be
sorted in ascending order, the first item in the table is
compared to the second. If the first is greater, it is
exchanged with the second. After that, the first will Fe
compared to the third, and so on, until the last item is
reached. Now the smallest item is at the beginning, in the
right place. The next time through, the first item is no
longer needed. A flowchart of the program logic appears
below.

TA(0)=TA(I)
TA(I)=TA(X)
TA(X)=TA(0)

1

Anatomy of the 1541 Disk Drive

This sort program starts using an index of 1, which is
stored in the variable I. The second index is the variable
X, which receives a value one greater than I. Then the first
item is compared to the second. If the value of TA(I) is
greater then TA(X), the program must use a temporary
variable, TA(0), to make the exchange between the two. After
this, the value of X is incremented, to three, and TA(I) is
again compared to TA(X), etc. When the last item in the
table is reached, (X > last index), the first item will be
the smallest, and the index I is incremented by one. Now the
second item is compared to every other (starting with the
third), and so on.

This sort method looks quite complicated at first glance.
Comparisons in memory are done relatively quickly, however.
This method is sufficient for small quantities of data.

In order to run this program, a table must be built. This
example uses a table with twelve items containing alpha-
numeric data (strings). The table is filled by the following
routine:

100 DIM TAS$(12)
110 FOR I=1 TO 12
120 INPUT TAS$(I)
130 NEXT I

This program allows you to enter twelve strings, which are
then sorted with the following program:

140 1=1

150 X=I+1

160 IF TAS(I) < TAS(X) THEN 180
170 TAS$(0)=TAS$(I):TAS(I)=TAS$(X):TAS(X)=TAS$(0)
180 X=X+1

190 IF X <= 12 THEN 160

200 I=1I+1

210 IF I <> 12 THEN 150

220 FOR I=1 TO 12

230 PRINT TAS(12)

240 NEXT I

The table is sorted and displayed on the screen. If, instead
of a one dimensional table, you want to sort a two
dimensional table such as our telephone file, exchange the
fields by changing lines 160-170 as below:

160 IF DS(I,1) < D$(X,1) THEN 180

170 DS(0,1)=D$(I,1):D$(I,1)=DS(X,1):
DS(X,1)=D$(0;1)

171 D$(0,2)=DS$(1,2):D$(I,2)=D$(X,2):
D$(X,2)=D$(0,2)

172 D$(0,3)=p$(1,3):D$(I,3)=DS(X,3):
D$(X,3)=DS$(0,3)

173 D$(0,4)=DS$(1,4):D$(I,4)=D$(X,4):
D$(X,4)=D$(0,4)

37

Anatomy of the 1541 Disk Drive

It is very time consuming to sort a greater amount of data
with this method. If you have a large amount of data to be
sorted, we recommend that you use the very fast machine
language sort routine from our book Commodore 64 Tips &
Tricks.

1.4.10 MAILING LIST MANAGEMENT with Sequential Data Storage

At the end of this section, is a mailing list management
program that every user will hopefully find easy to use. At
the same time, this program provides insight into the opera-
tion of many data processing techniques.

A mailing list record of this program consists of the
following fields:

- NAME 1

- NAME 2

- STREET

- CITY, STATE

- 2IP CODE

- TELEPHONE NUMBER
- NOTES

The use of the fields 'NAME 1' and 'NAME 2' are up to the
user. For instance, 'NAME 1' can be the first name and 'NAME
2' the last name, or 'NAME 1' the company name and "to the
attention of..." in 'NAME 2'. The field 'NOTES' can be used
for grouping the addresses (family, business, friends,
etc.).

The program offers the following Main Menu options:

-1- LOAD DATA

—-2- SAVE DATA

-3- INPUT DATA

-4- EDIT DATA

-5~ SELECT/PRINT DATA
-6- DELETE DATA

-0- END PROGRAM

-1- LOAD DATA

Use this function to enter the name of the mailing list
file that is to be maintained. If the file exists on the
diskette, it is loaded and ready to be used. The number
of records in the file is displayed. If an error is
encountered while loading, or if the file does not exist,
the message DISK ERROR! is displayed. At the conclusion
of this function, the Main Menu reappears.

38

Anatomy of the 1541 Disk Drive

-2~ SAVE DATA

Use this function to write an updated or expanded copy of
the mailing list to the diskette. If the file name
already exists, then the file is overwritten. :

The mailing list should be saved often while using the
program in case a power outage should erase the
computer's memory. After saving, the file can be used
further, without having to reload it in again. i

-3- INPUT DATA
Use this function to add records to the mailing list:
1. When no data has been previously loaded.

First a file name for the mailing list is entered.
Enter a file name which does not already exist on the
diskette or the old file is overwritten. All records
that are inputted are new to the mailing list.,

2. When data has been previously loaded.

All records that are inputted are added to the
existing mailing list.

After entering an mailing list entry, the message CORRECT
(¥Y/N)? is displayed. Here you may correct the data. If
the entry is not correct, press the N key. If the entry
is correct, press Y. Now the message MORE INPUT (Y/N)? is
displayed. If you want to enter another mailing list
entry, press Y. If you press N, the Main Menu appears
again. :

-4- EDIT DATA

Use this function to change existing mailing list rec-
ords. Both Name 1 and Name 2 must be entered. If both
names are not known, the other can be found with the
SELECT/PRINT DATA routine. After entering the names, the
mailing list is searched for matching names. When they
are found, the complete address is displayed with the
fields numbered. Now you must enter the number of the
field which you want to change. The new contents are
requested. The record is once again displayed in its
updated form. If no more changes to this record are
required, press 9. The program asks if another record is
to be changed., This question is to be answered by
pressing Y or N.

39

Anatomy of the 1541 Disk Drive

-5- SELECT/PRINT DATA

Use this function to search for certain records and print
or display them. You must first specify if the selected
printed on the screen (S) or the
printer (P). If you have selected the printer, you must
again choose if the data is to be printed with all fields
on normal paper (P), or if fields 1-5 are to be printed
on mailing labels (M). The address labels must be in a
single column and measure 89mm x 36mm,

records are to be

In order to select the data,
fields which are not relevant, simply press RETURN. If,
for example, you want to find all addresses in Grand
Rapids, press RETURN for the first three fields and type
GRAND RAPIDS, MI for the fourth, and press RETURN for the

next three,
An example:

NAME 1

NAME 2

STREET

CITY, STATE

ZIP CODE
TELEPHONE NUMBER
NOTES

o0 o0 oo es o0 os s

M
<return>
<return>
<return>
<return>
<return>
FAMILY

enter search criteria. For

All family members whose name 1 begins with 'M' will be

displayed.

You can see how versatile this search is. Try it out

yourself.

-6~ DELETE DATA

Use this function to delete records. After entering the
first and second names of the record, the record is read
and the remaining fields are displayed. Then you are
asked to confirm that the record is to be deleted. If you
press Y, the record is deleted.

-0- END PROGRAM

Use this function to leave the program. Before the
program is ended, you are reminded that you can restart
the program without losing data by typing GOTO 110. This
is important if you forget to save the data before ending

the program.

40

Anatomy of the 1541 Disk Drive

Here is the program listing:

100 POKE 53280,5:POKE53281,2:PRINTCHRS (158); : DIMDS (100,7)
110 GOSUB2030

120 PRINT"SELECT THE DESIRED FUNCTION:"

130 PRINT" ":PRINT
140 PRINT" =1- LOAD DATA"

150 PRINT" ~2- SAVE DATA"

160 PRINT" ~3- INPUT DATA"

170 PRINT" -4~ EDIT DATA"

180 PRINT" ~5- SELECT/PRINT DATA"

190 PRINT" -6- DELETE DATA":PRINT

200 PRINT" -0- END PROGRAM"

210 PRINT

220 PRINT" CHOICE (0-6)2"

230 GETX$:IFX$<"0"ORX$>"6"THEN230

240 IF X$<>"O0"THEN340

250 PRINT:PRINT" ARE YOU SURE (Y/N)?"
260 GETXS:IFX$<>"N"ANDXS<>"Y"THEN260

270 IFX$="N"THEN11l0

280 GOSUB2030

290 PRINT"THE PROGRAM CAN BE RESTARTED WITH

300 PRINT" 'GOTO 110'"
310 PRINT" WITHOUT LOSS OF DATA"
330 END

340 ONVAL(X$)GOSuB360,540,680,880,1190,1770

350 GOTO 110

360 REM khkkkhkkkkk

370 REM LOAD DATA

380 REM dkkkdkkkkk

390 GOSUB 2030

400 INPUT"NAME THE FILE :";FN$

410 OPEN 15,8,15

420 OPEN1,8,2,FNS$+",S,R"

430 INPUT#15,FE:IF FE=0 THEN 460

440 PRINT"DISK ERROR!"

450 GOTO 510

460 X=1

470 INPUT#1,D$(X,1),D$(X,2),D$(X,3),DS$(X,4),D$(X,5),D$(X,6),
D$(X,7)

480 IF ST<>64 THEN X=X+1:GOT0470

490 PRINT"FILE IS LOADED AND CONTAINS";X;"RECORDS."

500 PRINT

510 CLOSE:CLOSE1l5

520 PRINT"RETURN FOR MORE"

530 INPUTXS :RETURN

540 REM kkdkdkkkkkk

550 REM SAVE DATA

560 REM %k k ok kkkkk

570 IF X>0 THEN 590

580 GOSUB2230:RETURN

590 GOSUB 2030

600 OPEN 1,8,2,"@:"+FN$S+",S,W"

610 FORI=1TOX

620 PRINT#1,D$(I,1)","D$(I,2)","DS$(I,3);

41

Anatomy of the 1541 Disk Drive

630 PRINT#1,D$(I,4)","D$(I,5)","D$(1,6)","DS(I,7)
640 NEXT

650 PRINT"DATA IS SAVED":CLOSE1:RETURN
660 PRINT"RETURN FOR MORE"

670 INPUTXS$:RETURN

680 REM J¢ J K J %k Kk k kK

690 REM INPUT DATA

700 REM kkkkkkkkkk

710 IFX>0THEN730

720 GOSUB2030:INPUT"FILENAME " ;FN$

730 X=X+1

740 GOSUB2030

750 PRINT"INPUT DATA:"

760 PRINT"--——==c==—- " s PRINT

770 I=X:GOSUB2110

780 FORI=1TO7:PRINTCHR$ (145); :NEXT

790 FORI=1TO7:PRINTTAB(12);:INPUTDS(X,I) :NEXT
800 PRINT:PRINT"CORRECT (Y/N)?"

810 GETXS$:IFXS$S<>"N"ANDXS$<>"Y"THEN810

820 IFX$="Y"THEN840

830 GOTO 740

840 PRINT"MORE INPUT (Y/N)?"

850 GETXS$:IFXS<>"N"ANDX$<>"Y"THEN850

860 IFX$="Y"THEN730

870 RETURN

880 REM ddkkkkkikk

890 REM EDIT DATA

900 REM kkkkkkkkk

910 IF X>0THEN930

920 GOSUB2230:RETURN

930 GOSUB2030

940 INPUT"NAME 1: ";N1$

950 INPUT"NAME 2: ";N2$

960 FORI=1TOX

970 IF DS(I,1)=N1SANDDS$(I,2)=N2$THEN1010
980 NEXTI

990 PRINT"NAME NOT FOUND!"

1000 PRINT"RETURN FOR MORE":INPUTXS$:RETURN
1010 GOSUB2030

1020 PRINT"-1- NAME 1 :";DS$(I,1)
1030 PRINT"-2- NAME 2 :";DS(I,2)
1040 PRINT"-3- STREET :";DS$(I,3)
1050 PRINT"-4- CITY, STATE :";DS$(I,4)
1060 PRINT"-5- ZIP CODE :";DS(I,5)
1070 PRINT"-6- TELEPHONE :";DS(I,6)
1080 PRINT"-7- NOTES :";D$(I,7)
1090 PRINT"NO. OF FIELD TO CHANGE: ":PRINT"(9=NO
CHANGES) "

1100 GETXS$:IFVAL(X$)<1ORVAL(XS$)>7ANDVAL(X$)<>9THEN1100
1110 IFVAL(XS$)=9THEN1150

1120 Y=VAL(XS) '

1130 INPUT"NEW CONTENTS";DS$(I,Y):PRINT

1140 GOTO 1010

1150 PRINT"MORE CHANGES (Y/N)?2"

1160 GETXS:IFXS<>"Y"ANDXS<>"N"THEN1160

42

1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320

1330

1340
1350
1360
1370
1380
1390
1400
1410

1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700

Anatomy of the 1541 Disk Drive

IFX$="Y"THEN880
RETURN
REM ***kkkkkkkkkhkkkk

REM SELECT/PRINT DATA

REM ***kkkkkkkkkhkhkkk

IF X>0THEN1240

GOSUB2230 : RETURN

GOSUB2030 :PRINT"OUTPUT TO PRINTER (P) OR SCREEN (S)?"
GETX$: IFX$<>"S"ANDX$<>"P"THEN1250

0$=X$: IFO$="S"THEN1300

PRINT:PRINT"PAPER (P) OR MAILING LABELS (M)?"

GETXS$: IFX$<>"P"ANDX$<>"M"THEN1280

D$=X$

GOSUB2030

PRINT"ENTER THE SEARCH DATA:"

PRINT"PRESS RETURN BY IRRELEVANT FIELDS."

PRINT" " : PRINT
I=0:GOSUB2110

FORI=1TO7 :PRINTCHRS (145) ; :S$(I)="" :NEXT

FORI=1TO7 :PRINTTAB(12) ; s INPUTSS$ (I) :NEXT
IFO$="S"ORDS="M"THEN1450

GOSUB2030:PRINT"PRINTER READY (Y)?2"

GETX$: IFX$<>"Y"THEN1390

OPEN 1,4

PRINT#1,"NAME 1";SPC(8);"NAME 2";SPC(8);"STREET";
SPC(10); _

PRINT#1,"CITY, STATE";SPC(4);"ZIP CODE TELEPHONE NOTES"
FORI=1TO79 :PRINT#1,"="; :NEXT:PRINT#1

CLOSE1

FORI=1TOX

FORY=1TO7

IFSS$ (Y)=LEFT$ (D$(I,Y),LEN(SS(Y)))THENZ=2+1:GOTO1480
NEXTY

IF2=7THENGOSUB1550

2=0:NEXTI

PRINT:PRINT"END OF DATA!":PRINT
PRINT"RETURN FOR MORE" :PRINT
INPUTXS

RETURN

IFO$="S"THEN1730
IFD$="M"THEN1670

OPEN1,4
PRINT#1,D$(I,1);SPC(14-LEN(D$(I
PRINT#1,D$(I,2);SPC(14-LEN(DS(I
PRINT#1,D$(I,3);SPC(16-LEN(D$(I
PRINT#1,D$(I,4);SPC(15-LEN(DS$(I
PRINT#1,D$(I,5);SPC(8-LEN(D$(I,
PRINT#1,D$(I,6);SPC(12-LEN(DS(I
PRINT#1,D$(1,7)

PRINT#1:CLOSE1

RETURN

OPEN2,4

PRINT#2
FORJ=1TO05:PRINT#2,D$(I,J) :NEXT
PRINT#2:PRINT#2: PRINT#2

s Uls & &

43

Anatomy of the 1541 Disk Drive

1710 CLOSE2

1720 RETURN

1730 GOSUB2030:GOSUB2110

1740 PRINT:PRINT"MORE (Y)?"

1750 GETX$:IFX$<>"Y"THEN1750

1760 RETURN

1770 REM kkkkkkkkhkk

1780 REM DELETE DATA

1790 REM ok ok kkkkkkkk

1800 IFX>O0THEN1820

1810 GOSUB2230:RETURN

1820 GOSUB2030

1830 INPUT"NAME 1 : ";NI1S$

1840 INPUT"NAME 2 : ";N2$

1850 FORI=1TOX

1860 IFDS(I,1)=N1$ANDDS(I,2)=N2$THEN1900
1870 NEXTI ’

1880 PRINT"NAME NOT FOUND!" :PRINT

1890 PRINT"RETURN FOR MORE":INPUTXS : RETURN
1900 GOSUB2030:GOSUB2110

1910 PRINT:PRINT"DELETE RECORD (Y/N)2"
1920 GETXS$:IFX$<>"Y"ANDXS<>"N"THEN1920
1930 IFX$="N"THENRETURN

1940 FORY=ITOX-1

1950 FORJ=1TO6

1960 D$(Y,J)=D$(Y+1,J)

1970 NEXTJ,Y

1980 FORJ=1TO6:D$(X,J)="":NEXTJ

1990 Xx=x-1

2000 PRINT"RECORD IS DELETED!"

2010 PRINT"RETURN FOR MORE"

2020 INPUTXS :RETURN

2030 REM khkhkkkkkkkkkdkkkk

2040 REM PROGRAM HEADING

2050 REM kkkkhkkkkkkkkkkk

2060 PRINTCHR$(147);

2070 PRINTTAB(8);" ="
2080 PRINTTAB(8);"M A I LING LIST
2090 PRINTTAB(8);"== "
2100 RETURN

2110 REM kkkkkkkkkkkk

2120 REM PRINT RECORD
2130 REM ****kkkkkkkx

2140 PRINT"NAME 1 s ";D$(I,1)
2150 PRINT"NAME 2 : ";D$(I,2)
2160 PRINT"STREET : ";D$(1,3)
2170 PRINT"CITY, STATE : “";DS$(I,4)
2180 PRINT"ZIP CODE : ";D$(I,5)
2190 PRINT"TELEPHONE : ";DS$(1,6)
2200 PRINT"NOTES s ";D$(I,7)

2220 RETURN

2230 REM ***%kkxx
2240 REM NO DATA!
2250 REM ***kkkkk%
2260 GOSUB2030

44

Anatomy of the 1541 Disk Drive

2270 PRINT"NO DATA IN MEMORY!" : PRINT
2280 PRINT"RETURN FOR MORE" ’
2290 INPUTXS :RETURN

1.4.11 Uses for Sequential Storage

The great advantage of sequential storage as compared to
relative and direct access storage, is that a lot of data
can be written to the diskette quickly. Data of varying
lengths can be stored together, without requiring the rec-
ords to be of a definite length. It makes sense to make use
of this advantage, where the the file must not be
permanently divided into parts. Examples are:

* Bookkeeping files
In a bookkeeping journal, all entries are recorded
continuously. Changes should not be made to these
entries. Instead, adjustment entries should be made
to effect changes.

* Analysis files
You analyze a direct access file, looking for, say, all
customers with whom you have done more than 2000
dollars of business in a certain zip code, and write
the found records in a sequential file for later
access,

Naturally, sequential files also offer a substitute for
direct access files, as discussed in this chapter, if the
user does not possess further programming knowledge. We must
certainly recommend that you work through the other methods
of data storage, which offer other advantages.

45

Anatomy of the 1541 Disk Drive

1.5 Relative Data Storage

Relative data storage and its programming is not described
in the VIC-1541 user's manual. The reason may lie in the
fact that the Commodore 64 and the VIC-20 have no commands
to process relative files using BASIC 2.0. Therefore, it is
in principle not possible to use relative data storage on
the Commodore 64 and VIC-20 - but only in principle. We "have
developed a few tricks that work within the limitations of
BASIC 2.0 and permit the Commodore 64 and also the VIC-20 to
use relative data storage. The examples may seem to be
somewhat complicated at first. For example, information
about the record lengths will be transmitted to the disk
using CHR$(x) codes. But they provide for a very easy method
of data storage.

1.5.1 The Principle

When using relative record data processing, the data records
are numbered. It is assumed that all records in a relative
file have the same length and that the record number of
every record is known or can be calculated. To find a
record, it is not necessary to search through the entire
file. Only the record number need be given to access the
record. Using the record number, the DOS can find where the
record is "relative” to the beginning of the file on the
diskette and can read it directly. Therefore, you don't have
to read an entire file into the computer, only the desired
records.,

Managing a relative file follows this pattern:
Create a relative file:

1. The file is opened. With this the length of a record
is established.

2. The last record is marked.

3. The file is closed.

Writing a record:

1. The file is opened.

2. The file is positioned on the record to be written.
3. The record is written.
4, The file is closed.

Reading a record:
1. The file is opened.
2. The file is positioned over the record to be read.

3. The record is read.
4, The file is closed.

46

Anatomy of the 1541 Disk Drive

This is only an outline. In the following sections these
processes will be explained in detail.

1.5.2 The Advantage over Sequential Storage

The greatest advantages of relative storage are:

*
*

faster access to individual records
does not require much of the computer's memory

It has already been mentioned that the sequential file must
reside completely in the computer's memory for processing.
Using sequential techniques, it may be necessary to search
the entire file to find a given record. The record must be
read and compared during the search process. But if a
sequential file cannot be entirely loaded into memory, this
method of search is impossible.

Using relative data files, the processing is much simpler.
By using the record number, a desired record can be read
individually. The file size is not limited to the computer's
memory. So, for example, a program that uses all 3.5K bytes
of a standard VIC-20 can manage a file with up to 163
Kbytes!

The advantages of relative over sequential file management
are large enough that many of you, once acquainted with the
techniques will prefer to use them.

1.5.3 oOpening a Relative File

Relative files are also opened with the OPEN command. The
command differs only slightly from that for sequential
files. Take a look at the format of the OPEN command:

OPEN 1fn,da,channel,"filename,L,"+CHR$(recordlength)

The first four parameters are identical to those for
sequential files. They are logical file number, device
address (normally 8), channel (2-14), and name of the file.
Next follows an L which informs the DOS that a relative file
should be opened, whose record length follows. This record
length is transmitted with a CHR$ code. The length is
between one and 254. Thus each record of a relative file is
limited to a maximum of 254 characters.

If the record length is smaller than 88, the record can be
read with an INPUT# statement. For this, it is necessary

47

Anatomy of the 1541 Disk Drive

that the PRINT# statement transfers the record with a
trailing RETURN. A PRINT# statement sends a RETURN when it
is not ended with a semicolon, This RETURN is now a part of
the record. When you want to read records with INPUT#, the
record length must be increased by one.

A file composed of 80-character records, to be read by the
INPUT# statement would be opened as follows:

OPEN 1,8,2,"FILE.REL,L,"+CHR$(81)

Here a relative file with the name "FILE.REL" is opened
using channel 2. The record length should total 81
characters. Records comprised of 80 characters should be
sent with a PRINT# statement, with no trailing semicolon.

It is important to note that only one relative file can be
opened at a time., If you want to work with two relative
files, you must always close the first before opening the
second. One sequential file may be opened in addition to one
relative file.

When a relative file is opened for the first time, the DOS
creates as many "null" or unused records that can fit in a
single 254 byte block. It creates these "null" records by
writing a record with a CHR$(255) at the beginning of each
record. This is called formatting a relative file.,

If you want to expand a relative file beyond the initial
number of records that the DOS formatted, then you can
reference the last record number that you want to write (by
positioning to that record number) and the DOS automatically
formats the records between the current end of file and the
new last record number by writing records containing
CHR$ (255) . Formatiing takes time to complete.

If you try to read a record whose number greater than that
of the last record, the DOS returns the error RECORD NOT
~ PRESENT. However, if you write a record which is greater
than the highest current record, all records less than the
new record number are also written with CHR$(255).
. Subsequently accessing these record does not result in an
error.

If you want to avoid long delays as relative records are
formatted (as the file is expanded), then you should
reference the last record number immediately after opening
the file. The formatting of the null records takes place at
that time instead of at a more inconvenient time,

To position the DOS for a specific relative record you must
send a position command over the command channel (15), as
shown here:

PRINT#1£n,"P"+CHRS (channel)+CHRS (1low)+CHRS$ (higd)+CHRS$ (byte)

48

Anatomy of the 1541 Disk Drive

If you are positioning to a record which is beyond the
current end of file, the DOS presents the message RECORD
NOT PRESENT appears to the disk error channel. If this
record is to be written, then you can ignore the message.
The following PRINT# statement is carried out in spite of
the error message.

The parameters low and high in the P command designate the
record number. The maximum value that can be given with one
byte is 255, but a relative file contains up to 65535 rec~-
ords. Therefore, the record number must be transmitted in
two bytes. These two bytes are calculated with the following
formula:

HB=INT(RN/256)
LB=RN-HB*256

HB = High Byte (parameter high)
LB = Low Byte (parameter low)
RN = Record Number

The last parameter (byte) serves to position to a specific
location within the given record. An example:

PRINT#2,"P"+CHR$ (2)+CHRS (10)+CHRS$ (1) +CHR$(5)

Here the file is positioned to the fifth byte of the 266th
record. This 266 is coded as a low byte of 10 and a high
byte of 1 (high byte * 256 + low byte = record number).

To read or write a complete record, the file is positioned
to the first byte of the record. If the last parameter is
not given, the trailing RETURN (CHR$(13)) is taken as the
character location.

The corresponding BASIC program to establish a file of 100
80-character records looks like this:

100 RN=100

110 HB=INT(RN/256)

120 LB=RN-HB*256

130 OPEN1,8,2,"FILE.REL,L,"+CHRS$(80)

140 OPENZ2,8,15

150 PRINT#2,"P"+CHRS$(2)+CHRS (LB)+CHRS (HB)+CHRS (1)
160 PRINT#1,CHR$(255)

170 CLOSE 1:CLOSE 15

Freeing 100 records takes some time. The creation of this
file takes about ten minutes. Notice that of the 80 char-
acters in a record, only 79 can be used to hold data,
because transferring data with a PRINT# command adds a
trailing RETURN.

49

Anatomy of the 1541 Disk Drive

1.5.4 Preparing Data for Relative Storage

As already mentioned, you cannot change the record length of
a relative file. If a record consists of several fields,
these fields must be combined., It is important that these
fields always be in the same position so that they can be
separated later. Let's work through a problem:

We want to manage an inventory using relative storage
techniques. To that end, the following fields are necessary:

PART NUMBER 4 CHARACTERS
DESCRIPTION 15 CHARACTERS

QUANTITY 5 CHARACTERS
COST 6 CHARACTERS
PRICE 6 CHARACTERS

Record length 36 bytes

The inventory contains approximately 200 items with a record
length of 36 bytes. This inventory file can now be created:

100 RN=200:REM NUMBER OF INVENTORY ITEMS

110 RL=36 :REM RECORD LENGTH

120 OPEN 1,8,2,"INVEN,L,"+CHRS$(36)

130 OPEN 2,8,15

140 PRINT#2,"P"+CHRS (2)+CHRS (200)+CHRS (0) +CHR$ (1)
150 PRINT#1,CHR$(255)

160 CLOSE 1:CLOSE 2

Now the file is created and all records are written, Let's
suppose that the inventory is present as a sequential file.
It consists of 200 records, the fields of which are ordered
one after the other. These fields must be written to the
relative file. This is not simple, however, because many of
the descriptions are not the full fifteen characters in
length, for example. The structure of the relative file
looks as follows:

111111111122222222223333333
Position : 123456789012345678901234567890123456

Field : PN$-DES—=-=m—m———m— 0$=-==-C$=—=-P§-——-

Contents 1 1/8 in. sheet 1344 11.40 20,30
2 No. 10 screw 1231 4.00 7.00
3 Valve A3A4 1243 11.45 16.40

o0 ss o0 oo oo o o0

200 1/2 in. tubing 2321 3.35 4.10

The fields will be read from the sequential file into the
following variables:

50

Anatomy of the 1541 Disk Drive

Part number PNS
Description DE$

Quantity os
Cost cs$
Price P$

The following command chains these fields together:
RC$ = PN$ + DES + 0$ + C$ + P$

The record variable RC$ does not have the desired structure.
The reason is that the quantity immediately follows the
description. Because the quantity must begin at position 20
and the description is not always fifteen characters, we
have a problem. In order to read the records from the rela-
tive file, the structure must be observed. Therefore, all
fields that are shorter than the planned length must be
padded with blanks. Taking this into account, the chaining
goes like this: :

BL$=" "
RC$=PN$+LEFTS$ (BLS ,4-LEN(PNS))
RC$=RC$+DES$+LEFT$ (BL$,15~LEN(DES))
RC$=RC$+0$+LEFTS (BL$,5~-LEN(Q$))
RC$=RC$+C$+LEFTS (BLS ,6~LEN(CS$))
RC$=RC$+PS+LEFTS (BLS ,6-LEN(PS))

This concatenation looks more complicated than it really is.
Each field must be filled with enough blanks to bring it to
its appropriate length. The blanks are added to the
individual fields from the string BL$, defined at the
beginning, T

Let's go through an example:

Suppose the first part number is 8. The length of this
string, LEN(PNS), is then one. The maximum length of this
field (4) minus the actual length (1) is 3. The string PN$
must therefore be padded with three blanks, LEFT$(BL$,3).

Each record of the old sequential file must be prepared in-
this manner before it can be transferred to the relative
file. '

Naturally, the above is true for all input values to be used
in a relative file. Therefore, you must always remember to
use a routine to fill each field with blanks to its full
length when working with relative data processing.

51

Anatomy of the 1541 Disk Drive

1.5.5 Transferring Data

In principle, transferring data to and from a relative file
does not differ from sequential storage. Records are written
with PRINT# and read with INPUT# or GET#. The only
difference is that before a record is be written or read,
the file must be positioned to that record. This is accom-
plished with the P command. This example program illustrates
what we have discussed:

100 BL$=" "

105 OPEN 1,8,2,"TEST.REL,L,"+CHR$(41)

110 OPEN 2,8,15

120 PRINT#2,"P"+CHRS(2)+CHR$(100)+CHR$(0)+CHRS (1)
130 PRINT#1,CHRS$(255)

140 PRINT CHR$(147)

150 PRINT"INPUT RECORD:"

160 PRINT"———==—===——==— "

170 INPUT"RECORD NUMBER (1-100) : “";RN

180 IF RN<1 OR RN>100 THEN PRINTCHRS(145);:GOT0160
190 INPUT"FIELD 1 (MAX.10 CHAR.) : ";Fl$

200 IF LEN(F1$)>10 THEN PRINTCHRS$(145);:GOT0190
210 INPUT"FIELD 2 (MAX. 5 CHAR.) : ";F2$

220 IF LEN(F2$)>5 THEN PRINTCHRS(145);:GOT0210
230 INPUT"FIELD 3 (MAX.10 CHAR.) : ";F3$

240 IF LEN(F3$)>10 THEN PRINTCHRS(145);:GOT0230
250 INPUT"FIELD 4 (MAX.1l5 CHAR.) : ";F4$

260 IF LEN(F4$)>15 THEN PRINTCHRS$(145);:GOT0250
270 PRINT"CORRECT (Y/N)?2"

280 GETXS:IF X$<>"Y" AND X$<>"N" THEN 280

290 IF X$="N" THEN 140

300 RC$=F1$+LEFT$(BL$,10-LEN(F1$))

310 RC$=RC$+F2$+LEFTS (BLS,5-LEN(F2$))

320 RC$=RC$+F3$+LEFTS (BLS,10-LEN(F38))

330 RC$=RC$+F4$+LEFTS(BLS,15-LEN(F4$))

340 PRINT#2,"P"+CHRS(2)+CHRS (RN)+CHRS$(0)+CHRS(1)
350 PRINT#1,RCS

360 PRINT"MORE INPUT (Y/N)?"
370 GETX$:IF XS$<>"Y" AND X$<>"N" THEN 370
380 IF X$="Y" THEN 140

390 CLOSE 1:CLOSE 2:END

The following line-oriented documentation explains the
operation of the program:

100 A blank-character string with 15 blanks is
defined.

105 The relative file is opened with a length of 15.

110 The command channel 15 is opened.

120 To initialize the relative file, the head is
positioned over the first byte of the last (100th)
record.

130 ghe last record is freed and the initialization

egun.

140 The screen is erased.

52

Anatomy of the 1541 Disk Drive

150-260 The record no. and fields 1-4 are entered and
checked for correct length.

270-290 The entered data can be corrected,

300-330 The record is prepared.

340 The head is positioned over the first byte of the
record,

350 The record is written to the disk.

360-380 New data can be entered.

390 The program ends,

Now write some records with this program, but don't forget
to save in case you need it later.

Certainly, it also necessary to read and change existing
records. To do this, the relative file is opened, the file
is positioned to the appropriate record, and the record is
read. This record must then be divided into its fields.
Let's read a record that was recorded with the previous
program. The following routine reads the record:

100 OPEN 1,8,2,"TEST.REL,L,"+CHRS(41)

110 OPEN 2,8,15

115 PRINT CHR$(147)

120 INPUT"RECORD NUMBER :";RN

130 PRINT#2,"P"+CHR$(2)+CHR$(RN)+CHR$(0)+CHR$(1)

140 INPUT#1,RCS

160 IF ASC(RC$)<>255 THEN PRINT"RECORD NOT FOUND! " :
GOT0250

170 PRINT RC$

250 CLOSE 1:CLOSE 2

This routine reads a specified record. If this record has
never been written, it is recognized by the value 255 with
which every record was marked at the establishment of the
file.

A record that is found is displayed. You can see that the
four fields are in the same positions. If you want to divide
the record into its individual parts, you must use the
function MIDS. For example, in order to extract field 1 of
the record, give the following statements in the direct mode
after the record is found and read:

F1$=MID$(RCS$,1,10)
PRINT F1$

Now the variable F1$ contains the first field, as written by
the first program. The division of records into individual
fields is accomplished by building on the previous program,
Add or change the following lines:

170 F1$=MID$(RCS$,1,10)
180 F2$=MID$(RCS,11,5)
190 F3$=MID$(RCS,16,10)
200 F4$=MID$(RCS$,26,15)

53

Anatomy of the 1541 Disk Drive

210 PRINT"FIELD 1: ";F1$.

220 PRINT"FIELD 2: ";F2$

230 PRINT"FIELD 3: ";F3$

240 PRINT"FIELD 4: ";F4$

250 PRINT"MORE (Y/N)?2"

260 GETX$:IF X$<>"Y" AND X$<>"N" THEN 260
270 IF X$="Y" THEN 115

280 CLOSE -1:CLOSE 2

Here the record is separated into the individual fields and
the fields are displayed. It is important for the MIDS$S
function that the exact positions of the fields within the
record be maintained. The first parameter within the paren-
theses is the string variable containing the record. The
second parameter is the position at which the number of
characters represented by the parameter will be taken out.
Further work may done with the selected fields inside the
program.

So far, we have read the records with the INPUT# statement.
If the record is longer than 88 characters, it can no longer
be read with the INPUT# statement. The way to get around the
limited INPUT# statement is with the GET# statement. The
bytes of a record are read one at a time with this command
and assembled into a single string. Suppose you have a
relative file with 128-character records. Now you want to
read the tenth record of this file and place it in the
variable RCS. The example of the following routine
illustrates reading this with GET#:

100 OPEN 1,8,2,"TEST.GET,L,"+CHR$(128)

110 OPEN 2,8,15

120 PRINT#2,"P"+CHR$ (2)+CHRS (10)+CHR$(0)+CHRS$(1)
130 RC$=""

140 FOR I=1 TO 128

150 GET#1,X$

160 RC$=RC$+XS$

170 NEXT I

.

Aftgr running this routine, the record is contained in the
variable RCS. If this record had been written with a PRINT#
statement yithout a trailing semicolon, the 1last character
in the string will be a RETURN, To ignore this RETURN, allow
the loop in line 140 to run only to 127. The last character
of the record RETURN is not read.

As a{rgady mentioned, the last parameter of the P command
spe91f1e5’at which character the transfer of data should
beglq. If, for instance, in the 127-character record of the
previous example, you want to read positions 40-60 into a

54

Anatomy of the 1541 pisk Drive

field, the head must be positioned over the 40th character
and the next 21 bytes read. The following routine clarifies
this:

100 OPEN 1,8,2,"TEST.GET,L,"+CHR$(128)

110 OPEN 2,8,15

120 PRINT#2,"P"+CHRS(2)+CHRS(10)+CHRS (0)+CHRS (40)
130 Fg=""

140 FOR I=1 TO 21

150 GET#1,X$

160 F$=FS$+X$

170 NEXT I

.
.
.
.

In line 120, the head is positioned over the the 40th byte
of the tenth record in line 120 and the loop in lines 140-

170 regds the following 21 bytes (bytes 40-60 of the record)
into FS.

You see then that the entire record need not be read if you
only want to work with part of it,

1.5.6 Closing a Relative File

There is no difference between closing a relative file and
sequential file. Because the command channel must always be
open to send the position command when working with relative
storage, it must also be closed.

1.5.7 searching Records with the Binary Method

Normally each record is accessed by record number. But what
if you want to search for a specific name in a relative file
“and the record number is not known. It is possible to read
each record and compare each for the desired name. But this
is very time consuming if the file has many records.

If the file is kept in name order, the records can be
searched using an alternative method. This method is called
a binary search. In order to use a binary search, the
relative file must be arranged in sorted order..Using the
above example, relative record 1 must contain a name with
the lowest collating sequence while the last relative record
must contain a name with the highest collating sequence.
Thus the name AARON might be contained in relative record 1
and ZYPHER might be contained in the last relative record of

55

Anatomy of the 1541 Disk Drive

the file and all other names would be ordered throughout.

When records are added to the file, then the records must
be reordered. Similarly if a name is changed, then the
records must be reordered.

The binary search can be explained using a simple example.
When you want to find a name in the telephone book, you
don't search through it sequentially. You open the book in
the middle and compare the first letter of the desired name
with the first letter of names on the page. If the desired
name comes before these, you turn halfway into the first
section of the book, and so on. You go through it
systematically.

The binary search is not a sequential search. It identifies
a record halfway through the remaining number of records.
The following example will clarify this:

There exists the following relative file, sorted in
ascending order:

Record number Contents

1 1985
2 1999
3 2005
4 2230
5 2465
6 2897
7 3490
8 3539
9 4123
10 5000
11 5210
12 6450
13 6500
14 6550
15 6999

out of these fifteen records we will search for a contents
of 3490. It is not known which record it is stored in.

We must first know how many records are in the file. In this
case, there are fifteen. We divide this by two. The middle
of the file is record eight with the contents 3539. We
determine if the contents of this record equal to the target
value, and if not, whether it is larger or smaller. In this
case, it (3539) is larger. This means the record we are
looking for is in the first half of the file. So we divide
eight by two and examine the contents of record four, 2230.
Since 2230 is less than 3490, it lies between four and
eight. We again divide by two and add this to record 4 which
and results in record 6 whose contents is 2897. 2897 is less
than 3490, so our target lies between records six and eight.
Record seven is indeed the record we are looking for,

56

Anatomy of the 1541 Disk Drive

The principle of the binary search is to determine by the
result of each comparison whether to search upwards or
downwards until the search data is found. The maximum number
of comparisons can be found using the following formula:

S=INT(LOG(N)/LOG(2)+1)

S is the number of comparisons (searches) and N is the
number of records in the file. In a sorted relative data
file with 1000 records, no more than ten comparisons will be
necessary to find the desired record!

Let's create a relative data file with fifteen records to
test the binary search:

100 OPEN1,8,2,"BINARY.REL,L,"+CHRS(5)

110 FORI=1TOl5

120 READ RCS$

130 PRINT#1,RCS

140 NEXT 1

150 CLOSE 1:CLOSE 2:END

160 DATA 1985,1999,2005,2230,2465,2897,3490,3539
170 DATA 4123,5000,5210,6450,6500,6550,6999

This program .puts the fifteen records in a file called
BINARY.REL using the values given in . lines 160-170. The
position command is not necessary because the data will be
written straight through from first to last record. After
opening the file the pointer points to the first record.
This file is designed to be searched with the binary method.
The following program is based on the logic of the binary
search:

100 OPEN1,8,2,"BINARY.REL,L,"+CHRS(5)
110 OPEN2,8,15
120 PRINTCHR$(147)
. 140 N=15: REM NUMBER OF RECORDS
150 I=LOG(N)/LOG(2)
160 IF I-INT(I)<>0 THEN I=INT(I)+1l
170 M=I-1
180 I=2~I1
190 X=1/2
210 INPUT"RECORD TO FIND (* TO END): ";SR$
220 IF SR$="*" THEN 320 :
230 IF M<O THEN PRINT"RECORD NOT FOUND":GOTO140
240 M=M-1
250 PRINT#2,"P"+CHRS$ (2)+CHRS (X)+CHR$ (0)+CHRS (1)
260 INPUT#1,RCS
270 IF SR$=RC$ THEN 340
280 IF SRS<KRC$ THEN X=X-2AM:GOT0230
290 X=X+2AM
300 IF X>I THEN PRINT"END OF FILE EXCEEDED!"
310 GOTO 230
320 CLOSE 1:CLOSE 2

57

Anatomy of the 1541 Disk Drive

330 END

340 PRINT"RECORD FOUND!"
350 PRINT"CONTENTS : ";RCS$
360 GOTO 140

Program Documentation:

100 The relative file "BINARY.REL" 'is opened.

110 The command channel is opened.

120 The screen is erased.

140 The number of records is assigned to the ‘variable
N.

150-190 If the maximum number of records does not
represent a power of two, the next higher power
of two is formed. The file will be expanded, but
no records are lost. The exponent of this power of
two is used as the index. X is the value of I/2.
I/2 indicates the exact middle of the (expanded)
file, After that, the variable M receives the
value of I-1.

210-220 The record to be found 1s read. To end the
program, enter a '*',

230 If M<0, the record was not found.

240 M is decremented by one. The next Mth power
represents half of the rest of the file.

250-260 The file is positioned over the record contalnlng
in the variable X.

270 If the target record is found, the search is
ended and the record displayed.

280-310 It is determined if the target record is larger
or smaller than the record just read. The middle
of the upper or lower half (as appropriate) is
stored in the variable X.

320-330 The file is closed and the program is ended.

340-360 The found record is displayed.

This binary search, coded in BASIC, is implemented
universally. Only.the number of records and the appropriate
record to be searched for need be changed. You can use this

routine for finding records in your sorted relative data
files.

1.5.8 Searching Records with a Separate Index File

If you work with individual records frequently and need
quick access with alphanumeric keys that don't correspond to
the logical record number, and your file is not sorted, we
recommend another method.

Create an index file for each des1red key field, in whlch
each record is composed of

58

Anatomy of the 1541 Disk Drive

= an index key
- the corresponding record number

This entire index file is to be loaded into the computer's
memory. An example:

You have constructed your name and address manager as a
relative file consisting of

- First name

- Last name

- Street

- City, State

- 2Zip code

~ Telephone number

You want to be able to search the file based on the last
name. So you create an additional sequential file that
contains the desired key (in this case the last name) and
the record number of the corresponding record in the
relative file,

The index file is read completely into the computer so the
search can be accomplished as quickly as possible. If you
want to access a record that has the last name HARRIS, then
you search through the appropriate index in memory and when
found, read the corresponding relative record by using the
record number also contained in the index.

Here is an example:

We assume that a data file and an index file exist for the

- names:

Data file:

Index file:

Last name First name more fields Index Record No.
(last name) LB HB
Smith John esesescsess Smith 01 00
Harris Sam eesssseessss Harris 02 00
Hanson Carl esesescssss Hanson 03 00
Johnson Mark eseeeseseses Johnson 04 00
G;een Simon essessesssss Green 99 00

The file contains 99 records.
the index file must be read in.
which can be read into a memory table

used,

sequential file,

Before the

program can be
This can be a

reserved with DIM IT$(99). The first twenty characters of
each index table position comprise the last name. The next

59

Anatomy of the 1541 Disk Drive

to the last byte (no. 21) is the low byte and the last byte
(no. 22) is the high byte of the record number. With these
conditions, a desired record can be found with the following
routine:

100 INPUT "LAST NAME";N$

110 FOR I=1 TO 99

120 IF LEFTS(ITS$(I),20)=N$ THEN 150

130 NEXT I

140 PRINT "NAME NOT FOUND!":END

150 PRINT "RECORD FOUND!"

160 OPEN1,8,2,"ADDRESS,L,"+CHR$(81)

170 OPEN 2,8,15

180 PRINT#2,"P"+CHRS(2)+MIDS$(ITS(I),21,1)+CHRS(0)
+CHRS$ (1)

190 INPUT#1,RC$

The loop in lines 110-130 goes through the index table
sequentially, searching for the target name contained in the
twenty leftmost characters, If the name is not found, an
appropriate message is given (line 140), before the program
is ended. : :

If, in line 120, the target name matches the index entry,
the program branches to line 150. After giving the message,
the address file is opened. After opening the command
channel, the position command is sent to the disk. Because
the next to the last byte of the index entry contains the
low byte of the record number, it must be extracted using
the MID$ function. The high byte is known to be zero since
there are fewer than 255 record.

Finally the relative record is read in line 190.

The access of index files is an equally fast and
extraordinarily flexible form of data organization. One can
theoretically have as many index files as desired., Above
all, you must take note of two important restrictions:

1. Changes in the main data file which affect the key
fields must also be made to the corresponding index
file. With several index files this can become very
time-consuming.

2. The number and size of the index files that are kept in

the computer's memory for fast access are limited by
the availability of memory.

60

Anatomy of the 1541 Disk Drive

1.5.9 cChanging Records
The logical process for changing a record is this:

1. Read the record

2. Split the record into its fields

3. Change the appropriate field

4. Rebuild the record (combine fields)
5. Rewrite the record

In section 1.,5.5 we wrote some records in the file
"TEST.REL". This file had the following properties:

Record length 41 bytes

Number of records 100

Number of fields 4

Length, position field 1 : 10, 1-10
v ’ " field 2 : 5, 11-15
" ’ v field 3 : 10, 16-25

" B " field 4 15, 26-40
Trailing RETURN in position 41

A file description such as the one above should be made for
each of your files, This is very important if other programs
are to use these data., The file description defines the
order and length of the fields of the file,

In this file, we allow for the contents of the records to be
changed. The following program allows changes:

100 REM =

110 REM PREPARATION

120 REM ==============

130 BLs$=" "

140 OPEN 1,8,2,"TEST.REL,L,"+CHR$(41)
150 OPEN 2,8,15

160 REM === =

170 REM READ RECORD

180 REM = ==

190 PRINT CHR$(147)

200 INPUT"RECORD NUMBER (1-100): ";RN
205 IF RN<1 OR RN>100 THEN PRINTCHRS (145) ; :GOT0200
210 PRINT" "

220 PRINT#Z,"P"+CHR$(2)+CHR$(RN)+CHR$(0)+CHR$(1)
230 INPUT#1,RCS$

240 IF ASC(RC$)<>255 THEN 270

250 PRINT "RECORD NOT WRITTEN"

260 GOTO 630

270 REM ===========s==== ==

280 REM PREPARE RECORD

290 REM == == ==

300 F$(1)=MID$(RC$'1110)

310 F$(2)=MIDS(RCS$,11,5)

320 F$(3)=MID$(RCS,16,10)

330 F$(4)=MIDS(RCS,26,15)

61

Anatomy of the 1541 Disk Drive

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690

After this program is RUN you can change any desired record.
This record must have been written with the program in

REM

REM DISPLAY FIELDS

REM

PRINT CHR$(147)

FOR I=1 TO 4

PRINT"FIELD";I;": ";F$(I)

NEXT I

PRINT" "

REM

REM CHANGE FIELDS

REM =======

PRINT"CHANGE WHICH FIELD (1-4)2"

GETXS$:IFXS<"1" OR X$>"4" THEN 460

INPUT"NEW CONTENTS : ";F$(VAL(XS$))

PRINT"RECORD IS CHANGED"

PRINT"MORE CHANGES IN THIS RECORD (Y/N)2"

GETX$:IF X$<>"Y" AND X$<>"N" THEN 500

IF X$="Y" THEN 340

REM

REM CHAIN FIELDS

REM ==

RC$=F$ (1)+LEFTS$ (BLS$,10-LEN(F$(1)))

RC$=RC$+F$(2)+LEFTS (BLS, 5-LEN(F$(?
(

RC$=RC$+F$(3)+LEFT$ (BLS,10~-LEN(F$
RC$=RC$+F$ (4)+LEFTS (BL$,15-LEN(F$
REM =

)))
3)))
4)))

REM WRITE RECORD BACK
REM =

PRINT#1,RCS$

REM ======= =
REM END PROGRAM?

REM ==

PRINT"MORE CHANGES TO FILE (Y/N)?")
GETXS$:IF X$<>"Y" AND X$<>"N" THEN 670
IF X$="Y" THEN 160

CLOSE 1:CLOSE 2:END

section 1.5.5.

This editing program does not check the new f1e1d data for

correct: length.

The 1mportant commands in this program have already been

explained in the corresponding sections.

1.5.10 Expanding a Relative File

Every relative file has a user-determined number of records
that ranges from 1 to 65538. This number is the record with
the highest record number and is written to the file with a

62

Anatomy of the 1541 Disk Drive

value of CHR$(255). Writing this last record also formats
all records in the file that precede this record number with
CHR$ (255) .

You can expand the size of a relative file at.a later time.
For example, consider a relative file that is initially
created with three records, After the file is OPENed, you
position the file at record number 3 and write the record
with. CHR$(255). Here's an example of how you might do this:

10 OPEN 1,8,2,"RELFILE,L,"+CHRS$(50)

20 OPEN 15,8,15

30 PRINT#15,"P"+CHR$ (2) +CHRS$ (3) +CHRS (0) +CHRS (1)
40 PRINT#1,CHRS(255)

When statement 40 is performed, not only is record 3
written, but records 1 and 2 are also formatted by the DOS.
Subsequently, if you position and write a 90th record, the
DOS formats records 4 through 89 (see lines 150 and 160
below). Each time the file is expanded, the DOS formats
records between the current high record number and the new
high record number.

1%0 PRINT#15,"P"+ CHR$(2)+CHRS$(90)+CHRS (0)+CHRS(1)
160 PRINT#1,CHRS$(255) .

500 PRINTH15,"P"+CHRS (2)+CHRS (175)+CHRS (0)+CHRS (1)
510 PRINT#1,CHRS$(255)

An existing relative file can be expanded at any time,
provided there is sufficient room on the disk. To do so, the
new last record is written with CHR$(255). At the same time,
all records between the old and new end of file are also
formatted. - : : :

When writing a record to a relative file whose record number
is higher than the current high record number, a DOS error
is not returned. If there is room on the diskette for the
new records (current high record number through the new high
record number) the file is simply expanded. If there is a
lack of space on the diskette for the new records, the DOS
error FILE TOO LARGE is returned. When reading a record from
a relative file whose record number is higher than the
current high record number, the DOS error RECORD NOT PRESENT
is returned to the error channel.

63

" Anatomy of the 1541 Disk Drive

1.5.11 Home Accounting with Relative -Data Storage

A complete example of problem solving using relative files
offers you a good insight into the organization of relative
file processing. It can be used by most readers of this
book. Few examples of relative file usage have been
explained elsewhere, so here is such a program.

In this application, individual accounts are numbered. This
account number is used as a key to the corresponding
records.

This provides that each account contain a clear text
description. The first field of each record is this account
name. Twenty characters are allowed for the name.

Since information is needed for each month, twelve fields
are necessary for each record. These summary fields are each
ten characters long. The account summaries are stored as
strings which are converted to numbers with the help of the
VAL function. The record consists of 141 characters (twenty
for the name, 12*10 for the month summaries and one for
RETURN) .

3

The layout of the records follows:

Field Length Position
Account name 20 1-20
January summary 10 21-30
February summary 10 © 31-40
November summary 10 121-130
December summary - 10 131-140

The maximum number of accounts per year is set to twenty.

Therefore, a year's file consists of twenty records of 141
bytes each.

We also specified the functions that this program is to
perform.

* Create accounts

* Post to accounts
Display summary by Account
Display account names

Display Monthly summary

64

Anatomy of the 1541 Disk Drive
* Display Year-end summary

Create accounts:

This function creates the file for a year. It asks for the
number and names of the accounts. The records are then
written with the account name and the summary fields are set
to zero. Should a data file already exist with the sane
name, the old file is deleted.

Post to accounts:

This function asks for the account number to be posted and
whether the posting is an income or expense. For example,
the category "SALARY" is an income account and the category
"RENT" is an expense account.

After this, the current contents of the account are
displayed. When you post the appropriate amount, which is
always positive. If you are making a correction entry, use a
negative amount.

Now the updated contents are displayed. You may then make a
new entry.

Producing account summary:

After entering the account number, the summary of the twelve
months and the year's total are displayed for that account.

Display account names:

Each account is determined by its number., Should you forget
a number, this function lists all accounts by name and
corresponding number.

Display monthly summary:

Here the income or expenses of all accounts are displayed.
The monthly balance of all accounts is also displayed.

Display year-end summary:

This function shows the summary of all accounts and the
year-end balance. This display takes some time, since all
monthly fields of each record must be read and totaled. It
accesses the entire file.

Here's the program listing:

65

Anatomy of the 1541 Disk Drive

100 POKE 53280,2:POKE53281,2: PRINTCHR$ (158) ;
BL$=" ":DIMS(12)
110 GOSUB 2050
120 INPUT"CURRENT YEAR : ";¥Y$
130 IF Y$<"1984"ORY¥$>"1999" THENPRINTCHRS (145) ; :GOTO120
140 GOSUB 2050
150 PRINT"SELECT A FUNCTION:

160 PRINT" " :PRINT

170 PRINT" -1~ CREATE ACCOUNTS"

180 PRINT" -2- POST TO ACCOUNTS"

190 PRINT" ~3- ACCOUNT SUMMARY"

200 PRINT" -4- DISPLAY ACCOUNT NAMES"
210 PRINT" -5- MONTHLY SUMMARY"

220 PRINT" -6- YEAR SUMMARY":PRINT
230 PRINT" -0- END PROGRAM"

240 GETXS$:IFX$<"O0"ORX$>"9"THEN240

250 IFX$<>"O"THEN270

260 END

270 ONVAL(X$)GOSUB 290,560,920,1160,1370,1720
280 GOTO 140

290 REM
300 REM CREATE ACCOUNTS

310 REM = 3 ====

320 GOSUB 2050

330 PRINT"CAUTION! ANY PREVIOUS FILE FOR THIS YEAR"
340 PRINT"WILL BE ERASED!":PRINT

350 PRINT"CONTINUE (Y/N)2"

360 GETX$:IFX$<>"Y"ANDXS$<>"N"THEN360

370 IFX$="Y"THEN390

380 CLOSEl:CLOSE2:RETURN

390 OPEN2,8,15,"S:ACCOUNTS"+Y$

400 OPEN1,8,2,"ACCOUNTS"+Y$+",L,"+CHR$(141)
410 GOSUB 2050

420 INPUT"HOW MANY ACCOUNTS (1-20): ";AN

430 PRINT

440 IFAN<1ORAN>20THENPRINTCHRS (145);:GOT0420
450 FORI=1TOAN

460 PRINT"NAME OF ACCOUNT NO.";I;": ";

470 INPUTANS

480 IFLEN(ANS)>20THENPRINTCHRS (145);:G0OT0420
490 RC$=ANS+LEFT$(BL$,20-LEN(ANS))

500 FORX=1TO12

510 RC$=RC$+STRS$(0)+LEFTS(BLS,8)

520 NEXTX

530 PRINT#1,RCS

540 NEXT I

550 CLOSE 1:CLOSE 2:RETURN

560 REM ====s=========

570 REM POSTING

580 REM =============

590 GOSUB2050

600 INPUT"ACCOUNT NUMBER" ;AN

610 IFAN<1ORAN> 20THENPRINTCHRS(145);:GOT0600
620 GOSUB2140 ’
630 PRINT" : "

66

Anatomy of the 1541 Disk Drive

640 PRINT"NO.";AN;" - ";ANS$

650 PRINT" "
660 PRINT"INCOME OR EXPENSE (I/E)?"
670 PRINT"

680 GETXS$:IFX$<>"I"ANDXS<>"E"THEN680

690 INPUT"MONTH (1-12) s "M

700 IFM<10RM>12THENPRINTCHRS(145); :GOT0690
n

710 PRINT"

720 PRINT"OLD CONTENTS : ";S(M)

730 PRINT"

740 INPUT"POSTING AMOUNT : ";PA

750 PRINT" "

760 IFX$="I"THENS(M)=S(M)+PA:GOTO780

770 sS(M)=S(M)-PA

780 PRINT"NEW CONTENTS : ";S(M)

790 PRINT" "

800 RCS=AN$+LEFTS (BLS,20-LEN(ANS))

810 FORI=1TO12

820 SS$S=STRS$(S(I))

830 RC$=RC$+S$+LEFTS (BLS,10-LEN(SS))

840 NEXTI

850 PRINT#2, “P"+CHR$(2)+CHR$(AN)+CHR$(0)+CHR$(1)
860 PRINT#1,RCS

870 CLOSE1:CLOSE2

880 PRINT"FURTHER POSTING (Y/N)?"

890 GETXS$:IFXS$<>"Y"ANDX$<>"N"THENS890

900 IFX$<>"Y"THENGOSUB2050:GOT0O600

910 RETURN

920 REM =======sz=c=z==c====

930 REM ACCOUNT SUMMARY

940 REM ====

950 GOSUB2050

960 INPUT"ACCOUNT NUMBER : ";AN

970 IFAN<1ORAN>20THENPRINTCHRS(145);:GOT0960
980 GOSUB2140

990 GOSUB2050:PRINTCHRS(145); CHR$(145).

1000 PRINT"

1010 PRINT"NO.";AN;" - ";ANS

1020 PRINT" "
1030 PRINT"MONTH TOTAL"

1040 PRINT" "
1050 TL=0

1060 FORI=1TO12

1070 PRINTI;TAB(8);S(I)

1080 TL=TL+S(I)

1090 NEXTI

1100 PRINT" u
1110 PRINT"TOTAL";TAB(8);TL
1120 PRINTTAB(9)'"=======

1130 PRINT"RETURN FOR MORE"
1140 INPUTXS

1150 CLOSE1:CLOSE2:RETURN

1160 REM ===

1170 REM DISPLAY ACCOUNT NAMES
1180 REM ============== =

67

Anatomy of the 1541 Disk Drive

1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740

GOSUB2050
OPEN1,8,2,"ACCOUNTS"+Y$+",L,"+CHR$(141)
OPEN2,8,15

I=1
PRINT#2,"P"+CHRS (2) +CHRS (I)+CHRS$ (0)+CHRS (1)
RC$=“ n

FORX=1T020

GET#1,X$

RC$=RCS$+X$

NEXTX

INPUT#2,X

IFX=50THEN1340

PRINTI;" - ";RC$

I=I+1:G0T01230

PRINT"RETURN FOR MORE"

INPUTXS

CLOSE1 :CLOSE2 : RETURN

REM EEssssmsms=s===mms

REM ===============

GOSUB2050

INPUT"MONTB : ";M

GOSUB2050

PRINT" "
PRINT"NO. NAME CONTENTS"
PRINT"
OPEN1,8 2,"ACCOUNTS"+Y$+",L,"+CHR$(141)

OPEN2,8,15

TL=0

FORAN=1TO020

AN$=" " =S$=Il n
PRINT#2,"P"+CHRS (2)+CHRS (AN) +CHR$ (0) +CHRS (1)
FORI=1T020

GET#1,X$

ANS=ANS$+XS$

NEXTI

INPUT#2,F

IFF<>50THEN1590

GOTO01670
PRINT#2,"P"+CHRS$ (2) +CHRS$ (AN) +CHRS$ (0) +CHRS (20+(M-1)*10)
FORI=1TO10

GET#1,X$

S$=S$+X$

NEXT I

TL=TL+VAL(SS$)

PRINT AN;TAB(6);ANS$;TAB(26);S$

NEXT AN

PRINT" "

PRINT"TOTAL BALANCE" ‘TAB(26) ; STR$(TL)

PRINTTAB(26) ; "======="

PRINT"RETURN FOR MORE";

INPUTXS :CLOSE1 :CLOSE2 :RETURN

REM ==============

REM =====s=========

68

Anatomy of the 1541 Disk Drive

1750 GOSUB2050

1760 OPEN1,8,2,"ACCOUNTS"+Y$+",L,"+CHRS (141)
1770 OPEN2,8,15

1780 PRINT" "
1790 PRINT"NO. NAME YEAR BALANCE"
1800 PRINT" "
1810 TL=0

1820 FOR AN=1T020

1830 PRINT#2,"P"+CHRS (2)+CHRS (AN)+CHRS (0)+CHRS (1)
1840 RC$=""

1850 FORI=1TO140

1860 GET#1,X$

1870 RC$=RC$+X$

1880 NEXTI

1890 INPUT#2,F:IFF=50THEN1980

1900 ANS$S=LEFTS(RCS$,20)

1910 ¥YB=0

1920 FORI=1TO10 .

1930 YB=YB+VAL(MID$(RCS$,20+(I-1)*10,10))

1940 NEXTI

1950 TL=TL+YB

1960 PRINTAN;TAB(6);ANS;TAB(26);YB

1970 NEXTAN

1980 PRINT" "

1990 CLOSE1:CLOSE2

2000 PRINT"TOTAL BALANCE";TAB(26);TL

2010 PRINTTAB(26);"======="

2020 PRINT"RETURN FOR MORE"

2030 INPUTXS

2040 RETURN

2050 REM = =

2060 REM PROGRAM HEADING

2070 REM =
2080 PRINTCHRS(147);
2090 PRINTTAB(4);" ===
2100 PRINTTAB(4);"H OME ACCOUNTTIN G"
2110 PRINTTAB(4);" ="
2120 PRINT:PRINT

2130 RETURN

2140 REM ================

2150 REM READ ACCOUNT

2160 REM = ===

2170 OPEN1,8,2,"ACCOUNTS"+Y$+",L,"+CHRS (141)
2180 OPEN2,8,15

2190 PRINT#2,"P"+CHRS(2)+CHRS (AN)+CHRS (0)+CHRS (1)
2200 RC$=""

2210 FORI=1TO0140

2220 GET#1,X$

2230 RC$=RCS$+X$

2240 NEXT I

2250 INPUT#2,F

2260 IFF<>S0THEN2300

2270 PRINT"YEAR FILE OR ACCOUNT NOT FOUND!":PRINT
2280 PRINT"RETURN FOR MORE":INPUTX$

2290 CLOSEl:CLOSE2:RETURN

69

Anatomy of the 1541 Disk Drive

2300 AN$=LEFT$(RC$,20)

2310 TL=0

.2320 FORI=1TO12
2330 S(I)=VAL(MID$(RC$,20+(I-1)*10,10))
2340 TL=TL+S(I)

2350 NEXT

I

2360 RETURN

Program Documentation:

Initialization:

110-130
140-280

Establish

Screen and character color set; blank character
string defined; variable for account summaries
dimensioned.

Program heading displayed and current year read.
Program functions displayed and choice read;
corresponding subprogram called.

chounts:

390-400
480
500-540
530

Posting:

800
810-840
850-860

Any existing files of this year are erased and the
new file is opened.

Account name is placed in positions 1-20 of the
record RCS.

Month summaries are set to zero and placed in the
record as string variables.

The record is transferred with a trailing RETURN.

The routine "Read Account" is called. This routine
places the month summaries of the account in the
variables S(1) to S(12).

Account name is placed in the record.

Account summary is placed in the record.

Record is transferred.

Account Summary:

980
1050-1090
1110

Desired account is read and the month summaries’
are placed in variables S(1) to S(12).

Month summaries are displayed and the total (TL)
is added up.

Total displayed.

Display Account Names:

1220
1230

Account number is initialized.
The head is positioned over the corresponding

70

Anatomy of the 1541 Disk Drive

record. . :
1240-1280 Account name is read out of the record in RCS.
1290-1300 If RECORD NOT PRESENT is sent over the error
channel (error 50), the routine is broken off,
1320 Account number and name are displayed.

Month Summary:

1490-1660 Loop to read all accounts.

1510 Position head over record.

1520-1550 Read account name.

1560-1580 Determine if account exists; stop if all twenty
accounts have been defined.

1590 Position over summary field of the desired month.

1600-1630 Read the month summary.

1640 Add month summary to total.

1650 Account number, account name and month summary atre
displayed. -

1680 Total balance displayed.

Year Summary:

1820-1970 Loop to read all accounts

1830 Position head over record.
1850-1880 Complete record read into RCS.
1890 Test if RECORD NOT PRESENT. ‘
1900 Get account name from record.

1920-1940 Read month summary, convert to numerical form and
add to year summary (YS).

1950 Year summary (YS) is.added to total (TL).

1960 Account number, account name and year summary
displayed. :

2000 Total balance (month balance) displayed.

Read Account:

2190 Position over record given in AN.

2210-2240 Read record into RCS.

2250-2260 Test if RECORD NOT PRESENT.

2300 Account name read from record.

2320-2350 Month summaries read from record, converted to
numerical form and placed into the table S(1) to
s(12).

71

Anatomy of the 1541 Disk Drive

1.6 pisk Error Messages and their Causes

If you cause an error while working with the disk drive, the
drive signals this by blinking the red LED. The LED blinks
until you read the error channel of the disk drive or until
you send a new command. First we want to see how to read 'the
error message from the disk drive.

In order to do this, the error/command channel must be
opened with the secondary address 15:

100 OPEN 15,8,15

110 INPUT#15,A,B$,C,D

120 PRINT A,BS$,C,D

If no error has occurred, the following is displayed:
0 . OK 0 0

The first number is the error number, in this case zero,

. which means no error has occurred. Next follows the error

message (variable B$). The variables C and D contain the
track and sector numbers, respectively, in which the error
occurred, which is dependent on the type of error (mainly
associated with hardware errors and block-oriented
commands) .

This routine accomplishes the same function:

100 OPEN15,8,15
110 GET#15,AS$:PRINTAS; :IFST<>64THEN110

00, OK,00,00

Here characters are read from the error channel until the
end is recognized (status = 64). This gives the error message
exactly as the BASIC 4.0 command

PRINT DS$

When using BASIC 4.0, variables DS$ and DS are reserved
variables which contain the complete error message and error
number. Each access of these variables gives the error
status of the last disk operation. Unfortunately, the
Commodore 64 does not use BASIC 4.0, so these variables are
meaningless in Commodore 64 BASIC (BASIC 2,0).

Next follows the list of error messages that the DOS can
recognize:

00, OK,00,00
This message occurs when the last disk operation was error

free or if no command or data was sent after the last
error message.

72

Anatomy of the 1541 Disk Drive

01,FILES SCRATCHED,XX,00
This is the message after a SCRATCH command. The number XX
denotes the number of filed that were erased. Since this
is not really an error message, the LED does not blink.

20,READ ERROR,TT,SS '
This error means that the 'header' of a block was not
found. It is usually the result of a defective diskette.
TT and SS designate the track and sector in which the
error occurred. Remedy: change defective diskette.

21,READ ERROR,TT,SS
This is also a read error. The SYNC (synchronous) marker
of a block was not found. The cause may be an unformatted
disk, or no disk in the drive. This error can also be
caused by a misaligned read/write head. Remedy: Either
insert a diskette, format the disk, or have the read/write
head aligned.

22,READ ERROR,TT,SS
This error message means that a checksum error has
occurred in the header of a data block, which can be
caused by the incorrect writing of a block.

23,READ ERROR,TT,SS .
The error implies that a data block was read into the DOS
buffer, but a checksum error occurred. One or more data
bytes are incorrect. Remedy: Save as many files as
possible onto another diskette.

24 ,READ ERROR,TT,SS
This error also results from a checksum error in the data
block or in the preceding data header. Incorrect bytes
have been read. Remedy: same as error 23.

25,WRITE ERROR,TT,SS .

This error is actually a VERIFY ERROR. After writing every
block the data is read again checked against the data in
the buffer. This error is produced if the data are not
identical. Remedy: Repeat the command that caused the
error. If this doesn't work, the corresponding block must
be locked out from further use with the block-allocate
command.

26 ,WRITE PROTECT ON,TT,SS .
An attempt was made to write to a disk with a write
protect tab on it. Remedy: Remove write protect tab.

27,READ ERROR,TT,SS

A checksum error occurred in the header of a data block.
Remedy: Repeat command or rescue block.

73

Anatomy of the 1541 Disk Drive

28 ,WRITE ERROR,TT,SS
After writing a data block, the SYNC characters of the
next data block were not found. Remedy: Format disk again,
or exchange it.

29,DISK ID MISMATCH,TT,SS
The ID (two character disk 1dent1f1cat10n) in the DOS
memory does not agree with the ID on the diskette. The
diskette was either not initialized or there is an error
in the header of a data block. Remedy: Initialize
diskette.,

30,SYNTAX ERROR,00,00
A command was sent over the command channel that the DOS
could not understand. Remedy: Check and correct command.

31,SYNTAX ERROR,00,00
A command was not recognized by the DOS, for example, the
BACKUP command (Duplicate) on the 1541. Remedy: Do not use
the command.

32,SYNTAX ERROR,00,00
The command sent over the command channel was longer than
40 characters. Remedy: Shorten command.

33,SYNTAX ERROR,00,00
A wildcard ('*' or '?') was used in an OPEN or SAVE
command. Remedy: Remove wildcard.

34 ,SYNTAX ERROR,00,00
The DOS cannot find the filename in a command. This may be
because a colon was forgotten after the command word.
Remedy: Check and correct command.

39,FILE NOT FOUND,00,00
User program of type 'USR' was not found for automatic
execution. Remedy: Check filename.

50 ,RECORD NOT PRESENT,00,00
A record was addressed in a relative data file that has
not yet been written. When writing a record this is not
really an error. You can avoid this error message if you
write the highest record number of the file with CHR$(255)
when 1n1t1a11z1ng it. This error will no longer occur upon
later access.

51,0VERFLOW IN RECORD,00,00
The number of characters sent when writing a record in a

relative file was greater than the record length. The
excess characters are ignored.

52,FILE TOO LARGE,00,00
The record number of a relative file is too big; the
diskette does not have enough capacity. Remedy: Use
another diskette or reduce the record number.

74

Anatomy of the 1541 Disk Drive

60,WRITE FILE OPEN,00,00
An attempt was made to OPEN a file that had not previously
been CLOSEd after writing. Remedy: Use mode 'M' in the
OPEN command to read the file.

61,FILE NOT OPEN,00,00
A file was accessed that had not been OPENed. Remedy: Open
the file or check the filename. :

62,FILE NOT FOUND,00,00
An attempt was made to load a program or open a file that
does not exist on the diskette. Remedy: Check the
filename. :

63,FILE EXISTS,00,00
An attempt was made to establish a new file with the name
of a file already on the diskette. Remedy: Use a different
filename or @: (to replace the old file).

64,FILE TYPE MISMATCH,00,00
The file type use in the OPEN command does not agree
with the file type in the directory. Remedy: Correct
file type.

65,NO BLOCK,TT,SS

This error message is given in association with the BLOCK-
ALLOCATE command when the specified block is no longer
free. In this case, the DUS automatically searches for a
free block with a higher sector and/or track number and
gives these values as the track and sector number in the
error message. If no block with a greater number is free,
two zeroes will be given.

66, ILLEGAL TRACK OR SECTOR,TT,SS
If you attempt to use a block with the block commands that
does not exist, this error is returned.

67,ILLEGAL TRACK OR SECTOR,TT,SS
The track-sector combination of a file produces a non-
existent track or sector.

70,NO CHANNEL,00,00
An attempt was made to open more files than channels
available or a direct access channel is already reserved.

71,DIR ERROR,TT,SS
The number of free blocks in the DOS storage does not
agree with the BAM. Usually this means the disk has not
been initialized.

72,DISK FULL,00,00
Fewer than three blocks are free on the diskette or the
maximum number of directory entries have been used (144 on
the VIC 1541).

75

Anatomy of the 1541 Disk Drive

73,CBM DOS V.26 1541,00,00
The message is the power-up message of the VIC 1541. As an
error message, it appears when an attempt is made to write
to a disk that was not formatted with the same DOS
version, for example, the forerunner of the CBM 4040, the
CBM 2040 (DOS version 1.0).

74 ,DRIVE NOT READY,00,00
When one attempts to use the disk without a diskette in
the drive, this error message is returned.

75,FORMAT SPEED ERROR,00,00
This error message occurs only on the CBM 8250. It
indicates a deviation from the normal revolutions per
minute while formatting.

76

Anatomy of the 1541 Disk Drive

1.7 Overview of Commands with a Comparison of BASIC 2.0 —
BASIC 4.0 - DOS 5.1

BASIC 2.0 BASIC 4.0 (abbrev) DOS 5.1
OPEN - Mode 'A' APPEND (aP)
BACKUP (bA)
LOAD"$",8 & LIST CATALOG (cA) @s$ or >$
V(alidate) COLLECT (coL) @V or >V
CONCAT (conC)
C(opy) COPY (coP) @C:.. or >C:..
CLOSE ... DCLOSE (dC) ’
LoaD"...",8 DLOAD (dL) ©file or /file
OPEN ...,8,... DOPEN (d0)
OPEN 1,8,15 ... DS$, DS @ or >
SAVE"...",8 DSAVE (dS)
N(ew) HEADER (hE) @N:.. or >N:..
I(nitialize) I(initialize) @I or >I
P RECORD (reC)
R(ename) RENAME (reN) @R:.,. Or >R:..
S(cratch) SCRATCH (sC) @s:.. or >S:..

This table lists the different versions of BASIC. The DOS
5.1 is found on the TEST/DEMO disk and will be described in
section 4.,2.1.

The essential difference between BASIC 2.0 and BASIC 4.0 is
that with BASIC 2.0, each command is executed by the disk
control system (DOS) and must be sent over channel 15. The
disk commands of BASIC 4.0 manage this channel themselves
(with the exception of INITIALIZE). For example, the command
HEADER DO,"DISK1",IHJ generates the same sequence of
commands necessary in BASIC 2.0, namely:

OPEN 1,8,15,"N:DISK1,HJ"
CLOSE 1
Here are are the specifics of the BASIC 4.0 commands:

Note the following parameters:

1fn = logical file number

dn = drive number - drive 0 (DO) or drive 1 (Dl1) with
a double drive, or DO for a single drive

da = device address of the disk drive (U4 to U31)

Information in parentheses is optional. The standard
parameters DO and U8 will be used (meaning Drive 0 and Unit
8).

77

Anatomy of the 1541 Disk Drive

APPEND: :

This command allows data to be added to a sequential file,
which is accomplished in BASIC 2.0 with the OPEN-command
mode A.

This command has the following format:

APPEND#1fn,"filename" (,Ddn,Uda)
For example, should the sequential file "SEQU.1l" be on drive
0, the following statements are necessary to add a data
record to it:

100 APPEND#1,"SEQU.1",DO

110 PRINT#1,X$
120 CLOSE 1

BACKUP:

With this command, a complete diskette can be copied. The

BACKUP command can only be used with a dual disk drive (such

as the 4040), however, Notice the format of this command:
BACKUP Ddn TO Ddn(,Uda)

It is important that either DO to D1 or D1 to DO be given.
An example:

The diskette in drive 1 is supposed to be copied onto the
disk in drive 0. To this end, give the following command:

BACKUP D1 TO DO
CATALOG:
The CATALOG command of BASIC 4.0 has the advantage that the
program in the computer's memory is not erased, as is true
in BASIC 2,0. The format of the command:

CATALOG (Ddn,Uda)
If no drive number is given for a double drive, the contents
of both drives are given., With a single drive, CATALOG DO is
assumed. An example:

CATALOG DO

The contents of the disk in drive 0 will be displayed.

COLLECT:
This command corresponds with the VALIDATE command of BASIC
2.0. The syntax of this command looks like this:

COLLECT (Ddn)

78

Anatomy of the 1541 Disk Drive

CONCAT:
CONCAT concatenates sequential files, in which one file is
to be made from the data of two files. The format: i

CONCAT (Ddn,)"filel" TO (Ddn,)"file2" (ON uda)

Suppose you want to combine the data of the files "SEQU.2"
in drive 0 and "SEQU.1" in Dl. To accomplish this, issue the
following command:

CONCAT DO, "SEQU.2" TO D1,"SEQU.1"

_COPY:
With this command files can be copied from one drive to the
other (except relative files). The command is useless with a
single drive. The syntax looks like this:

COPY (Ddn,)("filel"™) TO (Ddn,)("file2")

To copy all files (for example, from drive 0 to drive 1),
use the following command:

’

COPY DO TO D1

DCLOSE:
The command DCLOSE has the same function as the simple CLOSE
command, with the following exceptions:

DCLOSE closes all files

DCLOSE#1 closes file number 1

DCLOSE#1 ON U9 closes the logical file #1 on device
address 9

DCLOSE U8 closes all files on device address 8- °

The command has the following syntax:
DCLOSE (#1fn) (ON uda)
DLOAD:
The command DLOAD has the advantage that the standard device
address 8 used. The format:

DLOAD "program" (,Ddn)(,Uda)

For instance, if you want to load the program "PRG.2" from
drive 0 or from a single drive, give the following command:

DLOAD "PRG.2"

Drive 0 (D0) is the default value.

79

Anatomy of the 1541 Disk Drive

DOPEN:
This command of BASIC 4.0 is very comprehensive. The
following format verifies this:

2
DOPEN#1£fn,"file"(,Ddn)(,Uda)(,fileparameter)

"The peculiarity of this method of opening is the file
parameter. There are two file parameters, that have the
following function:

'L'-parameter : 'W'-parameter Mode of operation

: YES : NO : A relative file is H
: H : opened. H
H NO s YES : A sequential file is :
: : : opened for writing. :
: NO : NO : A file is opened for :

reading(REL,SEQ,PRG,USR) :

In addition to the 'L' parameter the record length must be
given (such as L80). A DOPEN command of this type looks like
this:

DOPEN#1,"FILE.REL",D0,L80

Here a relative file is opened with a record length of 80
bytes. The declaration of the file parameter is only
necessary once, at the establishment of the file. All later
openings of the file can occur without the parameter
declaration.

DSS & DS:

After a disk error, the complete error message can be
displayed with PRINT DS$ or just the error number with PRINT
DS. Of course, the error can be read within a program and
the appropriate branch made. For example:

100 IF DS = 26 THEN GOTO ...
DSAVE:
A program can be saved on disk with this command. Tte
following format is to be noted:

DSAVE (Ddn,)"programname"(,Uda) -

HEADER:

A disk is formatted with the HEADER command in BASIC 4.0. It

corresponds to the NEW command in BASIC 2.0. The syntax of
the command:

80

Anatomy of the 1541 Disk Drive

HEADER "diskname",D0,Iid(U,da)
or HEADER Ddn,"diskname",Iid

Here there are two possibilities to designate the drive. The
id is the diskette identification. If it is not given, the
disk is presumed to be formatted and is merely given a new
name and all files are erased.

RECORD:

This command corresponds to the position command of BASIC
2.0 (DOS 2.6). The read/write head can be positioned over a
record in a relative file, without the need to send the
position over channel 15. The syntax of this command
illustrates how easy this positioning is:

RECORD#1£fn,rn(,bp)

The logical file number is obtained from the opened relative
file. 'rn' is the record number (1-65535) and 'bp' is the
position within this record (1-254).

An example: You want to position the head over the twelfth
byte of the 128th record of a relative file opened with the
logical file number 2., The following command accomplishes
this:

RECORD#2,128,12

RENAME :

This RENAME is similar to the RENAME of BASIC 2.0. The
format of this command:

RENAME (Ddn,)"old name" TO “"new name"(,Uda)

SCRATCH:

This method of erasing files is essentially easier because
files can be erased with one command. The format of this
command

SCRATCH (Ddn,)"file"(,Uda)

After entering a SCRATCH command the message "ARE YOU SURE?"
which allows the command to be stopped. If the file is
really supposed to be erased, answer 'Y' else 'N'. After
erasing the file, the message "FILES SCRATCHED" appears on
the screen.

81

Anatomy of the 1541 Disk Drive

;

Chapter 2: Advanced Disk Programming

2.1 Direct Access of any Block of the Diskette

When handling files and programs on the diskette, as des-
cribed in Chapter 1, we didn't have to concern ourselves
with the organization on the diskette, because the disk
operating system (DOS) took care of these details for -us.

But the DOS offers the capability of accessing each
individual block on the diskette. This gives us a lot of
flexibility - ranging from manipulation of individual files
to creating completely new data structures.

In order to access a block directly, a channel is OPENed to
a data buffer within the 1541 disk drive. It is over this
channel that data is transmitted. The data buffer serves as
an intermediate storage place for the data that is read from
the diskette or written to the diskette. In order to inform
the DOS that we want to work with direct access commands, we
use a special filename in the OPEN command: i

OPEN 1,8,2,"#"

Using this command, logical file number 1 on device 8 (the
disk drive), 1is associated with a direct access file.
Channel 2 serves to transmit data to and from the disk
drive. The channel number (secondary address in the OPEN
command) may be 2 through 14. Channels 0 and 1 are reserved
for LOAD and SAVE and. channel 15 is the command channel. The
choice of a secondary address is arbitrary. You may not use
the same secondary address simultaneously, since the DOS,
upon encountering the second OPEN command with the same
secondary address, closes the previous file using this
channel number. This also occurs when working with
sequential or relative files.

This form of the OPEN command causes the DOS to search for
a free data buffer and assign it to that channel. By using a
GET# statement immediately after the OPEN we can find the
buffer number that the DOS assigns:

100 OPEN 1,8,2,"#"

110 GET#1, AS

120 PRINT ASC(AS+CHR$(0))
RUN

3
In this case, buffer three was assigned. The buffer numbers

range from 0 to 4. Each buffer can hold 256 characters of
data. The buffers are located in the following memory

82

Anatomy of the 1541 Disk Drive

locations in the VIC 1541:

Buffer number Memory location

$300-$3FF, 768-1023
$400-$4FF, 1024-1279
$500-$5FF, 1280-1535
$600-$6FF, 1536-1791
$700-$7FF, 1792-2047

BWN~O

Buffer 4 is normally unavailable, because the BAM is stored
there. If we work with sequential or relative files at the
same time, buffer 3 is also unavailable, because it is used
for the directory. If we want to associate a specific data
buffer for direct access, we can assign it with the OPEN
command.

OPEN 1,8,2,"#3"

This associates buffer 3 ($600-$6FF) with channel number 2,
assuming it is still free. Unless you have a pressing reason
to use a specific buffer, you should leave the choice of the
buffer up to the DOS, because the choice of a definite
buffer increases the possibility that it will not be
available.

After opening a channel, you should check the error channel,

130 OPEN 15,8,15
140 GET#15, A$: PRINT A$; : IF ST<>64 THEN 140

If the buffer is already in use, you will receive the error
message

70,NO CHANNEL,00,00

If no other files are open, you can open up to 4 channels
for direct access. The following example illustrates this:

10 OPEN.1,8,15,"10" : 152 ¢ REM ERROR CHANNEL

20 OPEN 2,8,2, "#" : GOSUB 100
30 OPEN 3,8,3, "#" : GOSUB 100
40 OPEN 4,8,4, "#" : GOSUB 100
50 OPEN 5,8,5, "#" : GOSUB 100
60 OPEN 6,8,6, "#" : GOSUB 100

70 END

100 GET#I,A$:PRINT ASC(AS$+CHR$(0))

110 I=I+1 : REM BUFFER NUMBER

120 GET#1,A$: PRINT A$; : IF ST<>64 THEN 120
130 RETURN

When RUN, the above program produces the following output:

3

83

Anatomy of the 1541 Disk Drive

00, OK,00,00
2

00, OK,00,00
1

00, OK,00,00
0

00, OK,00,00
199
70,NO CHANNEL,00,00

As you see, attempting to open a fifth channel for direct
access fails.

Transmitting data to and from the buffer usually takes place
using the GET#, INPUT# and PRINT# statements.

If a buffer contains pure text (alphanumeric data) which is
not longer than 88 characters and is separated using CR
(Carriage Return, CHR$(13)), it can be read using INPUT#.
However, if the buffer contains control characters or the
text is separated using commas or colons, the INPUT#
statement fails. Then we must use the GET# statement, which
retrieves only one character at a time. GET# does not allow
null values (CHR$(0)) to be read. In this case, GE1#
receives an empty string and you must check for this
condition as below:

100 GET#2, A$: IF A$ + " THEN A$ = CHR$(0)

A simpler alternative to the GET# statement is to use the
statement INPUT*, as is described in section 4.3.1. Here you
can declare how many characters are to be read into a
string. It also handles null values (CHR$(0)). You can read
almost the entire-buffer (255 characters are possible) with
one command.

In the next section, all commands used for direct access are
described in detail. Keep the following points in mind when
using direct access commands.

When using direct access commands, you must explicitly cause
the blocks on the diskette to be read or written. The direct
access commands are transmitted over command channel 15. The
data that is read from or written to a buffer are
transmitted over a separate channel that is associated with
that buffer. Both channel 15 and the separate channel must
be OPENed before transmission can begin.

1) A PRINT# statement to command channel 15, sends a direct
access command to the DOS.

2) A PRINT# statement to channels 2 thru 14 sends data to a
buffer.

3) An INPUT# or GET# statement to command channel 15 re-

84

Anatomy'of the 1541 Disk Drive

turns any error messages detected by the DOS.

4) An INPUT# or GET# statement to channels 2 thru 14, reads
the data from the buffer.

If you are ready to work with the block commands and want to
display individual blocks on the screen or change them, you
can use the DOS monitor in section 4.6, which provides a
simple and easy way of doing so. '

85

Anatomy of the 1541 Disk Drive

2.2 The Direct Access Commands

2.2.1 The Block-Read Command B-R

The block-read command instructs the 1541 to read a block
from the diskette into a buffer of a previously opened
direct access file. The block-read command is sent over the
command channel (secondary address 15) to the disk drive.
The block-read command can be shortened to B-R. Because this
command does not read the first byte of the block, you can
substitute the command Ul to read a block. The command has
the following syntax:

Ul channelnumber drive track sector

You must give the channel number that you used when OPENing
the direct access file. Next follows the drive number, which
is always zero for the VIC 1541, and then the track and
sector numbers of the block you want to read.

10 OPEN 1,8,15
20 OPEN 2,8,2, "#"
30 PRINT#1, "Ul 2 0 18 O"

This reads the contents of track 18 sector 0 into the buffer
belonging to channel 2. Now you can read the data from this
buffer with GET#2.

40 GET#2, AS,BS$
50 PRINT ASC(A$), ASC(BS)

18 1

Now we have read and displayed the first two bytes in the
buffer, Sector 0 of track 18 contains a pointer to the first
directory block (track and sector) and the BAM for the
diskette.

In the demo program DISPLAY T&S on the TEST/DEMO diskette
(section 4.2.7) this command is used in order to read the

BAM from the disk and to graphically display each record on
the disk.

We can read all 256 bytes of the block from the buffer with
the GET# statement; in our example we will read the diskette
name and ID from position 144.

The blocks which comprise a file are chained to each other.
The first two bytes of each file block contains a pointer to
the track and sector of the following block. Using this
information, you can piece together the usage of disk space
for a file. A track pointer of zero indicates the last

86

Anatomy of the 1541 Disk Drive

block of the file and the pointer which usually .contains the
sector number now contains the number of bytes of the last
block which are part of this file. The first sector of a
file can be read with our program in section 4.1.1. The
following small program displays all of the remaining tracks
and sectors that are part of the file.

100 OPEN 1,8,15

110 OPEN 2,8,2, "#"

120 INPUT "TRACK AND SECTOR ";T,S

130 PRINT#1,"Ul1 2 0";T;S

140 GET#2, TS, S$

150 T = ASC(T$+CHRS(0)): S = ASC(SS$+CHR$(0))
160 IF T=0 THEN CLOSE 2 : CLOSE 1 : END

170 PRINT "TRACK";T,"SECTOR";S

180 GOTO 130

Enter 18 and 0 as track and sector to follow the blocks for
the BAM and directory,

2.2.2 The Block-Pointer Command B-P

The diskette name is located starting at position 144 of
track 18, sector 0. Using the above example, we have to read
the first 143 bytes of the buffer in order to be positioned
at the diskette name. But the DOS has an easier way to do
this. To access any desired byte of a buffer, you can use
the block-pointer command. Using the block-pointer command
the DOS moves to an exact position within the buffer. The
block-pointer command can be shortened to B-P. The syntax
is the following:

B~P channelnumber position
Now we can read the diskette name directly:

100 OPEN 1,8,15

110 OPEN 2,8,2, "#"

120 PRINT#1,"U1 2 0 18 0"

130 PRINT#1,"B-P 2 144"

140 FOR I = 1 TO 16 : REM MAXIMUM LENGTH
150 GET#2, A$: IF A$=CHR$(160) THEN 170
160 PRINT A$; : NEXT

170 CLOSE 2 : CLOSE 1

Here we first read the block, set the buffer pointer to
position 144 and then read and print the diskette name which
has a maximum length of 16 characters. A shifted space
(CHR$(160)) indicates the end of the diskette name.

The bytes in the buffer are numbered 0 through 255, the.
first byte having the number 0. The buffer pointer is auto-

87

Anatomy of the 1541 Disk Drive

matically set to zero by reading a block with Ul. You can,
for example, read byte number 2 after reading the name. You
do this by setting the buffer pointer to this value.

PRINT#1, "B-P 2 2"

2.2.3 The Block-Write Command B-W

The block-write command allows us to write the contents of a
buffer to a desired block on the diskette. With this, you can
write the block one has sent to the buffer within the disk
drive.

It is possible to read a block into the buffer with the
block-read command, change some bytes, and then write the
block back. The block-write command can be shortened to B-W.
Because this B-W command writes the contents of the buffer
pointer, one usually uses the U2 command which always sets
the buffer pointer to 1. The syntax of the command is
analogous to the B-R command:

U2 channelnumber drive track sector

100 OPEN 1,8,15

110 OPEN 2,8,2, "#"

120 PRINT#2, "TEST DATA"
130 PRINT#1, "U2 2 0 1 0"
140 CLOSE 2 : CLOSE 1

Here the text "TEST DATA" will be written to the buffer
associated to channel 2 and then written to track 1 sector 0
of the diskette. The U2 command does not change the contents
of the buffer.

Here's an example of using the block-write command to change
the diskette name that we read in the last section. For this
we must fill the new name with 16 characters ending with a
shifted spaces CHR$(160), so that we can write it to the
disk. We will again use the block-pointer command to set the
guffer pointer directly to the desired position within the
uffer.

100 OPEN 1,8,15

110 OPEN 2,8,2, "#"

120 PRINT#1,"U1 2 0 18 0"

130 PRINT#1,"B-P 2 144"

140 AS="NEW FILE NAME"

150 IF LEN(A$)<16 THEN A$=AS$+CHR$(160) : GOTO 150
160 PRINT#2,AS;

170 PRINT#1,"U2 2 0 18 0"

180 CLOSE 2 :

190 PRINT#1,"IO" : CLOSE 1

88

Anatomy of the 1541 Disk Drive

First we read track 18 sector 0 into the buffer, set the
buffer pointer to the position of the diskette name and
write a new 16 character name to the buffer. Note that the
diskette name is changed in the buffer only. But in line
170, the buffer contents are written to the same block which
changes the name permanently on the diskette, Next channel 2
is closed. Finally the diskette is initialized so the BAM

and name in the DOS memory are updated. Get the directory
with

LOAD"S$",8
LIST

on the screen to verify that the diskette name has changed.

2.2.4 The Block-Allocate Command B-A

The block-allocate command has the task of indicating in the
BAM (block availability map) is a particular diskette block
is being used. The block allocate command can be shortened
to B-A. For program, sequential or relative files, as
diskette blocks are used, the BAM is updated to note that
the block is no longer available. But blocks written using
the direct access commands are not automatically allocated.
When blocks used in this manner are not allocated, the
possibility exists that they will be overwritten when other
files are used. The block-allocate command can be used to
prevent this overwriting. The block-allocate command has the
following syntax:

B-A drive track sector

With this the corresponding block in the BAM is marked as
allocated and is protected from being overwritten by other
files. If the block was already allocated, the error channel
returns error message 65,'NO BLOCK'.

100 OPEN 1,8,15

110 INPUT "TRACK, SECTOR “;T,S
120 PRINT#1, "B-A 0";T;S

130 INPUT#1, AS$,B$,C$,DS

140 PRINT AS","BS$","CS$S","DS$

Using this program you can input a track and sector number
of a block that you want to allocate. If the block is still
free, it was allocated and the message 00, OK,00,00 is
returned. If that block is already allocated, the message
65,NO BLOCK,TT,SS is returned. In this case TT and SS
contain the next higher numbered free block on the diskette.
This tells you that the requested block is allocated but the
block at TT,SS is still available, If error message 65
returns zeroes as the track and sector numbers, it means

89

Anatomy of the 1541 Disk Drive

that no block with a higher track and/or sector number is
available. The following program automatically allocates the
next free sector:

100 OPEN 1,8,15

110 INPUT "TRACK, SECTOR ";T,S

120 PRINT#1, "B-A 0";T;S

130 INPUT#1, AS$,BS$,TT,SS

140 IF A$ = "00" THEN 190

150 IF A$<>"65" THEN PRINT A$","B$","TT","SS : END
160 IF TT=0 THEN PRINT "NO MORE FREE BLOCKS" : END
170 IF TT=18 THEN TT=19 : SS=0

180 T=TT : S=SS : GOTO 120

190 PRINT "TRACK" TT "SECTOR" SS "ALLOCATED."

The test for track 18 in line 180 prevents a block in the
d1rectory from being allocated. An additional error message
in connection with the B=A command is 1nterest1ng. If one
attempts to allocate a block that does not exist, for
example, track 20 sector 21, one received the error message

66,ILLEGAL TRACK OR SECTOR,20,21

Marking a block as allocated in the BAM prevents it from
being overwritten by other files. The block will be
recognlzed as allocated until the command VALIDATE (COLLECT
in BASIC 4.0) is issued. The VALIDATE command rebuilds a new
BAM by rechaining the blocks of individual files and marking
each block as belonging to a a new BAM. Unclosed files,
marked in the directory with * are deleted. All blocks
allocated with the B-A command and those not belonging to a
properly closed file are freed. So, if you allocate blocks
that do not belong to a file that appears in the directory,
you should not use the VALIDATE command, or the blocks will
be freed, thus destroying your file.

2.2.5 The Block-Free Command B-F

The block-free command performs the opposite function of the
block-allocate command. It marks a block as not allocated
(free) in the BAM., The block-free command can be shortened

to B-F.The syntax is analogous to the block-allocate
command:

B-F drive track sector

100 OPEN 1,8,15
110 PRINT#1, "B-F 0 20 9"

Here the b}ock in track 20 sector 9 is freed in the BAM. If
this block is already free, no error occurs.

90

Anatomy of the 1541 Disk Drive

Allocating and freeing blocks has an effect only on the
blocks used by program, sequential or relative file by the
DOS. The block~-write and block-read commands do not check
the BAM before overwriting blocks. With these commands you
can write to blocks marked as allocated in the BAM. If, for
example, you have a disk containing only direct access
files, it is in principle unnecessary to allocate written
blocks because no other files will be written on the
diskette. In this case, you can use the directory blocks in
track 18 and have 672 blocks available on the VIC 1541
diskette. :

2.2.6 The Block-Execute Command B—-E

The block-execute command allows a block to be read from
diskette into a buffer and then the contents of the buffer
to be executed as a machine language program. You can cen
write routines that the DOS is supposed to execute with the
B-W or U2 command to a sector and later load it into a
buffer with the block-execute program where it will be
executed as a machine language program., Naturally, this
presupposes knowledge of the internal workings of the DOS.
If you want to use the B-E command, you usually give the
buffer number in the OPEN command, in case the machine
language program is not relocatable and is written for a
specific buffer. The block-execute command has the following
syntax:

B-E channelnumber drive track sector

100 OPEN 1,8,15
110 OPEN 2,8,2, "4#3"
120 PRINT#1, "B-E 2 0 17 12"

Here buffer 3 ($600-$6FF) is assigned to channel 2. The
contents of track 17 sector 12 is loaded into this buffer
and there the machine language program is executed.

The block-execute command is a combination of the block-read
and memory-execute commands. Examples of the design of
machine language programs to execute in the DOS are found in
section 2.4 by the memory commands.

91

Anatomy of the 1541 Disk Drive

2.3 Uses of direct access
What do the direct access commands permit us to do?
Here is a sample of their use:

By manipulating individual sectors you can make changes to
the BAM sector (Track 18, Sector 0) such as changing the
diskette name or ID.

You can make changes to the DIRECTORY (beginning at Track
18, Sector 1). Each file entry in the directory has unused
space. You can use the unused space to store additional
information.

You can change file names in the directory by using direct
access commands.

You can follow the "chaining" of the blocks in a file to
determine if the file is intact.:

You can CLOSE an unclosed file by setting bit 7 of the file
type indicator in the directory. For example, you can change
the file type indicator from $02 to $82. Normally these
files are indicated in the directory with an asterisk; after
the above change the asterisk will disappear.

Each file entry also contains a "lock" which disallows
deletion (SCRATCH command), If you set bit 6 of the file
type then the file is said to be locked and not available
for deletion., These entries have the < symbol after the type
designation in the directory listing. Using this bit of
knowledge, you can protect important programs on your
diskette from accidental erasure. More information on this
topic is found in section 4,1.

If you are interested in making such changes, you may want
to read an entire sector and display it on the screen,
change it, and write it back again. Such a program called
the DISK MONITOR is described in section 4.6. Before you
begin with such experiments, however, you should make a copy
of your diskette. A directory or BAM error can result in the
loss of the entire diskette contents. -

Have you ever accidentally scratched a program or file from
a diskette? As long as you haven't written any other
programs or data to the diskette, you can recover this
scratched file., Scratching a file simply sets the file type
to 0 in the directory and frees the allocated blocks. You
need only search the directory entries for the file and
restore the file type: $81 for SEQ, $82 for PRG, $83 for
USR, and $84 for REL. After restoring the file type, you
should use the VALIDATE command to reallocate the blocks
again (for example: OPEN 1,8,15:PRINT#1,"V0").

92

Anatomy of the 1541 Disk Drive

Other uses of direct access can provide the means for
creating new data structures that the DOS normally does not
recognize. You can undertake the management of the new file
yourself, and use the direct access commands for reading and
writing. Such a data structure is the ISAM file. ISAM is an
abbreviation for Indexed Sequential Access Method. With an
ISAM file, you can directly access each record, similar to
the relative file. However, access is not by the record
number, however, but by a key or index. This index is a
field within the record. If, for example, a record consists
of 5 fields, last name, first name, street, city/state and
zip code, last name can be defined as the access key. To to
read the record Muller, the command is simply 'read record
“Muller”'. We need not concern ourselves with record number
or other ordering criteria and can select which record we
want to read, change, write or erase with clear text. In
such an ISAM file system, the index is usually saved
separately, together with the information where the data
record can be found on the disk. Such an ISAM file
management with very powerful additions as described here,
is found along with other features in the program
development system MASTER 64, also available for the
Commodore 64 from Abacus Software.,

93

Anatomy of the 1541 Disk Drive

2.4 Accessing the DOS - The Memory cOmmands'

In section 2.2.6 we saw a way to load a program into DOS
memory and execute it, With the memory commands, we can
access each byte of the DOS and execute programs in RAM and
ROM. For instance, we can access the work space of the DOS
and read the number of free blocks on the disk or get the
disk name from the BAM buffer. By writing into the DOS RAM
we can change constants such as the device number of the
drive or the number of read attempts for a block until an
error message results, Furthermore, we can execute routines
inside the DOS memory. These can be DOS ROM routines or your
own, that are stored in a buffer and executes there. Of
course this presumes knowledge of 6502 machine language and
of the method of operation of the DOS. We hope this book is
be helpful for the latter. Now follows a description of the
commands and examples of their use.

2.4.1 The Memory-Read Command M-R

Using this command, you can access each byte of the DOS. The
memory-read command can be shortened to M—R. The memory-read

command

is transmitted over the command channel. The byte

read is then returned over the command channel where it can
“be retrieved with GET#. The syntax of the command looks like

this:

M-R CHR$(LO) CHRS (HI)

LO and HI signify the low and high bytes of the address in
the DOS that should be read. The following program asks for
an address and reads the contents of the address out of the

DOS.

100
110
120
130
140
150
160

INPUT"ADDRESS " ;A

HI = INT (A/256)

LO = A-256%HI

OPEN 1,8,15

PRINT#1, "M-R";CHRS$(LO);CHRS (HI)
GET#1,AS$

PRINT ASC(AS+CHRS$(0))

For instance, if we want to know the number of free blocks
on a diskette, we don't have to read the entire directory,
rather we can read the appropria!. bytes directly from the
DOS storage. This may be necessary il files are to be
established by a program and you don't know if there is
enough space on the disk.

100

OPEN 1,8,15,"10"

110 PRINT#1, "M-R" CHR$(250) CHR$(2)

120

GET#1, A$: IF AS="" THEN A$=CHR$(0)

94

Anatomy of the 1541 Disk Drive

130 PRINT#1, "M-R" CHR$(252) CHRS(2)

140 GET#1, B$: IF B$="" THEN B$=CHRS(0)

150 PRINT ASC(A$) + 256 * ASC(B$) "BLOCKS FREE"
160 CLOSE 1

With this syntax, an M—=R command must be given for each byte
that is to be read. As you can gather from the DOS listing
and through checking and verifying, one can read more than
one byte at a time with a M=R command. You need only give
the number of bytes to be read as the third parameter:

M-R CHR$(LO) CHRS$(HI) CHRS$(NUMBER)

We can use this to read the name of a diskette from the BAM
buffer storage. Before this can be done, the diskette must
be initialized so that the current diskette name is stored

in the buffer at address $700, out of which we will read the
name of the disk with the M-R command.

100 OPEN 1,8,15, "10"

110 PRINT#1, "M-R" CHR$(144) CHRS(7) CHRS(16)
120 INPUT#1, AS .

130 PRINT AS$

This is a simple way to read the name of the diskette (16
characters padded with shifted spaces (CHR$(160)). With this
you can check if the correct diskette is in the drive.

The disk buffer can also be read using this method. It also
allows parts of the DOS to be manipulated by copying the
contents of the ROM to a buffer where it can be changed and
executed. This is explained in the next two sections.

2.4.2 The Memory-Write Command M-W

The complement command of memory-read is the command to
write data in the DOS storage memory-write or M-W. Writing
is allowed only to DOS RAM - page zero, stack, and buffers.,
It is possible to send several bytes with one command. The
syntax look like this:

M-W CHR$(LO) CHR$(HI) CHRS$(NUMBER) CHRS(DATAl) CHRS(DATA2)

The number of bytes as specified by NUMBER can be
transmitted, theoretically 255, but because the input buffer
holds only 40 characters, the number of bytes is limited to
34. A possible use of this command is to change the address
number (see program 'DISK ADDRESS CHANGE', section 4.2.3).
The address is stored in two memory locations in page zero.
The device number plus $20 (32 decimal) is stored in address
$77 (119 decimal) for LISTEN, for receiving data from the
computer. The address immediately following contains the

95

Anatomy of the 1541 Disk Drive

device number plus $40 (64 decimal) for TALK, for sending
data to the computer. Because the addresses are saved
separately. It is possible to use different send and receive
addresses. In the following example, the receive address is
set to 9 and the send address to 10.

100 OPEN 1,8,15

110 PRINT#1, "M-W" CHR$(119) CHR$(0) CHRS$(2)
CHRS$(9+32) CHR$(10+64)

120 CLOSE 1

140 OPEN 1,9,15

150 OPEN 2,10,15

160 PRINT#1,"I10"

170 INPUT#2,A$,BS$,CS$,DS$

180 PRINT AS","B$","CS$","D$

00, OK,00,00

Programs cannot be loaded this way because the DOS will try
to load the program using the same address that the filename
was sent under.

Changing the device number is necessary if you want to use
more than one disk drive with a single computer. To this
end, change the device address of the second drive to 9.
This software change remains in effect only until a reset
(for example, turning the drive off). If the change needs to
be permanent, you can change the with DIP switches or cut
the circuit board jumper inside the drive.

Because many parameters of the DOS are in RAM, you can make
extensive changes to the function of the DOS, such as the
step size, with which the number of sectors per track is
determined (address $69 (105 decimal), normally contains
10). We can also specify the number of attempted reads until
an error results (address $6A (106 decimal), contains 5).
More addresses of parameters can be found in section 3.1.2.

2.4.3 The Memory-Execute Command M-E

Using this command you can call up and execute machine
language programs in the DOS memory. The memory-execute
command can be shortened to M—E. The programs must end with

RTS (Return from Subroutine, $60). The syntax of the
command: :

M—-E CHR$(LO) CHR$(HI)
Again, LO and HI are the low and high bytes of the starting
address of the machine language routine. It is possible to

ca{l up routines in the DOS ROM as well as our own routines
written to a buffer with M=W and there executed. As an

926

Anatomy of the 1541 Disk Drive

example, you can call up a routine that creates an error
message. For example, address S$EFC9 is the entry point for
message 72, "DISK FULL®'. The example looks like this:

" 100 OPEN 1,8,15
110 PRINT#1,"M-E" CHRS(201) CHRS$(239)
120 INPUT#1,A$,B$,CS,DS
130 PRINT A$ "," BS "," C$ "," D$

In line 110, the address $EFC9 is divided into a low byte of
$C9 (201) and high byte of SEF (239) and sent as the
parameters of the M-E command. Then the error channel is
read and the message displayed.

72,DISK FULL,00,00

If you want to run your own programs in the 1541 drive, the
program should be written to a buffer and there called with
M-E. Should this program be used more often, the contents of
the buffer can be written to a block on the diskette, It can
then be executed with the B-E command, which loads the
contents of the block in the buffer and then automatically
starts the routine. As a suggestion for your own program in
DOS, you can display the directory in a different form, with
additional parameters, similar to the program in section
4.1.1. In addition, you could count the number of files on
the disk and display that. Using such a routine you can get
a much clearer understanding of how the directory is created
in the DOS listing. If you are clear on the matter of the
new directory format, you are ready to take the additionesl
parameters from the directory entries and assemble them in
the desired format.

2.4.4 The User Commands U

Using the USER commands there are two possible ways of
executing programs in the drive. The user commands have the
following syntax:

Ux

X can be a letter from A to J or a digit from 1 to 9 or 's'
(which takes the place of 10). When a command is called, a
jump is made to the following addresses in DOS:

UA Ul $CD5F substitute for 'Block-Read'
UB U2 $DCI7 substitute for 'Block-Write'
uc u3 $0500

UuD U4 $0503

UE us $0506

UF U6 $0509

UG u7 $050C

97

Anatomy of the 1541 Disk Drive

UH us $050F
Ul U9 SFFO1
uJ U: SEAAOQ reset

You are already acquainted with the commands Ul and U2 (also
UA and UB); they serve as substitutes for BLOCK-READ and
BLOCK-WRITE. The commands U3 to U8 (UC to UH) jump to
addresses within buffer 2 (address $500 (1280) - see section
2.1). If you want to use several commands, a jump table to
individual routines can be placed there; if only one user
command (U3) is used, the program can begin directly at
$500.

The user command UJ jumps to the reset vector; the disk
drive is then reset.

100 OPEN 1,8,15

110 PRINT#1,"UJ"

120 FOR I=1 TO 1000 : NEXT

130 GET#1,A$: PRINT A$: IF ST<>64 THEN 130

73,CBM DOS V2,6 1541,00,00

Line 120 waits for the reset to take place. Then the
initialization message is retrieved in line 130.

By using the user commands, parameters can be passed to the
routines. The complete command string is put in the input
buffer at $200 (512). Possible parameters are addresses,
command codes, and filenames. This way, the user commands
can be utilized to expand the commands of the disk or to
realize a new data structure. Whole user commands can
replace the M-E command with its corresponding addresses;
the user-call is shorter and clearer.

98

Anatomy of the 1541 Disk Drive

Chapter 3: Technical Information

3.1 The Construction of the VIC 1541

3.1.1 Block Diagram of the Disk Drive

2l

VIA 2
6522

) e31aM-peod
1;3%%21%>
> wradess
[z070m XSIGBI

ANALOG BOARD

IRO

2
o ||]
a vy Se——
O] N — :
5] = - o
< & . 0
a [=]
=] - Q
= < ~ =
[} < N -
P H"‘CA e
> <
&
)g 8
- -
[}
4
=]

6502
CPU

99

Anatomy of the 1541 Disk Drive

3.1.2 DOS Memory Map - ROM, RAM, I/O

Memory map of the VIC 1541 disk drive

‘65535 $FFFF

16K

Control system

49152 $C000
7183 $1COF
VIA Disk Control
7168 $1C00
6159 $180F
VIA serial bus
6144 $1800
2047 $O07FF
2 K
RAM

0 - $0000

100

Anatomy of the 1541 Disk Drive

Layout of the I/0 Ports (VIA 6522)

VIA 6522 1, Port for Serial Bus

$1800 Port B

$1801 Port A

$1802 Direction of Port B
$1803 Direction of Port A
$1805 Timer

PB 0: DATA 1IN

PB 1: DATA OUT

PB 2: CLOCK 1IN

PB 3: CLOCK OuT

PB 4: ATN A

PB 5,6: Device address

CB 2: ATN IN

VIA 6522 2, Port for Motor and Read/Write Head Control

$1C00 Port B, control port

$1C01 Port A, data to and from read/write head
$1C02 Direction of Port A

$1C03 Direction of Port B

PB 0: STP I

PB 1: STP O step motor for head movement
PB 2: MTR drive motor

PB 3: ACT LED on drive

PB 4: WPS Write Protect Switch

PB 7: SYNC

CA 1: Byte ready

CA 2: SOE

101

Anatomy of the 1541 Disk Drive

The hayout of the Important Memory Locations

133
139
148
153
155
157
159
161
-163
165

$00
$01
$02
$03
$04
$06-$07
$08-$09
$0A-$0B
$0C-$0D
SOE-$0F
$12-$13
$14-$15
$16-$17
$20-$21
$30-$31
$39

$3A
$3D
$3F
$43

$47

$49
$4A
$51
$69
$6A
$6F-$70
$77
$78
$79
S$7A
$7¢C
$7D
$TF
$80
$81
$82
$83
$84
$85
$8B-$8D
$94-$95
$99-$9A
$9B-$9C
$9D-$9E
S9F-SA0

SA1-SA2

SA3-$A4

‘$SA5-$A6

Command code for buffer 0
Command code for buffer 1
Command code for buffer 2
Command code for buffer 3
Command code for buffer 4
Track and sector for buffer
Track and sector for buffer
Track and sector for buffer
Track and sector for buffer
Track and sector for buffer
ID for drive 0

ID for drive 1

ID

Flag for head transport
Buffer pointer for disk controller
Constant 8, mark for beginning of data
block header

Parity for data buffer

Drive number for disk controller
Buffer number for disk controller
Number of sectors per track for
formatting

Constant 7, mark for beginning of data
block header

Stack pointer

Step counter for head transport

Actual track number for formatting
Step size for sector division (10)
Number of read attempts (5)

Pointer to address for M & B commands
Device number + $20 for listen

Device number + $40 for talk

Flag for listen (1/0)

Flag for talk (1/0)

Flag for ATN from serial bus receiving
Flag for EOI from serial bus

Drive number

Track number

Sector number

Channel number

Secondary address

Secondary address

Data byte

Work storage for division

Actual buffer pointer

Address of buffer 0 $300

Address of buffer 1 $400

Address of buffer 2 $500

Address of buffer 4 $600

W= o

‘Address of buffer 5 $700
" Pointer to input buffer $200

Pointer to buffer for error message $2D5

181

187

193

199

212

213

214

215

231

249

256-325

512-552

586

600

601

602

628

632

663

640-644

645-649

725-761

762/764

768-1023
1024-1279
1280-1535
1536-1791
1792-2047

$B5-$BA
$BB-$CO
$C1-$C6
$c7-$CC
$D4

$D5

$D6

$D7

SE7

$F9
$100-$145
$200-$228
$24A

$258

$259

$25A

$274

$278

$297
$280-$284
$285-$289
$2D5-$2F9
$2FA/$2FC
$300-$3FF
$400-S4FF
$500-S5FF
$600-S6FF
$700~$7FF

Anatomy of the 1541 Disk Drive

Record # lo, block # lo

Record # hi, block # hi

Write pointer for rel. file
Record length for rel. files
Pointer in record for rel. file
Side sector number

Pointer to data block in side sector
Pointer to record in rel. file
File type

Buffer number

Stack

Buffer for command string

File type

Record length

Track side-sector

Sector side-sector

Length of input line

.Number of file names

File control method
Track of a file

Sector of a file

Buffer for error message
Number of free blocks
Buffer
Buffer
Buffer
Buffer
Buffer

WO

103

Anatomy of the 1541 Disk Drive

3.2 Operation of the DOS - An Overview

- The VIC-1541 is an intelligent disk drive with its own

microprocessor and control system (Disk Operation System,
DOS). This means that no memory space or processing time is
taken from the computer. The computer needs only transmit
commands to the disk drive, which it then executes on its
own.

The disk performs three tasks simultaneously: Firstly, it
manages data traffic to and from the computer. Secondly, it
interprets the commands and performs the management of files
and the associated communications channels and block buffer.
Thirdly, it handles the hardware-oriented related functions
of the disk drive - formatting, reading and writing, etc.

These tasks are carried out simultaneously by the 6502
microprocessor in the VIC 1541. This is possible with the
help of the interrupt technique. Only in this way can three
tasks be executed simultaneously.

Most of the DOS is concerned with interpreting and executing

the transmitted commands. The reception of data and commands
from the computer is controlled by interrupts. If the
computer wants to talk to a peripheral device, it sends a
pulse along the ATN line (ATteNtion, see section 5.1). This
generates an interrupt at the disk drive. The DOS stops its
current task and notices that the computer wants to send
data., The DOS then finishes the original task. After that,
the DOS will accept further data and commands from the the
computer. If the command is finished, the DOS stays in a
wait loop until new commands arrive from the disk.

The execution of a command at this level is limited to the
logical processing of the command, the management of the
communications channel to and from the computer and the
preparation and retrieval of data to be written or read,
respectively. The tasks of a disk controller, formatting
diskettes and writing and reading individual blocks, must
also be performed by the processor.

These tasks are again interrupt controlled. Regular programs
in the disk are interrupted every 14 milliseconds by a
built-in timer, and control branches to a program that
fulfills the tasks of a disk controller. Communications
between the two independent programs is handled through a
common area of memory, in which the main program places
codes for the disk controller program. If the interrupt
program is active, it looks at the memory locations to
determine which activities are demanded, such as formatting
a diskette, if this is the case, the drive and head motors
are set in motion., At the end of the interrupt routine, the
main program examines the memory locations to determine if
the task was carried out by the disk controller, or if it

104

Anatomy of the 1541 Disk Drive

must wait yet. In this way, the main program is informed in
case of an error, such as a read error or if a write protect
tab is present. The main Pprogram can then react
appropriately and display the error message, for example.

In the large CBM disks, two 6504 microprocessors are used as
a disk controller. Communication again occurs over a common
area of memory.

An overview of the storage layout of the DOS such as the I/0
primitives for managing the diskette and serial bus can be
found in the previous section. '

This overview of the work of the DOS is naturally just a
rough outline, If you want more exact information, refer to
the DOS listing of the VIC 1541 in section 3.5, in which the .
complete 16K control system is documented.

105

Anatomy of the 1541 Disk Drive
3.3 The Structure of the VIC 1541 Diskette

The diskette of the 1541 is divided into 35 tracks. Each
track contains from 17 to 21 sectors. The total number of
sectors is 683, Because the directory occupies track 18, 664
data are available for use, each containing 256 bytes. The
tracks are layed out as follows:

: TRACK : NUMBER OF SECTORS :
: 1 T0 17 : 21 :
:18 TO 24 : 19 :
:25 TO 30 : 18 H
:31 TO 35 = 17 :

The varying number of sectors per track is necessitated by
the shortening of the tracks from the midpoint on.

3.3.1 The BAM of the VIC 1541

BAM is an abbreviation for Block Availability Map. The BAM
indicates whether a block on the diskette is free or
allocated to a file. After every manipulation of blocks
(saving, deleting, etc.) the BAM is updated. When the BAM
indicates that a file to be saved requires more blocks than
are available, an error message is given. When a file is
OEPNed, the BAM in the DOS storage is updated, and is
rewritten to disk when the file is CLOSEd. Commands that-
have a write or delete function read the BAM, update it, and
rewrite it to the diskette. The BAM is organized as follows
on track 18 sector 0:

¢ Track 18, sector 0

¢ BYTE : CONTENTS : MEANING H
: 0,1 ($00-$01) : $12,801 : Track and sector of the 1lst':
H . : ¢ block of the directory H
s 2 ($02) s $41 : ASCII character 'A'; :
: : : indicates 1541 format :
: 3 ($03) : $00 : Zero flag for future use :
: 4-143 ($04-$8F) : : Bit map of free and :

allocated blocks *

.
*

1 = block free; 0 = block allocated

The bit map of the blocks is organized so that 4 bytes

106

Anatomy of the 1541 Disk Drive

represent the sectors on a track. As can be inferred from
the following table, the first of the 4 bytes contain the
number of free blocks in the track. The other 3 bytes (24
bits) indicate which blocks are free and which are allocated
in this track.

Structure of the BAM entry of a track:

¢ BYTE : CONTENTS

Number of available blocks in this track
Bit map of sectors 0-7

Bit map of sectors 8-15

Bit map of sectors 16-23

o0 oo oo o0
wNoHO
o a0 00 o0

o o0 o0 e

4 bytes of a track designation in the BAM:

¢ Track 18, sector 0, bytes 4-7 (track 1)

: 00001010 : 00000000 00000011 11111111
s ($0A) : ($00) ($03) ($SFF)
s 10 free : 1 = free H
¢ blocks ¢ 0 = allocated H

Using a simple program, you can read the first byte of each
track entry in the bit map, add them up and find the total
number of free blocks on the diskette.

3.3.2 The Directory

The directory is the table of contents of the diskette. It
contains the following information:

-~ disk name

- disk 1D

- DOS version number
- filenames

- file types

- blocks per file

- free blocks

This directory is loaded into memory with the command LOAD
"$",8. A program previously in memory will be destroyed! It
can be displayed on the screen with the LIST command.

The directory occupies all of track 18 on the disk. The file
entries follow the directory header. Each block accommodates

107

Anatomy of the 1541 Disk Drive

a maximum of 8 file entries.
occupy one block,

total of 144 files may res
with 8 entries each).

Because the BAM and the header

18 blocks are left for file entries. A
ide on one diskette (18 blocks

Format of the directory header:

: Track 18, sector 0 H
: BYTE : CONTENTS : MEANING H
: 144-161 ($90-$Al) : : Disk name (padded with H
: : : shifted spaces) :
: 162,163 (SA2-SA3) : : Disk ID marker :
: 164 ($a4) : $AO : Shifted Space :
: 165,166 ($A5-$A6) : $32,$41 ~: ASCII characters "2A" :
H - : : (format) H
: 167-170 (SA7-$AA) : SAO : shifted Space :
: 171-255 (SAB-$FF) : $00 : not used, filled with 0 :
* Bytes 180 to 191 have the contents "BLOCKS FREE" on

o oo

many diskettes

o e

The Diskette Name:

The name of the diskette can be a maximum of 16 characters
in length and is established when the diskette is formatted.
If fewer then 16 characters are given, the rest is filled
with shifted spaces ($A0). The following BASIC routine reads
the name and saves it in the string variable DNS$:

100 OPEN 15,8,15,"10"

110 OPEN 2,8,2,"4#"
120 PRINT#15,"B-R";2;0;18;0

130 PRINT#15,"B-P";2;144

140 DN$=""

’
.
H

e

REM COMMAND CHANNEL 15

AND DISK INITIALIZED

REM DATA CHANNEL 2 OPENED
REM TRACK 18, SECTOR 0 READ

AND PLACED IN CHANNEL 2

?EM BUFFER-POINTER TO BYTE
44

REM STRING DN$ IS ERASED

150 REM LOOP TO READ THE 16 BYTES OF THE NAME

160 FOR I=
170 ::GET#

1 TO 16
2,X$

180 ::IF ASC(X$)=160 THEN 200

190 ::DNS$=
200 NEXT I

210 CLOSE 2:CLOSE 15

After running the routine,

name.,

DNS+X$

o o0 oo

the

108

REM READ A BYTE

REM IGNORE SHIFT SPACE
REM BYTE ADDED TO ‘DN$
REM CLOSE CHANNELS

string DNS contains the disk

Anatomy of the 1541 Disk Drive.

Diskette ID:

The diskette ID is two characters in length and is specified
when formatting the diskette. The DOS uses this ID to detect
if a diskette in the drive has been replaced. If so, then
the DOS performs an INITIALIZE. Initializing a diskette
loads the BAM into memory in the drive. This way, the actual
BAM is always in memory, provided the ID given when
formatting is always different. Should this not be the case,
a diskette must be initialized explicitly by using the
INITIALIZE command.

3.3.3 The Directory Format

Blocks 1 through 19 on track 18 contain the file entries.
The first two bytes of a block point to the next directory
block with file eritries. If no more directory blocks follow,
these bytes contain $00 and S$FF, respectively,

¢ Track 18, sector 1

Byte : Contents

0,1 ($00,501) Track and sector number of the
next directory block

Entry of 1lst file

Entry of 2nd file

Entry of 3rd file

Entry of 4th file

Entry of 5th file

Entry of 6th file

Entry of 7th file

Entry of 8th file

2-31 ($02-S1F)
34-63 ($22-S3F)
66-95 ($42-S5F)
98-127 ($62-S7F) -
130-159 ($82-S9F)
162-191 (SA2-$BF)
194-223 (SC2-S$DF)
226-255 (SE2-SFF)

ee oo es s es oo es 0 s e
oe o0 ee s ss o0 ee o0 o0 oo
e o o0 oo es 0 oo o0 ee e

Format of a Directory Entry:

Each file entry consists of 30 bytes, the functions of which
are described below:

109

Anatomy of the 1541 Disk Drive

BYTE

CONTENTS

0 ($00)
1,2 ($01,802)

File type

Track and sector number of the
first data block

Filename (padded with "SHIFT SPACE"

oOonly used for relative files
(track and sector of the first
side-sector block)

Only used for relative files
(record length)

Not used

Track and sector number of the new
file when overwritten with the @:
Number of blocks in the file (low
byte, high byte)

3-18 ($03-812)
19,20 (S13,$14)
21 ($15)

22-25 ($16-$19)
26,27 ($1A—$lB)

28,29 ($1C-$1D)

s oo oo oe 00 ee 00 o es oo oo se o oo

6 se o0 s o6 es 00 o as 0 S0 oo e oo
00 60 se o0 se s 00 es e se ee eo 00 e

File Type Marker: -

Byte 0 of the file entry denotes the file type. Bits 0-2 are
used to indicate the 5 file types. Bit 7 indicates if the
file has been CLOSEd properly. Closing a file sets bit 7. An
unclosed file is denoted with an asterisk in front of the
file type in the directory listing. If, for example, a
sequential file "TEST" is opened and the directory is
listed, this file will be represented like this:

12 "TEST" *SEQ

If the file is CLOSEd again, the asterisk does not appear in
future directory listings. If this file remains unclosed and
later opened, the error message "WRITE FILE OPEN" will
appear.

The File Type:

In order to understand the function of byte 0 in the file
entry, the file type, a table of all file types follows:

¢ File type : Bit mask opened : Bit mask closed :
: : 7654 3210 HEX : 7654 3210 HEX s
: DELeted : 0000 0000 $00 ¢ 1000 0000 $80 :
¢ SEQuential ¢ 0000 0001 $01 ¢ 1000 0001 $81 H
¢ ProGram : 0000 0010 $02 ¢ 1000 0010 $82 H
: USeR : 0000 0011 $03 : 1000 0011 $83 H
¢ RELative : 0000 0100 s04 ¢ 1000 0100 $84 :

Perhaps.ygu have noticed that bits 3-6 have no function. But
we verified with help from the DOS listing, bit 6 has a

110

Anatomy of the 1541 Disk Drive

function:
BIT 6 OF THE FILE TYPE DENOTES A PROTECTED FILE!

If you set this bit to 1, the corresponding file can no
longer be deleted. This is designated in the directory
listing with a < next to the file type. Because setting this
bit requires some complicated commands, you will find a
program in chapter 4 of this book with which you can
protect, unprotect, and delete files.

Track and sector of the first Data Block

Bytes 1 and 2 of the file entry point to the first data
block of the file. The first byte contains the track and the
second the sector number where the file begins., The first
data block, in turn contains a pointer to the second block
of the file (also contained in the first two bytes of the
block). The last data block of the file is indicated by a
first-byte value of $00., The second byte contains the number
of bytes used in this last sector.

This concatenation can be explained with the help of the DCS
MONITOR, contained in this book:

>:BO A0 A0 A0 A0 A0 00 00 00 oo
>:B8 00 00 00 00 00 00 OB 00
>:C0 00 00 81 13 09 54 31 32 .,....Tl2
>:C8 2F 53 30 31 A0 A0 A0 A0 /SOl
>:D0 A0 A0 A0 A0 A0 00 00 00 oo
>:D8 00 00 00 00 00 00 06 00 ...ueo..
>:E0 00 00 82 10 00 44 49 53DIS
>:E8 4B 20 41 44 44 52 20 43 K ADDR C
>:FO 48 41 4E 47 45 00 00 00 HANGE...
>:F8 00 00 00 00 00 00 04 00

This is an extract from the directory (track 18, sector 1)
of the TEST/DEMO diskette, You can follow the organization
of the file DISK ADDR CHANGE., The entry of this file begins
at byte $E2 and ends with byte $FF. This is a PRG file,
which can be recognized by the file type $82 in byte SE2.
This file comprises 4 blocks on the disk. This is evident .
from bytes S$FE and $FF. Bytes $E3 and $E4 of the entry
address the first data block of the file ($10, $00,
corresponding to track 16, sector 0).

Let's look at a section of this block:

>:00 10 OA 01 04 OF 04 64 00S.
>:08 97 35 39 34 36 38 2C 31 .59468,1
>:10 32 00 39 04 6E OD 99 22 2.9...."
>:18 93 13 11 11 11 11 44 52DR
>:20 49 56 45 20 41 44 44 52 IVE ADDR
>:28 45 53 53 20 43 48 41 4E ESS CHAN

111

Anatomy of the 1541

>:30
>:38
>:40
>:48

47 45 20 50
41 4D 22 00
99 22 11 54
4F 46 46 20

Disk Drive

52 4F 47 52
59 04 6F 00
55 52 4E 20
41 4C 4C 20

GE PROGR
AM".Y./.
«" . TURN
OFF ALL

This block contains the first part of the program. It is
stored on the diskette exactly as it is stored in the
computer's memory. The BASIC commands are converted to one
byte codes called tokens. This is why only the text can be
recognized in the right hand translation of the hexadecimal
codes. The first two bytes of this data block indicate the
second data block ($10 and $0A, track 16, sector 10) from
with this section follows:

>:00 10 14 34 30 00 1D 05 A0 ..40...
>:08 00 8D 20 33 30 30 3A 20 .. 300:
>:10 8F 20 46 49 4E 44 20 44 . FIND D
>:18 52 49 56 45 20 54 59 50 DRIVE TYP
>:20 45 00 39 05 AA 00 8D 20 E.9. ..
>:28 36 30 30 3A 20 8F 20 43 600: . C
>:30 48 41 4E 47 45 20 41 44 HANGE AD
>:38 44 52 45 53 53 00 68 05 DRESS.(.
>:40 B4 00 99 22 11 54 48 45 «.".THE
>:48 20 53 45 4C 45 43 54 45 SELECTE

The program is continued in this block. Bytes $00 and $01
point to the third data block of the file ($10, $14, track
16, sector 20):

>:00 10 08 31 30 30 30 00 23 ..1000.#%
>:08 06 54 01 8B 20 43 B2 32 .T.. C 2
>:10 35 34 20 A7 20 4D 54 B2 54 MT
>:18 31 31 39 3A 20 8F 3A 20 119: .:
>:20 32 30 33 31 20 56 32 2E 2031 v2,
>:28 36 00 45 06 5E 01 8B 20 6.E. ..
>:30 43 B2 32 32 36 20 A7 20 C 226
>:38 4D 54 B2 35 30 3A 20 8F MT 50: .
>:40 3A 20 32 30 34 30 20 56 : 2040 V
>:48 31 2E 32 00 67 06 68 01 1.2. .(.

This is the next to the last block of the program. You have
no doubt recognized that the data blocks are in the same
track, but are not contiguously. The first data block is
block 0. The next is block 10, 10 blocks from the first
block. 9 blocks are always skipped between data blocks of a
‘file. The third data block is block number 20. The DOS
begins again with the first block if the calculated block
oversteps the highest block. Because track 16 contains 21

blocks, the last data block is block number 8. The first two
bytes of this third block address it:

>:00 00 F8 5A 42 B2 31 20 A7 . 2B 1

>:08 20 34 34 30 00 14 07 A3 440...

>:10 01 8B 20 53 54 20 A7 20 .. ST

>:18 31 30 30 30 00 45 07 B8 1000.E.

112

Anatomy of the 1541 Disk Drive

>:20 01 98 31 35 2C 22 4D 2D ..15,"M-
>:28 52 22 C7 28 31 37 32 29 R" (172)
>:30 C7 28 31 36 29 3A Al 23 (16): #
>:38 31 35 2C 5A 43 24 3A 5A 15,2CS$:2
>:40 43 B2 C6 28 5A 43 24 AA C F(2C$

>:48 C7 28 30 29 29 00 66 07 G(0)).&.

Here the end of the program is marked by the value $00 in
byte $00. Byte $01 gives the number of bytes in this last
block that belong to the program. ($F8 corresponds to 248
bytes). Now we can find out the size of the program:

3 blocks with 254 bytes each = 762 bytes
last block = 248 bytes

Size of the program 1100 bytes

The Filename:

The filename is contained in bytes 3-18 of the file entry.
It consists of a maximum of 16 characters. Should the name
be shorter than 16 characters, the rest of the name is
padded with shifted spaces ($A0).

Track and Sector of the new File for "Overwriting®:

If a file is overwritten by using the @:, the new file is
first completely saved. No filename entry is made in the
directory for this file because the file already exists
under this same name., Instead the address of the first block
of the new file is placed in bytes 26 and 27 of the filename
entry. If the new program is removed, the old one is
deleted, which merely designates the blocks allocated to the
file as free in the BAM. Now the address of the first data
block of the new file is placed into the filename entry in
bytes 1 and 2 is used and the file is "overwritten".

Number of Blocks in the File:

The length of a file is given in bytes 28 and 29 of its file
entry. A file consists of at least one block and as many as
664 blocks. The first byte is the low byte, and the second
is the high byte, If, for example, you discovered the file
length $1F,$00 with the DISK MONITOR, the file consists of
31 blocks.

113

Anatomy of the 1541 Disk Drive
3.4 The Organization of Relative Files

Relative files differ from sequential files in that each
data record can be accessed directly by a record number.
The 1541 DOS takes care of most of the tasks required to
support relative records. Let's take a closer look at the
organization of a relative file. .

First OPEN a relative file with a record length of 100:
OPEN 2,8,2, "REL-FILE,L, "+CHRS$ (100)
Now write data record number 70:

OPEN 1,8,15 :
PRINT#1,"P"+CHRS (2)+CHRS$ (70)+CHRS (0) +CHRS (1)
PRINT42,"DATA FOR RECORD 70"

CLOSE 2 : CLOSE 1

The directory entry then looks like this:

>:00 84 11 00 52 45 4C «+.REL
>:08 2D 46 49 4C 45 A0 A0 A0 -FILE

>:10 A0 A0 A0 A0 A0 11 0A 64 .e$
>:18 00 00 00 00 00 00 1D 00 eocevsns

The first byte $84 denotes a relative file., The next two
bytes denote the first track and sector of the data ($11,
$00; track 17 sector 0); exactly as with a sequential file.
As usual, the name of the file follows (16 characters,
padded with shifted spaces, $A0). Following are two fields
not used with sequential files. The first field is a two
byte pointer to the track and sector of the first side-
sector block. A side-sector contains the pointers to each
data record and is described more in detail later ($11, $0A;
track 17, sector 10). The second field is a byte which
contains the record length, a value between 1 and 254, in
our case $64 (100).)

The convenience of being able to access each record
individually requires a definite length for each record that
must be defined when establishing a relative file. The rest
of the fields in the directory entry have the usual
significance; the last two bytes contain the number of
blocks in the file (lo and hi byte, $1D and $00 (29)).

What does such a side-sector block look like and what is its
function?

The side-sector blocks contain the track and sector pointers
to the individual data records. For example, if we want to
read the 70th record in the relative file, the DOS consults
the side-sector block to determine which track and sector
contains the record and then read this record directly. As

114

Anatomy of the 1541 Disk Drive

a result, you can read the 70th record of the file without
having to read the entire file. Now let's take a look at the
exact construction of a side-sector block. This side~sector
block -is from our previous file,

>:00 00 47 00 64 11 OA 00 00 .G.S....
>:08 00 00 00 00 00 00 00 00
>:10 11 00 11 0B 11 01 11 OC .eevesen
>:18 11 02 11 0D 11 03 11 OE .eeeeeons
>:20 11 04 11 OF 11 05 11 10
>3:28 11 06 11 11 11 07 11 12 .eeueess
>:30 11 08 11 13 11 09 11 14
>:38 10 08 10 12 10 06 10 10
>:40 10 04 10 OE 10 02 10 0C +evevvan
>:48 00 00 00 00 00 00 00 00
>:50 00 00 00 00 00 00 00 00
etc.

The first two bytes point to the track and sector of the
next side-sector block, as usual. In our case, no further
side-sector blocks exist ($00) and only $47 = 71 bytes of
this sector are used. Byte 2 contains the number of the
side-sector block, 00. A relative file can contain a maximum
of 6 such blocks; the numbering goes from 0 to 5. The record
length, $64 (100), is in byte 3. The next twelve bytes
(bytes 4 through 15) contain the track and sector pointers
(two bytes each) to the 6 side-sector blocks (00,00 means
the block is not yet used). Starting at byte 16 ($10) are
the pointers to the data, and the track and sector pointers
to the first 120 data blocks (in our case, only 28
pointers). Using the record number and record length, the
DOS can calculate in which block the data lies and at which
position within the block the record begins. Take the
following example, for instance:

To read the 70th record from the file with a record length
of 100 characters, you can perform the following calcula-
tions:

(70-1) * 100 / 254

We get a quotient of 27 and a remainder of 42. The DOS now
knows that the record can be found in the 27th data block at
the 42+2 or 44th position.

Here's an explanation of the calculation. Each block
contains 256 bytes, the first two of which are used as a
pointer to the next block. 254 bytes are then left over for
data storage. We can calculate the byte number from the
start of the file (which is record 1) from the record number
and record length. If we divide this value by the number of
bytes per block, we get the number of the block containing
the record. The remainder of the division gives the position
within the block (add 2, because the first two bytes serve
as a pointer). If the record overlaps the end of the block,

115

Anatomy of the 1541 Disk Drive

the next block must also be read.

In our example, the 27th data block lies in track $10 = 16
and sector . $0C = 12. If we read this block, we get the
following picture:)

>:00 00 F3 00 00 00 00 00 00 .oecccss
>:08 00 00.00 00 00 00 00 00 ..cvecee
>:10 00 00 00 00 00 00 00 00 ...occcee
>:18 00 00 00 00 00 00 00 00 ...c.c..
>:20 00 00 00 00 00 00 00 00 ...cccee
>:28 00 00 00 00 44 41 54 41DATA
>:30 20 46 4E 52 20 52 45 43 FOR REC
>:38 46 52 44 20 37 30 OD 00 ORD 70..
>:40 00 00 00 00 00 00 00 00 ...ccves
>:48 00 00 00 00 00 00 00 00 .eecccee
>:50 00 00 00 00 00 00 00 00
~>:58 00 00 00 00 00 00 00 00 ...ccecee
>:60 00 00 00 00 00 00 00 00c.
>:68 00 00 00 00 00 00 00 00 ..ccocee
>:70 00 00 00 00 00 00 00 00 ...cccee
>:78 00 00 00 00 00 00 00 00c.
.>:80 00 00 00 00 00 00 00 00 .ccecens
>:88 00 00 00 00 00 00 00 00 ...cocece
>:90 FF 00 00 00 00 00 00 00co
>:98 - 00 00 00 00 00 00 00 00 ..eccces
>:A0 00 00 00 00 00 00 00 00
>:A8 00 00 00 00 00 00 00 00
>:BO 00 00 00 00 00 00 00 00 .cecccse
>:B8 00 00 00 00 00 00 00 00c...
>:CO0 00 00 00 00 00 00 00 00 .eovsces
>:C8 00 00 00 00 00 00 00 00 ..cccecee
>:D0 00 00 00 00 00 00 00 00
>:D8 00 00 00 00 00 00 00 00
9:E0 00 00 00 00 00 00 00 00 ...cocce
>:E8 00 00 00 00 00 00 00 00 .covscee
>:FO0 00 00 00 00 FF 00 00 00c.
>:F8 00 00 00 00 00 00 00 00 ...ccces

"If we get a block number greater than 120 from the
calculation, the pointer can no longer be found on the first
side-sector block, rather in the next side~sector blocks. In
this case, you divide the block number by 120, the quotient
being the number of the side-sector block. The remainder
gives the location of the pointer within this block. Fer
instance, to find record number 425, divide by 120 and get a
quotient 3, remainder 65. Therefore, you must read side-
sector block 3 and get the pointer to the 65th data block.
Between 2 and 4 block accesses are necessary to access a
record of a relative data file.

When creating or expanding a relative file, the following
takes place:

First, a directory entry is created for the relative file,

116

Anatomy of the 1541 Disk Drive

containing the record length. Two channels are reserved for
the relative file,one for the data, the other for the side-
sectors. If a record pointer is set to a specific record,
the DOS first checks to see if the record already exists, If
so, the corresponding block is read and the buffer pointer
set so that the contents can be accessed. If not, the record
is created. All records preceding this record number that do
not already exist are also created. The first byte of a new
record is written to contain $FF (255), and the rest of the
record is filled with $00.

If the corresponding record is at the beginning of a block,
the rest of the block is filled with empty records, Each
time a non-existing record is accessed, the error message
50,RECORD NOT PRESENT is returned. When writing a new
record, this is not considered an error, but indicates that
a new record was created.

You can use this method for creating a new file if you know
the maximum number of data records. You simply set the
record pointer to this record and write $FF (CHRS$(255)) to
this record. By allocating a file like this, the error
message 50 no longer appears. You also know if there is
sufficient space on the diskette. If not, the error message
52, FILE TOO LARGE is returned.

With a maximum of 6 side sectors, a relative file can
contain 6 * 120 * 254 = 182,880 bytes. In the case of the
VIC 1541, this is more than the capacity of the whole
diskette. With the bigger 8050 drive, which contains more
than 500K of storage, this may present a limitation. But DOS
version 2.7 has an expansion of the side-sector procedure
('super side-sector'), with which a relative file mey
contain up to 23 MB., DOS 2.7 is contained in the CBM 8250
and the Commodore hard drives as well as the newer 8050
drives (see section 5.2).

Because a relative file requires two data channels, and the
VIC 1541 has only 3 channels available, only one relative
file can be open at a time. The third channel can still be
used for a sequential file open at the same time. With the
larger CBM drives, more channels are available (3 relative
files open simultaneously, see also section 5.2).

117

Anatomy of the 1541 Disk Drive

3.5 DOS 2.6 ROM LISTINGS

C100 78 SEI

clo01l A9 F7 LDA #SF7
C103 2D 00 1C AND $1C00
C106 48 PHA

C107 A5 7F LDA $7F
C109 FO 05 BEQ $C110
Cl0B 68 PLA

clocC 09 00 ORA #$00
Cl0E DO 03 BNE $C113
C110 68 PLA

Clll 09 08 ORA #$08
Cl13 8D 00 1C STA $1C00
Cl16 58 CLI

Cl17 60 RTS
kkkhkkRRKRRhRRRRkkkRhRkkhhhkkk
Cl18 78 SEI

Cl19 A9 08 LDA #$08
CllB 0D 00 1C ORA $1C00
CllE 8D 00 1C STA $1C00
cl121 58 CLI

Cl22 60 RTS
Nkkhkkhhkhhkkhkkhkhkhhhhxhhkhhhd
Cl23 A9 00 LDA #$00
Cl25 8D 6C 02 STA $026C
Ccl28 8D 6D 02 STA $026D
Cl2B 60 RTS
Kkkkkhkkhhhhhkhkkhhhhhhhhkhhkkkk
clac 78 SEI

Cl2D 8A TXA

Cl2E 48 PHA

Cl2F A9 50 LDA #$50
Cl131 8D 6C 02 STA $026C
C134 A2 00 LDX #S00
Cl36 BD CA FE LDA SFECA,X
C139 8D 6D 02 STA $026D
Cl3C 0D 00 1C ORA $1C00
Cl3F 8D 00 1C STA $1C00
Cl42 68 PLA

Cl43 AA TAX

Cl44 58 CLI

C145 60 RTS

hhkkkhkkkhkhkkhkkhkhkkhkkkhhkkhkkkkkk

Cl46
Cl48
Cl4B

A9

00

8D F9 02
AD 8E 02

LDA
STA
LDA

#8500
$02F9
$028E

turn LED on
erase LED bit
drive number
0?

not drive 0, turn LED off

turn LED on

turn LED on

LED on

erase error flags

save X register

turn LED on

get x register back

interpret command from
computer

last drive number

Anatomy of the 1541 Disk Drive

Cl4E 85 7F STA $7F drive number

C150 20 BC E6 JSR S$E6BC prepare 'ok' message

C153 A5 84 LDA $84 secondary address

C155 10 09 BPL $C160

C157 29 OF AND #SOF

C159 Cc9 OF CMP #SOF 15, command channel

Cl5B FO 03 BEQ $C160 yes

Cl15D 4C B4 D7 JMP $D7B4 to OPEN command

Cl60 20 B3 C2 JSR $C2B3 determine line length and
erase flags .

Cl63 Bl A3 LDA ($A3),Y get first character

C165 8D 75 02 STA $0275 and store

Cl68 A2 OB LDX #$0B 11

Cl6A BD 89 FE LDA S$FE89,X commands

Cl6D CD 75 02 CMP $0275 compare to first character

Cl1l70 FO 08 BEQ $C17A found?

Cl72 CA DEX

C173 10 F5 BPL $Cl6A

Cl1l75 A9 31 LDA #$31 not found

Cl177 4C C8 C1 JMP $C1cC8 31, 'syntax error'

Cl7A 8E 2A 02 STX $022A number of command words

Cl7D EO 09 CPX #$09

Cl7F 90 03 BCC $Cl184 command number < 9?

c181 20 EE Cl JSR $ClEE test for 'R', 'S', and 'N'

C184 AE 2A 02 LDX $022A command number

c187 BD 95 FE LDA S$FE95,X jump address 1lo

c1l8A 85 6F STA $6F

c18c BD Al FE LDA $FEAl,X jump address hi

C18F 85 70 STA $70

Cc191 6C 6F 00 JMP ($S006F) jump to command

de g d o de do e ok d dede kg de ok ok ke ok kg ok ok ok ok ok ok ok k prepare error message after
executing command

Cl194 A9 00 LDA #$00

Cl96 8D F9 02 STA $02F9

Cc199 AD 6C 02 LDA $026C flag set?

Cl9cC DO 2A BNE $Cl1cC8 yes, then set error message
Cl9E A0 00 LDY #S00

ClA0 98 TYA error number 0

ClAl 84 80 STY $80 track number 0

ClA3 84 81 STY $81 sector number 0

ClA5 84 A3 STY $A3

ClAa7 20 C7 E6 JSR SE6C7 prepare 'ok' message
ClAA 20 23 C1 JSR $C123 erase error flag

ClAD A5 7F LDA $7F drive number

ClAF 8D 8E 02 STA $028E save as last drive number
ClB2 AA TAX

C1B3 A9 00 LDA #$00

C1BS 95 FF STA $FF,X

C1B7 20 BD C1 JSR $C1BD erase input buffer
C1lBA 4C DA D4 JMO $D4DA close internal channel
Thkhkkhkkhkhkhkhkkkhkkkhkhkhkkkkkkhkkkk erase input buffer
C1BD A0 28 LDY #$28 erase 41 characters
C1BF A9 00 LDA #$00

119

Anatomy of the 1541 Disk Drive

C1Cl 99 00 02 STA $0200,Y
Clc4 88 DEY

C1C5 10 FA BPL $C1Cl
clc7 60 RTS

N L L s L T T T)
cics A0 00 LDY #$00
ClcA 84 80 STY $80
clcc 84 81 STY $81

C1CE 4C 45 E6 JMP $E645

khkkhkhkkkkhhkkhkhkhkkkkhkkhhhkkkhkhkkkkk

clpl A2 00 LDX #$00
clD3 8E 7A 02 STX $027A
ClD6 A9 3A LDA #S$3A
ClD8 20 68 C2 JSR $C268
ClDB F0 05 BEQ $ClE2
ClDD 88 DEY
ClDE 88 DEY
CIDF 8C 7A 02 STY S$027A
ClE2 4C 68 C3 JMP $C368
kkhkkhkkkkhkhkkhkkkhkhhkhkhhkhkkhkkkkk
ClE5 A0 00 LDY #$00
ClE7 A2 00 LDX #$00
C1E9 A9 3A LDA #$3A
ClEB 4C 68 C2 JMP $C268
.******************************
ClEE 20 E5 C1 JSR S$ClES
ClF1 DO 05 BNE $C1F8
ClF3 A9 34 LDA #$34
C1F5 4C C8 Cl1 JMP $C1cC8
ClF8 88 DEY
C1F9 88 DEY
Cl1FA 8C 7a 02 STY $027A
CIFD 8A TXA
ClFE DO F3 BNE $C1F3
C200 A9 3D LDA #$3D
C202 20 68 C2 JSR $C268
C205 8A TXA
C206 FO0 02 BEQ $C20A
C208 A9 40 LDA #S40
C20A 09 21 ORA #$21
C20C 8D 8B 02 STA $028B
C20F E8 INX
C210 8E 77 02 STX $0277
C213 8E 78 02 STX $0278
C216 AD 8A 02 LDA $028A
C219 FO OD BEO $C228
C21B A9 80 LDA #S80
C21D OD 8B 02 ORA $028B
STA $028B

C220 8D 8B 02

120

$200 to $228

give error message
(track & sector)

track = 0

sector = 0

error number acc, generate
error message

check input line

pointer to drive number
LIFe]

test line to ':' or to end
no colon found?

point to drive number
(before colon)
get drive # and turn LED on

check input line
pointer to input buffer
counter for commas

LI]

test line to colon or to end

check input line

test line to ':' or end
colon found?

34, 'syntax error'

set pointer to colon
position of the drive no.
comma before the colon
yes, then 'syntax error'
1=

check input to 's='

“comma found?

no

bit 6

and set bit 0 and 5
flag for syntax check

wildcard found?
no

set bit 7

Anatomy of the 1541 Disk Drive

c223 A9 00 LDA #$00

C225 8D 8A 02 STA $028A reset wildcard flag
c228 98 TYA '=' found?

Cc229 FO 29 BEQ $C254 no

C22B 9D 7A 02 STA $027A,X

C22E AD 77 02 LDA $0277 number of commas before '=!
C231 8D 79 02 STA $0279

C234 A9 8D LDA #$8D shift CR

C236 20 68 C2 JSR $C268 check line to end

C239 E8 INX increment comma counter
C23A 8E 78 02 STX $0278 store # of commas

C23D CA DEX

C23E AD 8A 02 LDA $028A wildcard found?

Cc24A FO 02 BEQ $C245 no

C243 A9 08 LDA #S08 set bit 3

C245 EC 77 02 CPX $0277 comma after '='?

Cc248 FO 02 BEQ $C24C no

C24A 09 04 ORA #$04 set bit 2

c24C 09 03 ORA #$03 set bits 0 and 1

C24E 4D 8B 02 EOR $028B

C251 8D 8B 02 STA $028B as flag for syntax check
C254 AD 8B 02 LDA $028B syntax flag

C257 AE 2A 02 LDX $022A command number

C25A 3D A5 FE AND SFEAS,X combine with check byte
C25D DO 01 BNE $C260

C25F 60 RTS

C260 8D 6C 02 STA $026C set error flag

C263 A9 30 LDA #$30

C265 4C C8 Cl1 JMP $C1C8 30, 'syntax error'

Khkhhkhkhhkkhkhkhhkhkkhkkhkhhkhkhhkhkkkk search characters in input
buffer

C268 8D 75 02 STA $0275 save character

C26B CC 74 02 CPY $0274 already done?

C26E B0 2E BCS SC29E yes

Cc270 Bl A3 LDA ($A3),Y get char from buffer

Cc272 c8 INY

C273 CD 75 02 CMP $0275 compared with char

C276 FO 28 BEQ $C2A0 found

Cc278 C9 2A CMP #$2A vxe

C27A FO 04 BEQ $C280

Cc27¢C C9 3F CMP #$3F !

C27E DO 03 BNE $C283

C280 EE 8A 02 INC $028A set wildcard flag

Cc283 = €9 2C CMP #S$2C ‘!

C285 DO E4 BNE $C26B

c287 98 TYA .

C288 9D 7B 02 STA $027B,X note comma position

C28B AD 8A 02 LDA $028A wildcard flag

C28E 29 7F AND #S$S7F

C290 FO 07 BEQ $C299 no wildcard

C292 A9 80 LDA #$80

C294 95 E7 STA SE7,X note flag

C296 8D 8A 02 STA $028A and save as wildcard flag

C299 E8 INX inc comma counter

121

Anatomy of the 1541 Disk Drive

#s04
$C26B
$#$00
$0274

$027B,X

$028A
#STF
$C2B1
#$80
$E7,X

$A3
$C2CB

$C2CA

$0200,Y

#$0D
$C2CB

$0200,

#$0D
$C2CB

$0274
#S2A
#SFF
$c2pC
$022A
#832

Y

C29A EO0 04 CPX
c29C 90 CD BCC
C29E A0 00 LDY
C2A0 AD 74 02 LDA
C2A3 9D 7B 02 STA
C2A6 AD 8A 02 LDA
C2A9 29 7F AND
C2AB FO 04 BEQ
C2AD A9 80 LDA
C2AF 95 E7 STA
C2B1 98 TYA
C2B2 60 RTS
Akkkkkhkrkhkhkhkkkkhkhkhkhhhhkkk
C2B3 A4 A3 LDY
C2B5 FO 14 BEQ
C2B7 88 DEY
C2B8 FO 10 BEO
C2BA B9 00 02 LDA
C2BD c9 0D CMP
C2BF FO 0A BEO
C2Cl 88 DEY
ca2c2 B9 00 02 LDA
C2C5 C9 0D CMP
ca2c7 F0O 02 BEO
c2c9 c8 INY
C2CA c8 INY
C2CB 8C 74 02 STY
C2CE CoO 2A CPY
C2D0 A0 FF LDY
C2D2 90 08 BCC
C2D4 8C 2A 02 STY
c2Dp7 A9 32 LDA
Cc2D9 4C C8 Cl1 JMP

s$cics

khkkhkkhkkhkkkkkkkkkhkkkkkkkkkkkkk

Cc2DC
C2DE
C2DF
C2El
C2E4
C2E7
C2EA
C2EC
C2FEF
C2F2
C2F5
C2F8
C2FB
C2FD
C300
C302
C304
Cc306

A0
98
85
8D
8D
8D
85
8D
8D
8D
8D
8D
A2
9D
95
95
95
95

00

A3
58

4A

96
D3
79
77
78
8A
6C
05
79
D7
DC
El
E6

02
02
02

02
02

02
02

02

LDY
TYA
STA
STA
STA
STA
STA
STA
STA
STA
STA
STA
LDX
STA
STA
STA
STA
STA

#s00

SA3
$0258
$024A
$0296
$D3
$0279
$0277
$0278
$028A
$026C
#$05

$0279,X

$D7,X
$DC,X
$E1,X
SE6,X

122

4 commas already?
no, continue

set flag for line end
wildcard flag
no wildcard

set flag

check line length
ptr to command input buffer
zero?

one?

pointer to input buffer
ICRl

yes, line end

preceding character
'CR'
yes

pointer to old value again
same line length
compare with 42 characters

smaller, ok

32, 'syntax error' line too
long

erase flag for input command

pointer to input buffer lo
record length
file type

comma counter
-om

"

wildcard flag
error flag

flags for line analysis
directory sectors
buffer pointer

drive number

wildcard flag

Cc308 9D 7F 02 STA
C30B 9D 84 02

C30E CA DEX
C30F DO EC BNE
C311 60 RTS
kkhkkhhkkkdkhkhkhhhhhkhrrkkhdkh kK
C312 AD 78 02 LDA
C315 8D 77 02 STA
C318 A9 01 LDA
C3la 8D 78 02 STA
C31D 8D 79 02 STA
C320 AC 8E 02 LDY
C323 A2 00 LDX
C325 86 D3 STX
C327 BD 7A 02 LDA
C32a 20 3C C3 JSR
C32D A6 D3 LDX
C32F 9D 7A 02 STA
C332 98 TYA
C333 95 E2 STA
C335 E8 INX
C336 EC 78 02 CPX
C339 90 EA BCC
C33B 60 RTS
hkkkkkhkhkhkhhhhhhrkhhhhdkhhhdkkkk
C33C AA TAX
C33D A0 00 LDY
C33F A9 3A LDA
C341 DD 01 02 CMP
C344 FO0 OC BEO
C346 DD 00 02 CMP
C349 DO 16 BNE
C34B E8 INX
C34cC 98 TYA
C34D 29 01 AND
C34F A8 TAY
C350 8A TXA
C351 60 RTS
C352 BD 00 02 LDA
C355 E8 INX
C356 E8 INX
C357 Cc9 30 CMP
C359 FO F2 BEQ
C35B Cc9 31 CMP
C35D FO EE BEQ
C35F DO EB BNE
C361 98 TYA
C362 09 80 ORA
C364. 29 81 AND
C366 D0 E7 BNE

kkkkhkkhkhkkhhkkkhkkkkkhhhkkhhhhhkkk

STA $0284,X

$027F,X

SC2FD

$0278
$0277
#s01
$0278
$0279
$028E
#$00
$D3
$027A,X
$C33C
$D3
$027A

$E2,X

$0278
$C325

#$00
#$3A
$0201,Xx
$C352
$0200,X
$C361

#s01

$0200,X

#$30
$C34D
#$31
$C34D
$C34C

#$80
#$81
$C34F

Anatomy of the 1541 Disk Drive

track number
sector number

preserve drive number
number of commas
save

number of drive numbers

last drive number

position of the colon
get drive no. before colon

save exact position
drive number in table

got all drive numbers?
no, continue

search for drive number
note position

[}
colon behind it?
yes

colon here?

no

drive number

get drive number

'0'?

yes

'1'?

yes

no, use last drive number
last drive number

set bit 7, uncertain drive $
erase remaining bits

get drive number

123

Anatomy of the 1541 Disk Drive

C368 A9 00 LDA #S00
C36A 8D 8B 02 STA $028B
C36D AC 7A 02 LDY $027A
C370 Bl A3 LDA (SA3),Y
C372 20 BD C3 JSR $C3BD
C375 10 11 BPL $C388
C377 cs INY

Cc378 CC 74 02 CPY $0274
C37B BO 06 BCS $C383
C37D AC 74 02 LDY $0274
C380 88 DEY

c381 DO ED BNE $C370
C383 CE 8B 02 DEC $028B
C386 A9 00 LDA #S00
c388 29 01 AND #S$S01
C38A 85 7F STA $7F
C38C 4C 00 C1 JMP S$C100
kkkhkkhhhhhkhkhkhkhhhhhhdhhkhkkkkk
C38F A5 TF LDA S7F
C391 49 01 EOR #501
C393 29 01 AND #$01
C395 85 7F STA $7F
C397 60 RTS

Kk kkkhkhhhhhkkhkhhkkhhkhhhhhhhdk
C398 A0 00 LDY #S00
C39A AD 77 02 LDA $0277
C39D CD 78 02 CMP $0278
C3A0 FO 16 BEQ S$C3B8
C3A2 CE 78 02 DEC $0278
C3A5 AC 78 02 LDY $0278
C3A8 B9 7A 02 LDA $027A,Y
C3AB A8 TAY

C3AC Bl A3 LDA (SA3),Y
C3AE A0 04 LDY #$04
C3B0 D9 BB FE CMP $FEBB,Y
C3B3 FO 03 BEQ S$SC3B8
C3B5 88 DEY

C3B6 DO F8 BNE $C3BO
C3B8 98 TYA

C3B9 8D 96 02 STA $0296
C3BC 60 RTS
kkkkkhhhkkhkhkhhhkhhhhhkhrhhkhkkk
C3BD C9 30 CMP #S30
C3BF FO 06 BEQ S$C3C7
C3Cl1 Cc9 31 CMP #S$31
C3C3 FO 02 BEQ $C3C7
C3C5 09 80 ORA #880
c3C7 29 81 AND #S81
C3C9 60 RTS

124

erase syntax flag

position in command line

get chars from command buffer
get drive number

certain number?

increment pointer

line end?

yes

search line for drive no.

drive number
turn LED on

reverse drive number

drive number
switch bit 0

establish file type
'=' found?

no
get pointer

set pointer to character
behind '='

pointer to buffer
compare with marker for
file type

'Sl, Ipl, 'U" 'Rl
agreement

note file type (1-4)

check drive number
Iol
lll

no zero or one, then set bit 7

Anatomy of the 1541 Disk Drive

Khkkhkhkhkhkkkhhkkhhhkhkdkhkhhkkhkkk

c3ca
Cc3cc
C3CE
C3pl1
C3D2
C3D5
C3D6
C3D8
C3D9
C3DB
C3DD
C3DE
C3E0
C3E2
C3E4
C3E6
C3E8
C3E9
C3EB
C3ED
C3EF
C3F0
C3Fl1
C3F4
C3F5
C3F7
C3FA
C3FB
C3FC
C3FE
C400
C402
C404
C407
C409
c40C
C40E
C411
C413
C416
C419
C41B
C41D
C420

C423
C426
c427
c42A
C42B
C42D
C42F
C432
C434

A9
85
8D
48
AE
68
05
48
A9
85
CA
30
B5
10
06
06
4A
920
06
DO
68
AA
BD
48
29
8D
68
oA
10
A5
29
85
AD
FO
20
FO
20
A9
8D
20
FO
A9
20
20

20
08
20
28
FO
A9
8D
FO
20

00
6F
8D

78
6F

01
6F

OF
E2
04
6F
6F

EA
6F
E6

3F

03
8C

3E
E2
01
7F
8C
28
3D
12
8F
00
8C
3D
1E
74
C8
8F

3D
8F

0ocC
00
8C
05
3D

02
02

Cc4

02

02
Ccé
Cc3
02
Ccé
Cl
Cc3
Cé6

Cc3

02
Ccé

LDA
STA
STA
PHA
LDX
PLA
ORA
PHA
LDA
STA
DEX
BMI
LDA
BPL
ASL
ASL
LSR
BCC
ASL
BNE
PLA
TAX
LDA
PHA
AND
STA
PLA
ASL
BPL
LDA
AND
STA
LDA
BEQ
JSR
BEQ
JSR
LDA
STA
JSR
BEQ
LDA
JSR
JSR

JSR
PHP
JSR
PLP
BEQ
LDA
STA
BEQ
JSR

#800
S6F
$028D

$0278
$6F

#501
S6F

$C3EF
SE2,X
$C3E8
$6F
$6F

A
$C3D5
$6F
$C3D5

$C43F,X

#$03
$028C

A
$C43cC
SE2
#S01
$7F
$028C
$C434
$C63D
$C420
SC38F
#$00
$028C
$C63D
$C439
#874
$Clcs
$C38F

$C63D
$C38F

$C439
#$00

$028C
$C439
$C63D

125

verify drive number

number of drive numbers

get syntax flag

isolate drive number

initialze drive
error?
switch to other drive

initialize drive
no error?

74, 'drive not ready’

initialize drive
switch to other drive
no error?

number of drives

initialize drive

Anatomy of the 1541 Disk Drive

C437
C439
c43C
C43D

DO

E2

4C 00 C1

2A

4C 00 C4

BNE
JMP
ROL
JMP

$C41B
$C100
A

$C400

kkkhhhkkhhhkhhkkhkkkkkhhkkkhkkkkkkkk

00 80 41 01 01 01 01 81
81 81 81 42 42 42 42

C440
C448

kkhkkhhkhkhhkhkhkkkkkkkkhrhhkkhkkhkkkkk

C44F
C452
C454
C457
C45A
C45C
C45F
C461

C462
C464
C467
C46A
C46D

C470
C473
C475
c478
C47B
C47D

C47E
c48l
C483
C485
Cc488
C48A

C48B
C48E
C490

C492
C494
C497
C49A
C49D
C49F
C4A2
C4AS
C4A7
C4AA
C4AD
C4AF

20
A9
8D
20
DO
CE
10
60

A9
8D
20
20
4Cc

20
FO
20
AD
FO
60

AD
30
10
AD
FO
60

20
FO
DO

A9
8D
20
20
A9
8D
20
DO
8D
AD
DO
CE

CA
00
92
AC
19
8C
01

01
8D
8F
00
52

17
10
D8
8F
01

53
ED
FO
8F
D2

04
1A
28

01
8D
8F
00
00
92
AC
13
8F
8F
28
8C

c3

02
C5

02

02
Cc3
Cl
c4
cé

c4
02

02

02

Cé

02
c3
Cl

02
Cc5

02
02

02

JSR
LDA
STA
JSR
BNE
DEC
BPL
RTS

LDA
STA
JSR
JSR
JMP

JSR
BEQ
JSR
LDA
BEQ
RTS

LDA
BMI
BPL
LDA
BEQ
RTS

JSR
BEQ
BNE

LDA
STA
JSR
JSR
LDA
STA
JSR
BNE
STA
LDA
BNE
DEC

$C3CA
#$00

$0292
$C5AC
$C475
$028C
$C462

$#$01

$028D
SC38F
$C100
$C452

$C617
$C485
$C4D8
$028F
$SC47E

$0253
$C470
$C475
$028F
$C45C

$C604
SC4AA
$C4BA

#$01

$028D
SC38F
$C100
#S00

$0292
$C5AC
$C4BA
S028F
S028F
$C4D7
$028C

126

error?
Turn LED on
drive # from carry after bit 0

flags for drive check

search for file in directory
initialize drive

pointer

read first directory block
entry present?

drive number clear?

no

change drive
Turn LED on
and search

search next file in directory
not found?
verify directory entry

more files?

file not found?
yes

search next directory block
not found?

change drive

turn LED on

read directory block
found?

C4B2
C4B4

C4B5
C4B8
C4BA
C4BD
C4cCo
c4c2
C4cC5
c4ac?

C4cC9
c4cc
C4CE
C4D0
C4D2
C4D5
C4D7

Cc4p8
C4DA
C4DD
C4DE
C4El
C4E4
C4E6

C4E7
C4EA
C4EC
C4EE
C4F0
C4F1
C4F3
C4F5
C4F7
C4F9
C4FC
C4FE
C501
C502
C505
C507

C50A
C50D
C50F
C511
C513
C515
C517
C519
C51B
C51C

DE

17
FO
D8
53
07
8F
EE
OE

96
09
E7
07
96
DE

FF
53

8A
89
06

94
FA

E2

0B
40
FO
02
8C
E9
7A

A6
03
1D

00
94
0A
3F
D2
94
A0
cc

cé

C4
02

02

02

02

02

02
Cc5

C5

02
02
Cé
Cc5
02

BPL
RTS

JSR
BEQ
JSR
LDX
BPL
LDA
BEQO
BNE

LDA
BEQ
LDA
AND
CMP
BNE
RTS

LDX
STX
INX
STX
JSR
BEQ
RTS

JSR
BNE
LDA
EOR
LSR
BCC
AND
BEQ
LDA
CcMP
BEQ
LDA
TAX
JSR
LDY
JMP

LDA
CMP
BEOQ
CMP
BNE
LDA
CMP
BEQ
INX
INY

$C492

$C617
$C4AA
$C4D8
$0253
$C4C9
$028F
SC4B5
$C4D7

$0296
$C467
SE7,X
#s07

$0296
$C4B5

#SFF
$0253

$028A
$C589
$C4EC

$C594
SC4E6
$TF

$E2,X

A
SCAFE
#540
$C4E7
#502
$028C
SC4E7

Anatomy of the 1541 Disk Drive

$027A,X

SC6A6
#5503
$C51D

$0200,X
(s94),Y

$C51B
#S3F
SC4E7

($94),vY

#SA0
$C4E7

127

next entry in directory
not found?
check entry

file found?

yes
no, then done

file type

same as desired file type?
no

flag for data found

set pointer to data

pointer to next file
end, then done
drive number

search both drives?
yes

get length of filename

get chars out of command line
same character in directory?
yes
l?l
no

shift blank, end of name?
yes
increment pointer

Anatomy of the 1541 Disk Drive

C51D EC 76 02 CPX $0276
Cc520 BO 09 BCS $C52B
c522 BD 00 02 LDA $0200,X
€525 C9 2A CMP #$2A
c527 FO 0C BEQ $C535
Cc529 DO DF BNE $C50A
C52B co0 13 CPY #$13
C52D BO 06 BCS $C535
C52F Bl 94 LDA ($94),Y
C531 Cc9 A0 CMP #SA0
Cc533 DO B2 BNE S$C4E7
c535 AE 79 02 LDX $0279
C538 8E 53 02 STX $0253
C53B BS E7 LDA SE7,X
Cc53D - 29 80 AND #S$80
C53F 8D 8A 02 STA $028A
C542 AD 94 02 LDA $0294
C545 95 DD STA $DD,X
C547 AS 81 LDA $81
C549 95 D8 STA $D8,X
C54B A0 00 LDY #$00
C54D Bl 94 LDA ($94),Y
C54F C8 INY

C550 48 PHA

Cc551 29 40 AND #S$40
C553 85 6F STA $6F
C555 68 PLA

C556 29 DF AND #$DF
C558 30 02 BMI $C55C
C55A 09 20 ORA #$20
c55C 29 27 AND #$27
CS55E 05 6F ORA $6F
C560 85 6F STA $6F
c562 A9 80 LDA #$80
C564 35 E7 AND $E7,X
C566 05 6F ORA $6F,X
C568 95 E7 STA $E7,X
C56A B5 E2 LDA $E2,X
C56C 29 80 AND #$80
C56E 05 7F ORA $7F
Cc570 95 E2 STA $E2,X
C572 Bl 94 LDA ($94),Y
C574 9D 80 02 STA $0280,X
Cc577 c8 INY

Cc578 Bl 94 LDA ($94),Y
C57A 9D 85 02 STA $0285,X
C57D AD 58 02 LDA $0258
Cc580 DO 07 BNE $C589
c582 A0 15 LDY #$15
C584 Bl 94 LDA ($94),Y
C586 8D 58 02 STA $0258
‘C589 A9 FF LDA #SFF
C58B 8D 8F 02 STA $028F
C58E AD 78 02 LDA $0278

128

end of the name in the command?
yes

next character
Tk

yes, file found
continue search

19
reached end of name

shift blank, end of name
not found

sector number of the directory
enter in table

file type

isolate scratch-protect bit
(6) and save

erase bit 7

set bit 5

erase bits 3 and 4

get bit 6 again

isolate flag for wildcard

write in table

drive number

first track of file

get sector from directory
record length

record length
get from directory

C591
C594
C597
C599

C59A
C59D
C59F
C5A1
C5a4
C5A6
C5A8
C5AB

C5AC
C5AE
C5B1
C5B2
C5B5
C5B8
C5BA
C5BC
C4BE
C5C1
C5C4
C5C7
C5C9

Cc5CcA
C5CC
C5CF
C5D1
C5D4
C5D7
C5DA
C5DD
C5DF
C5E1
C5E3
C5E6
C5E8
C5EB
C5ED
C5F0
C5F2
C5F5
C5F8
C5FA

C5FB
C5FD
C600
C602

C604

8D
CE
10
60

AE
BS
30
BD
DO
A9
8D
60

A0
8C
88
8C
AD
85
A9
85
8D
20
AD
DO
60

A9
8D
A9
20
8D
20
CE
A0
Bl
DO
AD
DO
20
A5
8D
A5
AE
8D
FO
60

A2
EC
DO
FO

AD

79
79
01

79
E7
05
80
EE
00
8F

00
91

53
85
80
01
81
93
75
93
01

07
95
00
F6
93
E8
95
00
94
18
91
2F
3B
81
91
94
92
92
1D

01
92
2D
13

85

02
02

02

02

02

02

02
FE

02
D4
02

02
D4
02

D4
02

02
DE
02

02
02

02

FE

STA
DEC
BPL
RTS

LDX
LDA
BMI
LDA
BNE
LDA
STA
RTS

LDY
STY
DEY
STY
LDA
STA
LDA
STA
STA
JSR
LDA
BNE
RTS

LDA
STA
LDA
JSR
STA
JSR
DEC
LDY
LDA
BNE
LDA
BNE
JSR
LDA
STA
LDA
LDX
STA
BEO
RTS

LDX
CPX
BNE
BEQ

LDA

$0279
$0279
$C59A

$0279
SE7,X
$C5A6

Anatomy of the 1541 Disk Drive

$0280,X

$C594
#$00
$028F

#$00
$0291

$0253
SFE85
$80
#$01
$81
$0293
$D475
$0293
$C5CA

#$07
$0295
#$00
SD4F6
$0293
$D4ES
$0295
#S00

(s94),

SC5FB
$0291
$C617
SDE3B
$81

$0291
$94

$0292
$0292
$C617

#$01

$0292
SC62F
$C617

SFE85

Y

129

wildcard flag set?

yes

track number already set
yes

18, directory track

sector 1

read sector

number of directory entries (-1)
get pointer from buffer

save as track number

set buffer pointer

decrement counter

first byte from directory

get track and sector number

sector number

buffer pointer

buffer pointer to one?

18, track number of BAM

Anatomy of the 1541 Disk Drive

'c607 85 80 STA $80
C609 AD 90 02 - LDA $0290
Cc60C 85 81 STA $81
C60E 20 75 D4 JSR $D475
C611 AD 94 02 LDA $0294
C614 20 C8 D4 JSR $D4C8
C617 AD FF LDA #SFF
C619 8D 53 02 STA $0253
C61C AD 95 02 LDA $0295
C61F 30 08 BMI $C629
Cc621 A9 20 LDA #820
C623 20 C6 D1 JSR $D1C6
C626 4C D7 C5 JMP $C567
C629 20 4D D4 JSR $D44D
C62C 4C C4 C5 JMP $C5C4
C62F A5 94 LDA $94
C631 8D 94 02 STA $0294
Cc634 20 3B DE JSR $DE3B
C637 A5 81 LDA $81
C639 8D 90 02 STA $0290
C63C 60 RTS
khkkkkkhkkhkhhhkhkhkhkhkkkhhkkkkkkkkk
C63D A5 68 LDA $68
C63F DO 28 BNE $C669
C641 A6 TF LDX $7F
c643 56 1C LSR $1C,X
C645 90 22 BCC $C669
C647 A9 FF LDA SFF
C649 8D 98 02 STA $0298
C64C 20 OE DO JSR $DOOE
C64F A0 FF LDY #SFF
c651 C9 02 - CMP #$02
C653 F0 OA BEQ SC65F
c655 €9 03 CMP #$03
C657 FO0 06 BEQ $C65F
C659 C9 OF CMP #S$OF
C65B FO0 02 BEQ SC65F
c65D A0 00 LDY #$00
C65F A6 TF LDX $7F
c661 98 TYA

C662 95 FF STA $FF,X
c664 DO 03 BNE $C669
C666 20 42 DO JSR $D042
C669 A6 TF LDX $7F
C66B B5 FF LDA $FF,X
C66D 60 RTS
*****************:k************
C66E 48 PHA

C66F 20 A6 C6 JSR $C6A6
C672 20 88 C6 JSR $C688
C675 68 PLA

130

track number

sector number
read block

set buffer pointer
erase-file found flag
all directory entries checked?

inc buffer ptr by 32, next entry
and continue

set buffer pointer
read next block

get track & sector no. from buffer.

save sector number

test and initialize drive

drive number
disk changed?
no, then done

set error flag
read directory track

20, 'read error'?

yes

21, 'read error'?

yes

74, 'drive not ready'?
yes

drive number

save error flag
error?

load BAM

drive number
transmit error code

name of file in directory buffer

get end of the name
write filename in buffer

$024B

$C687
$C687
#SA0
($94),Y

$C681

A

$0099,Y
$94
$009A
$95
#$00
$0200,X
($94),Y

$SC6AS5

$0276
$C697

#$00
$024B.

$0200,Xx
#s2c
$C6C8
#$3D
$C6C8
$024B

#SO0F

$024B
$C6C8
$0274
SC6AD
$0276

$83

Anatomy of the 1541 Disk Drive
compare len with max length

pad with 'sShift blank'

buffer number

times 2 as pointer
buffer pointer after $94/$95
transmit characters in buffer

buffer already full?

search for end of name in command

get characters out of buffer
Ll L]
r

=t
increment length of name
15

greater?
end of input line?

pointer to end of name

C676 38 SEC
Cé677 ED 4B 02 SBC
C67A AA TAX
C67B FO 0A BEQ
C67D 90 08 BCC
C67F A9 A0 LDA
Ccé681 91 94 STA
C683 c8 INY
Cc684 CA DEX
C685 DO FA BNE
ce87 60 RTS
L T Y P T T 3
C688 98 TYA
C689 0A ASL
C68A A8 TAY
C68B B9 99 00 LDA
C68E 85 94 STA
C690 B9 9A 00 LDA
C693 85 95 STA
C695 A0 00 LDY
C697 BD 00 02 LDA
C69A 91 94 STA
C69C cs8 INY
C69D FO 06 BEQ
C69F E8 INX
C6A0 EC 76 02 CPX
C6A3 90 F2 ' BCC
C6A5 60 RTS
RkkkkRkhkhhkkhhkhhhknhhhhhkkhdk
C6A6 A9 00 LDA
C6A8 8D 4B 02 STA
C6AB 8A TXA
C6AC 48 PHA
C6AD BD 00 02 LDA
C6B0 C9 2C CMP
C6B2 FO 14 BEQ
Cé6B4 C9 3D CMP
C6B6 FO 10 BEQO
Cé6B8 EE 4B 02 INC
C6BB E8 INX
C6BC A9 OF LDA
C6BE CD 4B 02 CMP
Cé6Cl1 90 05 BCC
Cé6C3 EC 74 02 CPX
C6C6 90 ES BCC
ceécCs 8E 76 02 STX
C6CB 68 PLA
Cé6CC AA TAX
Cé6CD 60 RTS
L T T T]
C6CE A5 83 LDA
C6D0 48 PHA

secondary address and channel no.

131

Anatomy of the 1541 Disk Drive

C6D1 AS 82 LDA $82
C6D3 48 PHA

C6D4 20 DE C6 JSR $C6DE
C6D7 68 PLA

Cc6D8 85 82 STA $82
C6DA 68 PLA

C6DB 85 83 STA $83
C6DD 60 RTS
hkkhkhkkhkhkhkhkhkkhkkkhkkhkhhkkkhkkkhkkkkk
C6DE A9 11 LDA #$11
C6E0 85 83 STA $83
C6E2 20 EB DO JSR $DOEB
C6E5 20 E8 D4 JSR $D4ES
C6E8 AD 53 02 LDA $0253
C6EB 10 0A BPL $C6F7
C6ED AD 8D 02 LDA $028D
C6F0 DO 0A BNE $C6FC
C6F2 20 06 C8 JSR $C806
C6F5 18 CLC

C6F6 60 RTS

C6F7 AD 8D 02 LDA $028D
C6FA FO 1F BEQ $C71B
C6FC CE 8D 02 DEC $028D
C6FF DO 0D BNE $C70E
c701 CE 8D 02 DEC $028D
Cc704 20 8F C3 JSR $C38F
Cc707 20 06 C8 JSR $C806
c70Aa 38 SEC

Cc708 4C 8F C3 JMP $C38F
C70E A9 00 LDA #$00
Cc710 8D 73 02 STA $0273
C713 8D 8D 02 STA $028D
Cc716 20 B7 C7 JSR $C7B7
Cc719 38 SEC

c71a 60 RTS

C71B A2 18 LDX #$18
C71D A0 1D LDY #$S1D
C71F Bl 94 LDA ($94),Y
Cc721 8D 73 02 STA $0273
C724 FO 02 BEQ $C728
C726 A2 16 LDX #8516
Cc728 88 DEY

C729 Bl 94 LDA ($94),Y
C72B 8D 72 02 STA $0272
C72E EO0 16 CPX #S$16
C730 FO OA BEQ $C73C
C732 Cc9 0A CMP #$0A
C734 90 06 BCC $C73C
C736 cAa DEX

C737 C9 64 CMP #S$64
C739 90 01 BCC SC73C
C73B CA DEX

132

create file entry for directory

get data back

17

secondary address
open channel to read
set buffer pointer

not yet last entry?

write 'blocks free.'

change drive
write 'blocks free.'

change drive

drive no. for header, hi-byte

write header

number of blocks hi
in buffer
zero?

number of blocks lo
in buffer

10

100

Anatomy of the 1541 Disk Drive

C73C 20 AC C7 JSR $C7AC erase buffer

C73F Bl 94 LDA ($94),Y file type

C741 48 PHA

C742 0A ASL A bit 7 in carry

C743 10 05 BPL $C74A bit 6 not set?

C745 A9 3C LDA #$3C '<' for protected file

C747 9D B2 02 STA $02B2,X write behind file type
C74A 68 PLA

C74B 29 OF AND #SOF isolate bits 0-3

C74D A8 TAY as file type marker
C74E B9 C5 FE LDA $FEC5,Y 3rd letter of the file type
Cc751 9D Bl 02 STA $02B1,X in buffer

C754 CA DEX

C755 B9 CO FE LDA SFECO,Y 2nd letter of file type
C758 9D Bl 02 STA $02B1,X in buffer

C75B ca DEX

C75C B9 BB FE LDA SFEBB,Y lst letter of file type
C75F 9D Bl 02 STA $02B1,X in buffer

C762 CA DEX

C763 CA DEX

C764 BO 05 BCS $C76B file not.closed?

C766 A9 2A LDA #$2A tx1

C768 9D B2 02 STA $02B2,X before file type in buffer
C76B A9 A0 LDA #$A0 pad with 'shift blank' .
676D 9D Bl 02 STA $02B1,X in buffer

Cc770 CA DEX

C771 A0 12 LDY #S$12

C773 Bl 94 LDA ($94),Y filenames

C775 9D Bl 02 STA $02B1,X write in buffer

C778 CA DEX

C779 88 DEY

C77A Cco 03 CPY #$S03

Cc77cC B0 F5 BCS $C773

C77E A9 22 LDA #$22 ‘=t

C780 9D Bl 02 STA $02B1,X write before file type
Cc783 E8 INX .

Cc784 EO0 20 CPX #$20

C786 BO OB BCS $C793

Cc788 BD Bl 02 LDA $02Bl1,X character from buffer
C78B Cc9 22 CMP #8822 '='?

Cc78D FO 04 BED $C793

C7BF C9 A0 CMP #SA0 'shift blank' at end of name
C791 DO FO BNE $C783

C793 A9 22 LDA #$22 fill through '="

C795 9D Bl 02 STA $02B1,X

Cc798 E8 INX

C799 E0O 20 CPX #$20

C89B BO 0A BCS S$C7A7

C79D A9 7F LDA #S7F bit 7

C79F 3D Bl 02 AND S02B1,X
C7A2 9D Bl 02 STA $02B1,X erase in the remaining chars
C7A5 10 F1 BPL $C798 ’

C7A7 20 B5 C4 JSR $C4B5 search. for next directory entry
C7AA 38 SEC
C7AB 60 RTS

133

Anatomy of the 1541 Disk Drive

kkkkkkkkkhkhkkkkkkhhkkkkkhkkkkkkkk

C7AC A0 1B LDY #S1B
C7AE A9 20 LDA #$20
C7B0 99 BO 02 STA $02BO,Y
C7B3 88 DEY

C7B4 DO FA BNE $C7BO
C7B6 60 RTS

de e Je & e K g e e g K ek K d g g g dedo g g gk ok ko ok

C7B7 20 19 F1 JSR SF119
C7BA 20 DF FO JSR $FODF
C7BD 20 AC C7 JSR $C7AC
C7C0 A9 FF LDA #SFF
c7Cc2 85 6F STA S6F
C7C4 A6 TF LDX S$7F
C7Cé6 8E 72 02 STX $0272
c7¢C9 A9 00 LDA #$00
Cc7CB 8D 73 02 STA $0273
C7CE A6 F9 LDX SF9.
C7D0 BD EO FE LDA $FEEO,X
Cc7D3 85 95 STA $95
C7D5 AD 88 FE LDA $SFES88
C7D8 85 94 STA $94
C7DA A0 16 LDY #$16
Cc7DC Bl 94 LDA ($94),Y
C7DE C9 A0 CMP #SA0
C7EO DO OB BNE $C7ED
C7E2 A9 31 LDA #$31
C7E4 2C .BYTE $2C
C7ES Bl 94 LDA ($94),Y
‘C7E7 C9 A0 CMP #SA0
C7E9 DO 02 BNE $C7ED
C7EB A9 20 LDA #$20
C7ED 99 B3 02 STA $02B3
C7F0 88 DEY

C7F1 10 F2 ‘BPL $C7ES
C7F3 A9 12 LDA #$12
C7F5 8D Bl 02 STA $02Bl
C7F8 A9 22 LDA #$22
C7FA 8D B2 02 STA $02B2
C7FD 8D C3 02 STA $02C3
Cc800 A9 20 LDA #$20
Cc802 8D C4 02 STA $02C4
Cc805 60 RTS

khkhkhkkkkkkkkkkhkkkhhkkkkkhhhkkhhkk

C806 20 AC C7 JSR $C7AC
C809 A0 OB LDY #S0B
Cc80B B9 17 C8 LDA $C817,Y
C80E 99 Bl 02 STA $02B1,Y
CBl11 88 DEY

Cc812 10 F7 BPL $C80B
Cc814 4C 4D EF JMP SEF4D

134

erase directory buffer
* ' blank
write in buffer

create header with disk name
initialize if needed

read disk name

erase buffer

drive number

as block no. lo in buffer

block number lo
buffer number
hi-byte of the buffer address

$90, position of disk name
save

pad buffer with 'shift blank'

'll

character from buffer

compare with 'shift blank'
' ' blank
in buffer

'RVS ON'

in buffer

T

write before

and after disk name
' ' blank

behind it

create last line
erase buffer

12 characters
'blocks free.'
write in buffer

number of free blocks in front

Anatomy of the 1541 Disk Drive

L L Y e I T I)
Cc817 42 4C 4F 43 4B 53 20 46 ‘blocks £’

C81F 52 45 45 2E 'ree.'
*********t******************** s command 'scratch'

c823 20 98 C3 JSR $C398 ascertain file type

C826 20 20 C3 JSR $C320 get drive number

C829 20 CA C3 JSR $C3CA initialize drive if needed
c82C A9 00 LDA #$00

C82E 85 86 STA $86 counter for erased files
C830 20 9D C4 JSR $C49D search for file in directory
C833 30 3D BMI $C872 not found?

C835 20 B7 DD JSR $DDB7 is file open

C838 90 33 BCC $C86D yes

C83A A0 00 LDY #S$00

C83C Bl 94 LDA ($94),Y file type

C83E 29 40 AND #$40 scratch protect

C840 DO 2B BNE $C86D yes

Cc842 20 B6 C8 JSR $C8B6 erase file and note in directory
C845 A0 13 LDY #$13 .
Cc847 Bl 94 LDA ($94),Y track no. of the first side-sector
Cc849 FO 0A BEQ $C855 none present?

C84B 85 80 STA $80 note track number

C84D c8 INY .

C84E Bl 94 LDA ($94),Y and sector number

C850 85 81 STA $81 ’

C852 20 7D C8 JSR $C87D erase side-sector

C855 AE 53 02 LDX $0253 file number

c858 A9 20 LDA #$20

Cc85A 35 E7 AND $E7,X bit 5 set?

c85C DO OD BNE $C86B yes, file not closed

C85E BD 80 02 LDA $0280,X get track

c861 85 80 STA $80

C863 BD 85 02 LDA $0285,X and sector

C866 85 81 STA $81

Cc868 20 7D C8 JSR $C87D erase file

C86B E6 86 INC $86 increment number of erased files
C86D 20 8B C4 JSR $C48B search for next file

Cc870 10 C3 BPL $C835 if present, erase

Cc872 A5 86 LDA $86 number of erased files

C874 85 80 STA $80 save as 'track'

Cc876 A9 01 LDA #$01 1 as disk status

c878 A0 00 LDY #$00 0 as 'sector'

C87A . 4C A3 C1 JMP $C1A3 message 'files scratched'
KEKERRRhkhhkhkR Rk kRhkhhkhRRRARX* orace file

C87D 20 5F EF JSR $EFS5F = free block in BaAM

c880 20 75 D4 JSR $D475

c883 20 19 Fl JSR $F119 get buffer number in BAM
C886 B5 A7 LDA $A7,X

C888 C9 FF CMP #SFF

C88A FO 08 BEQ $C894

C88C AD F9 02 LDA $02F9

C88F 09 40 ORA #$40

Cc891 8D F9 02 STA $02F9

135

Anatomy of the 1541 Disk Drive

c894 A9 00 LDA #$00
Cc896 20 C8 D4 JSR $D4C8
C899 20 56 D1 JSR $D156
c89C 85 80 STA $80
C89E 20 56 D1 JSR $D156
C8Al 85 81 STA $81
C8A3 A5 80 LDA $80
C8A5 DO 06 BNE SC8AD
Cc8Aa7 20 F4 EE JSR SEEF4
C8AA 4C 27 D2 JMP $D227
C8AD 20 SF EF JSR SEFSF
C8BO 20 4D D4 JSR $D44D
C8B3 4C 94 C8 JMP $C894
kkkdkhkkhkkkkkhkhhkhkkkkkkkkkkkhkk
C8B6 A0 00 LDY #$00
C8B8 98 TYA

C8B9 91 94 STA ($94),Y
C8BB 20 5E DE JSR $DE5SE
C8BE 4C 99 D5 JMP $D599
kkkhkkkkkkkhkhkkhkhkkhkkkkkkkkkkkkk
Cc8Cl A9 31 LDA #$31
c8cC3 4C C8 C1 JMP $ClC8
kkhkhkhkhkhkkhkhkhkkhkhkkhkkhkkkkhkkkhkkkk
C8C6 A9 4C LDA #$4C
cscs 8D 00 06 STA $0600
C8CB A9 C7 LDA #$C7
c8CD 8D 01 06 STA $0601
Cc8DO0 A9 FA LDA #S$FA
Cc8D2 8D 02 06 STA $0602
C8D5 A9 03 LDA #$03
c8D7 20 D3 D6 JSR $D6D3
C8DA A5 7F LDA $7F
c8pc 09 EO ORA #S$SEO
C8DE 85 03 STA $03
C8E0 A5 03 LDA $03
C8E2 30 FC BMI S$SC8EO
C8E4 c9 02 CMP #$02
C8E6 90 07 BCC $C8EF
C8E8 A9 03 LDA #$03
C8EA A2 00 LDX #$00
C8EC 4C OA E6 JMP SE60A
C8EF 60 RTS
kkkhkhkkkkhkhkkhkhkhkkkhkkkhkkkkkkkkkk
C8F0 A9 EO LDA #S$EO
C8F2 8D 4F 02 STA $024F
C8F5 20 D1 FO JSR $FOD1
C8F8 20 19 Fl JSR $F119
C8FB A9 FF LDA #SFF
C8FD 95 A7 STA $A7,X
C8FF A9 OF LDA #S$OF

136

buffer pointer to zero
get track

get sector

track number

not equal to zero
write BAM

close channel

free block in BAM
read next block

and continue

erase directory entry
set file type to zero
write block
and check
D-command 'backup'
31, ‘syntax error'
format diskette
JMP-command

JMP S$FAC7 in $600 to $602

set track and sector number
drive number

command code for formatting
transmit

wait until formatting done

smaller than two, then ok

21, 'read error'

C-command ‘copy"’

get buffer number of BAM

C901
C904
C907
C909

c90C
CI90F
C912
C915
Cc917
Cc919
c91lcC
C91F
c921
C923
C925

c928
C92B
C92D
C92F
C932
C934
Cc937
C93A
C93D
C940
C942
C944
C946
C948
C94B
C94E
C951

€952
C955
C958
C95A
C95C
C95E
C960
C962
C964
C966
C968
Cc96A
Cc96C
C96E
C971
C973
C976
Cc979
Cc97C
C97E

8D
20
DO
4Cc

20
20
AD
29
DO
AE
BD
[o3°]
DO
A9
4C

AD
29
DO
4C
A9
8D
8D
8D
8D
A4
29
85
09
8D
AD
8D
60

20
AD
c9
90
A5
C5
DO
A5
Ccs5
DO
A5
C5
DO
20
A9
8D
20
20
FO
c9

56
ES
03
Cl

F8
20
8B
55
OF
7A
00
2A
05
30
cs8

8B
D9
F4
52
00
58
8C
80
81
E3
01
7F
01
91
7B
73

4F
78
03
45
E2
E3
3F
DD
DE
39
D8
D9
33
cC
01
79
FA
25
04
02

02
Cl

c8
Cl

C3
02

02
02

Cl
02

Cc9

02
02
02
02

02
02
02

C4
02

CA

02
c9
D1

STA
JSR
BNE
JMP

JSR
JSR
LDA
AND
BNE
LDX
LDA
CMP
BNE
LDA
JMP

LDA
AND
BNE
JMP
LDA
STA
STA
STA
STA
LDA
AND
STA
ORA
STA
LDA
STA
RTS

JSR
LDA
CMP
BCC
LDA
CMP
BNE
LDA
CMP
BNE
LDA
CMP
BNE
JSR
LDA
STA
JSR
JSR
BEQ
CMP

$0256
SC1ES
$coo0C
$C8C1

SC1F8
$C320
$028B
#$55
$C928
$027A
$0200,X
#S2A
$C928
#$30
$Clcs

$028B
#SD9
$C923
$C952
#$00
$0258
$028C
$0280
$0281
SE3
#801
S$TF
#$01
$0291
$027B
$027A

SC44F
$0278
#503
$coal
SE2
SE3
SCI9A1
$DD
$SDE
S$SC9Al
$D8
$D9
$C9A1
$SCACC
#$01
$0279
SCIOFA
$D125
$C982
#5802

Anatomy .of the 1541 Disk Drive

check input line
31, 'syntax error'

check input
test drive number
flag for syntax check

c&aracter of the command
1 Ll

30, 'syntax error'
syntax flag

30, 'syntax error'

number of drives
track number in directory

drive number

search for file in directory
number of filenames in command
smaller than three? '
yes

first drive number

second drive number

not on same drive?

directory block of the 1st file
same dir block as second file?
no

directory sector of first file
same dir sector as second file?
no

is file present

get data type
rel-file?
prg-file

137

Anatomy of the 1541 Disk Drive

Cc980
Cc982
Cc984
c987
Cc989
C98B
C98E
Cc991
€993
C996
C999
C99B
C99E

C9Al
C9A4

CcoAa7
C9AA
C9AC
CO9AE
C9BO
C9B3
C9B6
C9B9
C9BC
CI9BF
CoCl
C9C3
C9C6
Cc9C9
Co9CB
CI9CE
CID0
C9D2

C9D5
Cc9op8
C9DB
CoDD
C9EO
C9E2
C9E5
C9E7
C9EA
C9ED
COEE
CIF1
C9F3
CI9F5
COF7

C9FA
C9FD
CO9FF

DO
A9
20
A9
85
AD
8D
A9
8D
20
A2
20
4C

20
4C

20
A4
29
85
20
20
AE
8E
20
A9
85
20
20
DO
20
A9
85
4C

20
20
A9
20
FO
20
FO
20
AE
E8
EC
-90
A9
85
4C

AE
B5
29

Cl
02
02

02
DA

.C9

Cl

co
Cl

CA

D4
D6
02
02
c9

DO
D1

CA

c9

CF
CA

DD
D1

CF
02

02

DB
02

BNE
LDA
JSR
LDA
STA
LDA
STA
LDA
STA
JSR
LDX
JSR
JMP

JSR
JMP

JSR
LDA
AND
STA
JSR
JSR
LDX
STX
JSR
LDA
STA
JSR
JSR
BNE
JSR
LDA
STA
JMP

JSR
JSR
LDA
JSR
BEQ
JSR
BEQ
JSR
LDX
INX
CPX
BCC
LDA
STA
JMP

LDX
LDA
AND

$C987
#564
$cics
$$12
$83
$023C
$023D
#SFF
$023C
S$DA2A
$#$02
$C9B9
$C194

SC9A7
$C194

$SCAE7
SE2
#$01
STF
$D486
SD6E4
$0277
$0279
$SCIFA
#S11
$83
SDOEB
$D125
SCI9CE
$CA53
$#s08
SF8
$C9D8

$CF9B
$CA35
#580

$DDA6
$C9D5
$D125
SC9EA
$CF9B
$0279

$0278
$C9B9
#$12
$83
$DB02

$0279
$E2,X
#s01

138

no
64, 'file type mismatch’

18
secondary address

prepare append

copy file
done

copy file

done

drive no. of first file
drive number

enter file in directory

17

get data type
no rel-file?

write byte in buffer
and get byte

test bit 7

not set?

check file type
rel-file?

get data byte in buffer

18

close channel

drive number

Anatomy of the 1541 Disk Drive

CA01 85 7F STA $7F save
CA03 AD 85 FE LDA $FES85 18, directory track
CA06 85 80 STA $80 save
CA08 B5 D8 LDA $D8,X directory sector
CAOA 85 81 STA $81
CAOC 20 75 D4 JSR $D475 read block
CAOF AE 79 02 LDX $0279
CAl2 B5 DD LDA $DD,X pointer in block
CAl4 20 C8 D4 JSR $D4C8 set buffer pointer
CAl7 AE 79 02 LDX $0279
CAlA B5 E7 LDA $E7,X file type
calcC 29 07 “AND #$07 : isolate
CAlE 8D 4A 02 STA $024A and save
Ca21 A9 00 LDA #$00
CA23 8D 58 02 STA $0258
CA26 20 A0 D9 JSR $D9A0 get parameters for rel-file
CA29 A0 01 LDY #$01
CA2B 20 25 D1 JSR $D125 get file type
CA2E FO 01 BEQ $CA31 rel-file?
CA30 c8 INY
CA31l 98 TYA :
CA32 4C C8 D4 JMP $D4C8 set buffer pointer
CA35 A9 11 LDA #§11 17
CA37 85 83 STA $83
CA39 20 9B D3 JSR $D39B open channel and get byte
CA3C 85 85 STA $85
CA3E A6 82 LDX $82 channel number
CA40 B5 F2 LDA $F2,X
CA42 29 08 AND #$08 isolate end marker
CA44 85 F8 STA SF8
CA46 DO 0A BNE $CA52 not set?
CA48 20 25 D1 JSR $D125 get data type
CA4B FO 05 BEQ $CAS52 rel-file?
CA4D A9 80 LDA #s80
CA4F 20 97 pD JSR $DD97 set bit 7
CAS52 60 RTS
CAS53 20 D3 D1 JSR $D1D3 set drive number
CA56 20 CB El JSR SE1CB
CA59 A5 D6 LDA $D6
CAS5B 48 PHA
- CAS5C A5 D5 LDA $D5
CASE 48 PHA
CASF A9 12 LDA #S$12 18
CA61 85 83 STA $83
CA63 20 07 D1 JSR $D107 open write channel

CA66 20 D3 D1 JSR $D1D3 set drive number
CA69 20 CB E1 JSR SEI1CB :
CA6C 20 9C E2 JSR SE29C

CA6F A5 D6 LDA $D6
CA71 85 87 STA $87
CA73 A5 D5 LDA $D5
CA75 85 86 STA $86
CA77 A9 00 LDA #$00
CA79 85 88 STA $88

139

Anatomy of the 1541 Disk Drive

CA7B 85 D4 STA $D4
CA7D 85 D7 STA $D7
CA7F 68 PLA

CA80 85 D5 STA $D5
CA82 68 PLA
. CA83 85 D6 STA $D6
CA85 4C 3B E3 JMP $E33B

T hkkkhkhkkkkhkhhkkhkkhkkhkhkhkhkkhkkkkk

[o7:X:3:] 20 20 €3 -JSR $C320
CA8B A5 E3 LDA $SE3
CA8D 29 01 AND #$01
CA8F 85 E3 STA $E3
CA91 C5 E2 CMP S$E2
CA93 FO0 02 BEQ SCA97
CA95 09 80 ORA #$80
CA97 85 E2 STA SE2
CA99 20 4F C4 JSR S$C44F
CA9C 20 E7 CA JSR $CAE7
CA9F A5 E3 LDA SE3
CAAl 29 01 AND #$01
CAA3 85 TF STA $7F
CAA5 A5 D9 LDA $D9
CAA7 85 81 STA $81
CARA9 20 57 DE JSR $DES7
CAAC 20 99 D5 JSR $D599
CAAF A5 DE LDA SDE
CAB1 18 CLC

CAB2 69 03 ADC #$03
CAB4 20 C8 D4 JSR $D4C8
CAB7 20 93 DF JSR $DF93
CABA A8 TAY

CABB AE 7A 02 LDX $027A
CABE A9 10 LDA #8510
CACO 20 6E C6 JSR SC66E
CAC3 20 S5E DE JSR S$DESE
CAC6 20 99 D5 JSR $D599
CAC9 4C 94 C1 JMP $C194
T T Y
CACC A5 E8 LDA SE8
CACE 29 07 AND #$07
CADO 8D 4A 02 STA $024A
CAD3 AE 78 02 LDX $0278
CAD6 CA DEX

CAD7 EC 77 02 CPX $0277
CADA 90 0A BCC $CAE6
CADC BD 80 02 LDA $0280,X
CADF DO F5 BNE $CAD6
CAEl A9 62 LDA #862
CAE3 4C C8 C1 JMP $C1C8
CAE®6 60 RTS

CAE7 20 CC cA JSR SCACC
CAEA 8D 80 02 LDA $0280,X

140

R-command, 'rename’
get drive no. from command line

2nd drive number
compare with lst drive number
same?

search for file in directory
does name exist?

drive number

sector number

read block from directory
ok?

pointer to directory entry

pointer plus 3 to file name
set buffer pointer
get buffer number

16 characters

write name in buffer
write block to directory
ok?

done, prepare disk status

check if file present
file type

save

track number
not zero?

62, 'file not found'

does file exist with old neme?
track number of new file

CAED FO 05 BEQ SCAF4
CAEF A9 63 LDA #S63
CAF1 4C C8 C1 JMP $C1C8
CAF4 CA DEX
CAF5 10 F3 BPL SCAEA
CAF7 60 RTS
Akkkkhkhhkkhkkhhkhhhhkhhkhhkkhkk
CAF8 AD 01 02 LDA $0201
CAFB C9 2D CMP #S$2D
CAFD DO 4C BNE SCB4B
CAFF AD 03 02 LDA $0203
CB02 85 6F STA S$6F
CB04 AD 04 02 LDA $0204
CBO7 85 70 STA $70
CB09 A0 00 LDY #$00

- CBOB AD 02 02 LDA $0202
CBOE C9 52 CMP #$52
CB10 FO OE BEQ $CB20
CB12 20 58 F2 JSR $F258
CB15 Cc9 57 CMP #857
CB17 FO 37 BEQ S$CB50
CB19 C9 45 CMP #$45
CB1B - DO 2E BNE $CB4B
CB1D 6C 6F 00 JMP (SO06F)
hkkhkkhkhkkkhkhhhkhhhhhhhhkkhkkdhx
CB20 Bl 6F LDA (S6F),Y
CB22 85 85 STA $85
CB24 AD 74 02 LDA - $0274
CB27 C9 06 CMP #S06
CB29 90 1A BCC $CB45
CB2B AE 05 02 LDX $0205
CB2E CA DEX
CB2F FO 14 BEQ SCB45
CB31 8A TXA
CB32 18 CLC
CB33 65 6F ADC S6F
CB35 E6 6F INC S$6F
CB37 8D 49 02 STA $0249
CB3A A5 6F LDA $6F
CB3C 85 A5 STA $AS
CB3E A5 70 LDA $70
CB40 85 A6 STA $A6
CB42 4C 43 D4 JMP $D443
CB45 20 EB DO JSR S$SDOEB
CB48 4C 3A D4 JMP $D43A
CB4B A9 31 LDA #$31
CB4D 4C C8 C1 JMP $C1C8
Kkkkkhhhhhkkhhhkhkhkrkhhhhkhhdkkk
CB50 B9 06 02 LDA $0206,Y
CB53 91 6F STA (S6F),Y

Anatomy of the 1541 Disk Drive

file erased?

63, 'file exists'

M-command, 'memory’

2nd character from buffer
] L]

address in $6F/$70

3rd character from buffer
IRI

to memory read

(RTS)

lwl

to memory write

IEI

memory-execute

M-R, ‘'Memory-Read'
read byte

length of command line
less than 6?

yes

number

only one byte?
number of bytes

plus start address
end pointer

buffer pointer for error message
set to start address for 'M-R'

byte out

open read channel
byte out

31, ‘'syntax error'
M-W, ‘memory-write'

read character
and save

141

Anatomy of the 1541 Disk Drive

CB55 c8 INY

CB56 CC 05 02 CPY $0205
CB59 90 F5 BCC $CB50
CB5B 60 RTS
kkkkkkkkkhkRkrkkhkkkhhkkhhkdkhk
CB5C AC 01 02 LDY $0201
CB5F co 30 CPY #$30
CB61 DO 09 BNE $CB6C
CB63 A9 EA LDA #SEA
CB65 85 6B STA $6B
CB67 A9 FF LDA #SFF
CB69 85 6C STA $6C
CB6B 60 RTS

CB6C 20 72 CB JSR $CB72
CB6F 4C 94 C1 JMP $C194
CB72 88 DEY

CB73 98 TYA

CB74 29 OF AND #SOF
CB76 0A ASL A

CB77 A8 TAY

CB78 Bl 6B LDA ($6B),Y
CB7A 85 75 STA $75
c87¢C c8 INY

CB7D Bl 6B LDA ($6B),Y
CB7F 85 76 STA $76
CB81 6C 75 00 JMP ($0075)
T T T T
CB84 AD 8E 02 LDA $028E
CB87 85 7F STA $7F
CB89 A5 83 LDA $83
CB8B 48 PHA

CB8C 20 3D C6 JSR $C63D
CBSF 68 PLA

CB90 85 83 STA $83
CB92 AE 74 02 LDX $0274
CB95 CA DEX

CB96 DO OD BNE S$SCBAS5
CB98 A9 01 LDA #S$01
CB9A 20 E2 D1 JSR $D1E2
CB9D 4C F1 CB JMP $CBF1l
CBAO A9 70 LDA #$870
CBA2 4C C8 C1 JMP $C1C8
CBAS A0 01 LDY #$01
CBA7 20 7C CC JSR $CC7C
CBAA AE 85 02 LDX $0285
CBAD EO0 05 CPX #S05
CBAF BO EF BCS S$CBAO
CBB1 A9 00 ‘LDA #S00
CBB3 85 6F STA S6F
CBB5 85 70 STA $70

142

number of characters
all characters?

U-command, ‘user'
second char

lol

no

ptr to table of user-addresses
SFFEA

done, prepare error message

number
times 2

as pointer in table

address at $75/$76

execute function

open direct access channel, '#'
last drive number

drive number

channel number

check drive and initialize

length of filename
greater than one?

layout buffer and channel
set flags, done

70, 'no channel'

get buffer number

buffer number

bigger than 52
70, 'no channel'

CBB7
CBB8
CBBA
CBBC
CBBD
CBBF
CBC1
CBC4
CBC6
CBC8
CBCB
CBCD
CBCF
CBD2
CBDS
CBD7
CBDA
CBDD
CBDF
CBE2
CBE4
CBE7
CBE9
CBEA
CBEC
CBEE
CBF1
CBF3
CBF6
CBF8
CBFB
CBFD
CBFF
CCo2
CCo4
cco7
ccoa
Ccon
CCOE
CCOF
CCl1
CC13
CCl5
CC18

38
26
26
CA
10
A5
2D
DO
AS
2D
DO
A5
0D
8D
A5
0D
8D
A9
20
A6
AD
95
AA
A5
95
9D
A6
BD
09
9D
A4
A9
99
A9
99
B9
99
0A
AA
A9
95
A9
99
4C

6F
70

F9
6F
4F
DA
70
50
D3
6F
4F
4F
70
50
50
00
E2
82
85
A7

7F
00
5B
83
2B
40
2B
82
FF
44
89
F2
A7
3E

01
99
OE
EC
94

02

02

02

02

02
02

D1

02

02
02

02

02

00
00
02

00
Cl

SEC
ROL
ROL
DEX
BPL
LDA
AND
BNE
LDA
AND
BNE
LDA
ORA
STA
LDA
ORA
STA
LDA
JSR
LDX
LDA
STA
TAX
LDA
STA
STA
LDX
LDA
ORA
STA
LDY
LDA
STA
LDA
STA
LDA
STA
ASL
TAX
LDA
STA
LDA
STA
JMP

S6F
$70

SCBB8
$6F
$024F
$CBAO
$70
$0250
$CBAO
S6F
$024F
$024F
$70
$0250
$0250
#$00
$D1E2
$82
$0285
$A7,X

$7F
$00,X

Anatomy of the 1541 Disk Drive

$025B,X

$83

$022B,X

#s40

$022B,X

$82
#SFF

$0244,Y

#$89

$00F2,Y
S00A7,Y
$023E,Y

A

#$01
$99,X
#S0E

SO00EC,Y

$C194

khkhkhkhkhkhhkhkkkhkkkkhkhkkkkkkkhkhkk

CClB
CClD
CClF
Ccc21
CC24
CC26
ccas

A0
A0
A9
20
DO
A9
4Cc

00
00
2D

68 C2

0A
31
c8

Cl

LDY
LDX
LDA
JSR
BNE
LDA
JMP

#$00
#3$00
#$2D
$C268
$CC30
#$31
s$cics

143

search channel
channel number
buffer number

drive number

secondary address

set READ and WRITE flags
channel number

end pointer

set READ and WRITE flags
buffer number

times 2

buffer pointer to one

flag for direct access
done

B~-command, 'Block"'

search for minus sign
found?

31, 'syntax error'

Anatomy of the 1541 Disk Drive

Cl

02
cc

02
cc
02
cc
cc

00

LDA
JMP

TXA
BNE
LDX
LDA
CMP
BEQ
DEX
BPL
BMI
TXA
ORA
STA
JSR
LDA
ASL
TAX
LDA
STA
LDA
STA
JMP

#830
s$cics

$CC2B
#$05

$0200,

Y

$CC5D,X

$CC42

$cc3s
$CC26

#$80
$022A
$CC6F
$022A
A

$CCé4,

$70

$CC63,

$6F

X

X

($006F)

kkkkhkkkkkkhkkkkkkkhhkhkkhkkhkkhkkdkkk

41 46 52 57 45 50

d d e g kK Kk kg ok ok ek ok ok ok ok ok ok ok ok ok k kok ok k ok

khkhkkkkkhkhkhkkkhhhhkkkhhhhkkkhkkkk

CC2B A9 30
CC2D 4C C8
CC30 8A
CC31 DO F8
CC33 A2 05
CC35 B9 00
CC38 DD 5D
CC3B FO 05
CC3D CA
CC3E 10 F8
CC40 30 E4
CC42 8A
CC43 09 80
CC45 8D 2A
Cc48 20 6F
CC4B AD 2A
CC4E 0A
CCA4F AA
CC50 BD 64
CC53 85 70
CC55 BD 63
CC58 85 6F
CC5A 6C 6F
CC5D
CCé63 03 CD
CC65 F5 CC
CC67 56 CD
CC69 73 CD
CCéB A3 CD
CC6D BD CD
CC6F A0 00
CC71 A2 00
CC73 A9 3A
CC75 20 68
Ccc78 DO 02
CC7A A0 03
Cc7cC B9 00
CC7F C9 20
ccsl FO 08
CC83 C9 1D
. CC85 FO 04
CcCc87 C9 2C
Ccc89 DO 07
ccsB cs8
ccsc CC 74
CC8F 90 EB
Cccal 60

c2

02

02

LDY
LDX
LDA
JSR
BNE
LDY
LDA
CMP
BEQ
CMP
BEQ
CMP
BNE
INY
CPY
BCC
RTS

#$00
#$00
#$3a
$C268
$CC7C
#$03

$0200,

#$20
$CC8B
#$1D
$CC8B
#$2C
$CC92

$0274
$ccic

Y

144

30, 'syntax error'

comma, then error
char from buffer
compare with 'AFRWEP'
found?

compare with all characters

‘not found, error

command number, set bit 7
get parameters

number times 2
as index
address of command hi

address lo
jump to command

names of the various block cmds
'AFRWEP'

addresses of block commands
$CD03, B-A
S$CCF5, B-F
$CD56, B-R
$CD73' B-W
$CDA3, B-E
$CDBD, B-P

get parameters for block commands

LIPS |

test line to colon

found?

no, begin at 4th character
search for separating char
' ' blank

cursor right

',' comma

line end?

JSR
INC
LDY
CPX
BCC
BCS
LDA
STA
STA
STA
LDX
LDA
CMP
BCS
CMP
BCC
AND
PHA
LDA
STA
LDA
STA
PLA
STA
INY
CPY
BCC
STY
CLC
LDA
INX
CPX
BCS
LDY
DEY
BMI
ADC
BCC
CLC
INC
BNE
PHA
LDX
LDA
STA
PLA
STA
RTS

$CCAl
$0277
$0279
#s04

$CC8B
$CC2B
#$00

‘$6F

$70

$72
#SFF
$0200,Y
#$40
SCCCA
#$30
$ccea
#$OF

$70
$71
S6F
$70

$6F

$0274
$CCAB
$0279

#$00

#$03
$SCCE4
$6F,X

$CCDO
$CCF2,X
$CCD7

$72
$CCD7

$0277
$72
$0280,X

$0285,X

khkkhkhkkhhkhkkhhkrhhhrkkhkhhkhhhhkk

kkdkhhkhhhhhhhhhkhkkhhhhhkkhkkhkkk
JSR S$CDF5

CC92 20 Al cC
CC95 EE 77 02
CcCcos AC 79 02
CC9B EO0 04
CC9D 90 EC
CCIF BO 8A
CCal A9 00
CCA3 85 6F
CCAS 85 70
CCA7 85 72
CCA9 A2 FF
CCAB B9 00 02
CCAE C9 40
CCBO BO 18
CCB2 Cc9 30
CCB4 90 14
CCB6 29 OF
CCB8 48

CCB9 A5 70
CCBB 85 71
CCBD A4 6F
CCBF 85 70
CcCl 68

CCC2 85 6F
CCC4 c8

CCC5 CC 74 02
[eleley) 90 E1
ccca 8C 79 02
CCCD 18

CCCE A9 00
CCDOo E8

CCD1 EO 03
CCD3 BO OF
CCD5 B4 6F
CCD7 88

CCD8 30 F6
CCDA 7D F2 CC
CCDD 90 F8
CCDF 18

CCEO E6 72
CCE2 DO F3
CCE4 48

CCE5 AE 77 02
CCE8 A5 72
CCEA 9D 80 02
CCED 68

CCEE 9D 85 02
CCF1 60

CCF2 01 0A 64
CCF5 20 F5 CD
CCF8 20 5F EF

JSR

$EF5F

Anatomy of the 1541 Disk Drive
preserve next parameter
increment parameter counter
compare with maximum number

30, 'syntax error'
erase storage area for decimal #s

get characters from input buffer
no digits?

lol

no digits?

convert ASCII digits to hex

and save

move digits one further

note read number

increment pointer in input buffer
line end reached

no

save pointer

convert hex digits to one byte

add decimal value

counter for parameters
hi-byte

lo-byte

decimal values

1, 10, 100

B-F command, 'Block-Free'

get track, sector and drive no.
free block

145

Anatomy of the 1541 Disk Drive

CCFB 4C 94 C1 JMP $Cl94
khkkdkkkhhkhhkhhkhhkhhkhhhhdkddkkdkkkk
CCFE A9 01 LDA #$01
CD00 8D F9 02 STA $02F9
o Je de % & d J & J g Jo g Je de de K Kk ok ok ke ke ok ok ok k ok okk ok
CD03 20 F5 CD JSR $CDF5
CD06 A5 81 LDA $81
CD08 48 PHA

CD09 20 FA F1 JSR SF1FA
CDOC FO OB BEQ $CD19
CDOE 68 PLA

CDOF Cc5 81 CMP $81
cpll DO 19 BNE $CD2C
CD13 20 90 EF JSR $EF90
CD16 4C 94 Cl1 JMP $C194
CD19 68 PLA

CDlA A9 00 LDA #$00
CcDl1C 85 81 STA $81
CDlE E6 80 INC $80
CD20 A5 80 LDA $80
CD22 CD D7 FE CMP SFED7
CD25 BO OA BCS $CD31
CD27 20 FA F1 JSR SF1FA
CD2A = FO EE BEQ $CD1A
CD2C A9 65 ~ LDA #$65
CD2E 20 45 E6 JSR $E645
CD31 A9 65 LDA #$65
CcD33 20 C8 C1 JSR $clcs

kkkkkhkkkkkhkhkkhkkhkkkkkkhhhkkkkk

CD36 20 F2 CD JSR $CDF2
CD39 4C 60 D4 JMP $D460
KkkhkhAkhhhhhkk Rk ddkkhkdddkkdddkk
CD3C 20 2F D1 JSR $D12F
CD3F Al 99 LDA ($99,X)
CDh4l1 60 RTS

kkkkkkkhhhhkkkhkhkkkkhhhkkkkkkkkkk

CD42 20 36 CD JSR $CD36
CD45 A9 00 LDA #$00
CD47 20 C8 D4 JSR $D4C8
CD4A 20 3C CD JSR $CD3C
CD4D 99 44 02 STA $0244,Y
CD50 A9 89 LDA $89
CD52 99 F2 00 STA $O00F2,Y
CD55 60 RTS

khhkhkhkhhhkhkhkhkhhkhkkhkkhhkhkkhkhhkkkkk

CD56 20 42 CD JSR $CD42
CD59 20 EC D3 JSR $D3EC
CD5C 4C 94 C1 JMP $C194

146

done, prepare error message

B-A command, 'Block-Allocate'
get track, sector and drive no.
sector

save

f£ind block in BAM

block allocated?

desired sector

= next free sector?

no

allocate block in BAM
done

sector 0

next track

track number

36, last track number + 1

>=, then 'no block'

find free block in next track
not found, check next track
65,

'no block' next free block

65,'no block' no more free blocks

open channel, set parameters
read block from disk

get byte from buffer
set pointer to buffer
get byte

read block from disk
open channel, read block -

set buffer pointer to zero
get a byte from the buffer

set read and write flag

B-R command, 'Block-Read'
read block from disk
prepare byte from buffer
prepare error message

Anatomy of the 1541 Disk Drive

khkkhkhhkhkhkhkkhkkhhkhkkkhkhhkhkhkhkk

CDSF 20 6F CC JSR SCC6F
CD62 20 42 CD JSR $CD42
CD65 B9 44 02 LDA $0244,Y
CD68 99 3E 02 STA $023E,Y
CD6B A9 FF LDA #SFF
CD6D 99 44 02 STA $0244,Y
CD70 4C 94 C1 JMP $C194
IhkkhhhkhhkhhkhkRkhhhhkhhxhhkhdhkhk
CD73 20 F2 CD JSR SCDF2
CD76 20 E8 D4 JSR $D4ES8
CD79 A8 TAY

CcD7A 88 DEY

CD7B C9 02 CMP #$02
CD7D BO 02 BCS $CD81
CD7F A0 01 LDY #$01
CcD81 A9 00 LDA #$00
CD83 20 C8 D4 JSR $D4C8
CD86 98 TYA

CcD87 20 F1 CF JSR SCFF1
CD8A 8A TXA

CD8B 48 PHA

cp8cC 20 64 D4 JSR $D464
CD8F 68 PLA

CD90 AA TAX

CD91 20 EE D3 JSR $D3EE
CD94 4C 94 C1 JMP $C194
KA kkkhkhkhkkhhhkhhhhhhhkdkhhhdhhhk
CD97 20 6F CC JSR $CC6F
CDSA 20 F2 CD JSR $CDF2
CD9D 20 64 D4 JSR $D464
CDAO 4C 94 C1 JMP $Cl94
kkhkkhhkdkhhkhhkhhhkhkhkhrkkhkhhhhr
CDA3 20 58 F2 JSR $F258
CDA6 20 36 CD JSR $CD36
CDA9 A9 00 LDA #$00
CDAB 85 6F STA $6F
CDAD A6 F9 LDX $F9
CDAF BD EO FE LDA S$FEEO,X
CDB2 85 70 STA $70
CDB4 20 BA CD JSR $CDBA
CDB7 4C 94 C1 JMP $C194
CDBA 6C 6F 00 JMP (SO06F)
Ihkkhkkhkkkkkhhhhkhkhhkhkkkkkhhkk &
CDBD 20 D2 CD JSR $CDD2
CDCO A5 F9 LDA SF9
CbhC2 0A ASL A

CDC3 AA TAX

CDC4 AD 86 02 LDA $0286
CDC7 95 99 STA $99,X

147

Ul command, sub., for 'Block-Read'
get parameters of the command
read block from disk

end pointer

save as data byte

end pointer to $FF
done, prepare error message

B-W command, ‘'Block-Write'
open channel
set buffer pointer

buffer pointer lo less than 2?
no

buffer pointer to zero

write byte in buffer
write block to disk

get byte from buffer
done, error message

U2, sub for 'Block-Write'
get command parameters
open channel

and write block to disk
done

'B-E' command, ‘'Block-Execute’
(RTS)
open channel and read block

address low
buffer number
buffer address high

execute routine
done
jump to routine

'B-P' command, ‘'Block-Pointer'
open channel, get buffer number
buffer number

* 2

as index
pointer value
save as buffer pointer

Anatomy of the 1541 Disk Drive

CDC9 20 2F D1 JSR $D12F
cpcc 20 EE D3 JSR S$D3EE
CDCF 4C 94 C1 JMP $C194
kkkkARRARKARRIRKIR KR Ah ARk kd k&
CDD2 A6 D3 LDX $D3
CDD4 E6 D3 INC $D3
CDD6 BD 85 02 LDA $0285,X
CDD9 A8 TAY

CDDA 88 DEY

CDDB 88 DEY

CcDDC Cco ocC CPY #$0C
CDDE 90 05 BCC $CDE5
CDEO A9 70 LDA #870
CDE2 4C C8 Cl JMP $C1C8
CDES5S 85 83 STA $83
CDE7 20 EB DO JSR $DOEB
CDEA BO F4 BCS $CDEO
CDEC 20 93 DF JSR $DF93
CDEF 85 F9 STA $F9
CDF1 60 RTS

kkkhhkkhkhkhkkhkkhkkkkhkhkkhkhkhkhkkkkk

CDF2 20 D2 CD JSR $CDD2
CDF5 A6 D3 LDX $D3
CDF7 BD 85 02 LDA $0285,X
CDFA 29 01 AND #$01
CDFC 85 7F STA S$7F
CDFE BD 87 02 LDA $0287,X
CEO1 85 81 STA $81
CEO3 BD 86 02 LDA $0286,X
CE06 85 80 STA $80
CE08 20 5F D5 JSR $D55F
CEOB 4C 00 C1 JMP $C100

kkhkhkkkhkhkkhhhhhkhhkhhdhhhhhhkkhkkk

CEOE 20 2C CE JSR $CE2C
CEl1l 20 6E CE JSR SCE6E
CEl4 A5 90 LDA $90
CEl6 85 D7 STA $D7
CE18 20 71 CE JSR $CE71
CE1B E6 D7 INC $D7
CE1D E6 D7 INC $D7
CE1lF A5 8B LDA $8B
CE21 85 D5 STA $D5
CE23 A5 90 LDA $90
CE25 0A) ASL A
CE26 18 CLC

CE27 69 10 ADC #$10
CE29 85 D6 STA $D6
CE2B 60 RTS

Kkkhkkhkhkhhhhhhhhhhhkkkkkkkkhkkkk
CE2C 20 D9 CE JSR S$CED9

148

prepare a byte in buffer
for output
done

open channel

buffer number

buffer number smaller than 1472
yes
70, 'no channel'

secondary address

open channel

already allocated,70 'no channel'’

buffer number
set

check buffer no. and open channel
channel number
buffer address

drive number
sector

track
track and sector ok?
turn LED on

set pointer for rel-file

record number * record length
divide by 254

remainder = pointer in data block
data pointer
divide by 120 = side-sector #
data ptr + 2 (track/sector ptr!)
result of division

equals side-sector number
remainder

times 2

plus 16
=ptr in side-sector to data block

erase work storage

Anatomy ‘of the 1541 Disk Drive

CE2F 85 92 STA $92

CE31 A6 82 LDX $82 channel number

CE33 B5 B5 LDA $B5,X record number lo
CE35 85 90 STA $90

CE37 B5 BB LDA $BB,X record number hi
CE39 85 91 STA $91

CE3B DO 04 BNE $CE41

CE3D A5 90 LDA $90

CE3F FO OB BEQ SCE4C record number not zero?
CE41 A5 90 LDA $90

CE43 38 SEC

CE44 E9 01 SBC #$01 then subtract one
CE46 85 90 STA $90

CE48 BO 02 BCS SCE4C

CE4A C6 91 DEC $91

CE4C B5 C7 LDA $C7,X record length

CE4E 85 6F STA S$6F

CE50 46 6F LSR $6F

CE52 90 03 BCC $CES57

CE54 20 ED CE JSR SCEED record number * record length
CES57 20 E5 CE JSR $CEES shift register left
CESA A5 6F LDA $6F

CE5C DO F2 - ‘BNE $CE50

CESE A5 D4 LDA $D4

CE60 18 CLC

CE61 65 8B ASC $8B

CE63 85 8B STA $8B

CE65 90 06 BCC $CE6D result in $8B/$S8C/$8D
CE67 E6 8C INC $8C

CE69 DO 02 BNE $DE6D

CE6B E6 8D INC $8D

CE6D 60 RTS
kkkhkhkkkkkhkhhkhkhkhkkhkhkkhkhkhhkkhkkhkx divide by 254' calculate block #
CE6E A9 FE LDA #SFE 254

CE70 2C .BYTE $2C
khkkhkhkkkhkkkhkkkkkkhkkkhkkkhkkhhkkk divide by 120’ calculate
CE71 A9 78 LDA #$78 side-sector number
CE73 85 6F STA S6F divisor

CE75 A2 03 LDX #S03

CE77 B5 8F LDA $8F,X

CE79 48 PHA

CE7A B5 8A LDA $8A,X

CE7C 95 8F STA $8F,X

CE7E 68 PLA

CE7F 95 8A STA $8A,X

CE81 CA DEX

CE82 DO F3 BNE S$SCE77

CE84 20 D9 CE JSR SCED9 erase work storage
CE87 A2 00 LDX #$00

CE89 B5 90 LDA $90,X

CE8B 95 8F STA $8F,X

CE8D E8 INX

CE8E EO 04 CPX #$04

149

Anatomy of the 1541 Disk Drive

CE90 90 F7 BCC $CE89
CE92 A9 00 - LDA #S00
CE9%4 85 92 STA $92
CE96 24 6F BIT S6F
CE98 30 09 BMI SCEA3
CE9A 06 8F ASL $8F
CE9C 08 PHP

CE9D 46 8F LSR $8F
CE9F 28 PLP

CEAO0 20 E6 CE JSR $CEE6
CEA3 20 ED CE JSR $CEED
CEA6 20 E5 CE JSR $CEES
CEA9 24 6F BIT $6F
CEAB 30 03 BMI $SCEBO
CEAD 20 E2 CE JSR $CEE2
CEBO A5 8F LDA S$8F
CEB2 18 CLC

CEB3 65 90 ADC $90
CEBS 85 90 STA $90
CEB7 90 06 BCC SCEBF
CEB9 E6 91 INC $91
CEBB D0 02 BNE $CEBF
CEBD E6 92 INC $92
CEBF A5 92 LDA $92
CEC1 05 91 ORA $91
CEC3 DO C2 BNE $CE87
CECS A5 90 LDA $90
CEC7 38 SEC

CEC8 E5 6F SBC S6F
CECA 90 0C BCC S$CEDS8
CECC E6 8B INC $8B
CECE DO 06 BNE $CED6
CEDO E6 8C INC $8C
CED2 DO 02 BNE S$CED6
CED4 85 90 STA $90
CED8 60 RTS
hhkkhkhhkkhkhkhkhhkhhkhhkkkhkdkrhkkkkk
CED9 A9 00 LDA #S00
CEDB 85 8B STA $8B
CEDD 85 8C STA $8C
CEDF 85 8D STA $8D
CEEl 60 RTS
T T 2
CEE2 20 E5 CE JSR $CEE5
I
CEES 18 CLC

CEE6 29 90 ROL $90
CEES 26 91 ROL $91
CEEA 26 92 ROL $92
CEEC 60 RTS

kdkdkdkhdkkkdkkhkkhhkkhhhhhhdhhdhdhkkk

150

shift register 1 left
add register 0 to register 1
shift register 1 left

left-shift register 1 twice

guotient in $8B/$8C/$8D

remainder in $90

erase work storage

left-shift 3-byte register twice

left-shift 3-byte register once

CEED
CEEE
CEFO0
CEF2
CEF4
CEF6
CEF7
CEF9

CEFA
CEFC
CEFD
CEFF
CF00
CF02
CF04
CFO06
CF08

CF09
CFOB
CFOD
CF10
CF12
CFl4
CF16
CF17
CF19
CF1A
CF1D

CFlE
Cr21
CF24
CF26
CF29
CF2C
CF2E
CF31
CF33
CF34
CF36
CF37
CF39
CF3C
CF3E
CF40
CF43
CF45
CF47
CF4A
CF4cC
CF4F
CF51
CF54

18
A2
B5
75
95
E8
DO
60

A2
8A
95
E8
EO
DO

95
60

A0
A6
B9
96
Cc5
FO
88
30
AA
4C
60

20
20
DO
20
20
30
20
A5
48
A5
48
A9
20
85

A9

20
85
FO
20
FO
20
Do
20
4C

FD
8E
93
8E

F7

00
FA

04
F8
06
FA

04
82
FA
FA
82

El

0D

09
B7
46
D3
8E
48
Cc2
80

81

01
F6
81
00
Fé
80
1F

0B
AB
06
8C
5D

00

CF
CF
DF

D1
D2

DF

-D4

D4

D1

DD

CF
CF

CLC
LDX
LDA
ADC
STA
INX
BNE
RTS

LDX
TXA
STA
INX
CPX
BNE
LDA
STA
RTS

LDY
LDX
LDA
STX
CMP
BEQ
DEY
BMI
TAX
JMP
RTS

JSR
JSR
BNE
JSR
JSR
BMI
JSR
LDA
PHA
LDA
PHA
LDA
JSR
STA
LDA
JSR
STA
BEQ
JSR
BEQ
JSR
BNE
JSR
JMP

#SFD

$8E,X
$93,X
$8E,X

SCEF0

#$00
S$FA,X

#504
$CEFC
#3506
SFA,X

#5804
$82

Anatomy of the 1541 Disk Drive

SOOFA,Y

SFA,Y
$82
$CF1D

SCEFA

SCFOD

$SCF09
SDFB7
SCF6C
$D1D3
$D28E
$CF76
$DFC2
$80

$81

#S01
$SD4F6
$81
#$00
SD4F6

'$80

SCF66
$D125
SCF57
SDDAR
SCF57
$SCF8C
$CF5D

151

register $90/$91/$92
add to register $8B/$8C/$8D

channel number

channel number

set drive number

track

sector

get byte 1 from buffer
sector

get byte 0 from buffer
track

check file type
rel-file?

Anatomy of the 1541 Disk Drive

CF57 20 8C CF JSR $CF8C
CF5A 20 57 DE JSR $DE57
CF5D 68 PLA

CF5E 85 81 STA $81
CF60 68 PLA

CFé61 85 80 STA $80
CF63 4C 6F CF JMP SCF6F
CF66 68 PLA

CF67 85 81 STA $81
CF69 68 PLA

CF6A 85 80 STA $80
CF6C 20 8C CF ~JSR SCF8C
CF6F 20 93 DF JSR $DF93
CF72 AA TAX

CF73 4C 99 D5 JMP $D599
CF76 A9 70 LDA #870
CF78 4C C8 Cl JMP $C1C8
CF7B 20 09 CF JSR $CF09
CF7E 20 B7 DF JSR $DFB7
CF81 DO 08 BNE S$CF8B
CF83 20 8E D2 JSR $D28E
CF86 30 EE BMI S$CF76
Crss 20 C2 DF JSR $DFC2
CF8B 60 RTS
kkkkkhhhRkkhhkhhkhhhkhrkhhkhkhhkkk
CF8C A6 82 LDX $82
CF8E BS A7 LDA $A7,X
CF90 49 80 EOR #$80
CF92 95 A7 STA S$A7,X
CF94 B5 AE LDA SAE,X
CF96 49 80 EOR #$80
CF98 95 AE STA SAE,X
CF9A 60 RTS
I s L
CF9B A2 12 LDX #S12
CF9D 86 83 STX $83
CF9F 20 07 D1 JSR $D107
CFA2 20 00 C1 JSR $C100
CFAS 20 25 D1 JSR $D125
CFA8 90 05 BCC $CFAF
CFAA A9 20 LDA #$20
CFAC 20 9D DD JSR $DDI9D
CFAF A5 83 LDA $83
CFB1 Cc9 OF CMP #SOF
CFB3 FO 23 BEO S$CFD8
CFB5 DO 08 BNE SCFBF
CFB7 A5 84 LDA $84
CFB9 29 8F AND #S$8F

152

get

and

get

and

and

70,

sector

track number

back sector

track number

verify

'no channel'

change buffer
channel number

rotate bit 7 in table

write data byte in buffer
channel 18

open write channel
turn LED on

check file type

no rel-file

change buffer
secondary address

152
yes
no

secondary address

CFBB C9 OF CMP #SOF
CFBD BO 19 BCS SCFD8
CFBF 20 25 D1 JSR $D125
CFC2 BO 05 BCS $CFC9
CFC4 A5 85 LDA $85
CFC6 4C 9D D1 JMP $D19D
CFC9 DO 03 BNE SCFCE
CFCB 4C AB EO JMP SEOAB
CFCE A5 85 LDA $85
CFDO 20 F1 CF JSR SCFF1
CFD3 A4 B2 LDY $82
CFD5 4C EE D3 JMP $D3EE
CFD8 A9 04 LDA #$04
CFDA 85 82 STA $82
CFDC 20 E8 D4 JSR $D4E8
CFDF C9 2a CMP #S2A
CFE1l FO0 05 BEQ SCFE8
CFE3 A5 85 LDA $85
CFES 20 F1 CF JSR S$SCFF1
CFE8 A5 F8 LDA S$F8
CFEA FO 01 BEQ S$CFED
CFEC 60 RTS

CFED EE 55 02 INC $0255
CFFO 60 RTS
KkkhkhkhkhhhhrkhRkhkhhkhhkhkkhkkkkk
CFF1 48 PHA

CFF2 20 93 DF JSR $DF93
CFF5 10 06 BPL $CFFD
CFF7 68 PLA

CFF8 A9 61 LDA #$61
CFFA 4C C8 C1 JMP s$ClcC8
CFFD 0A ASL A
CFFE AA TAX

CFFF 68 - PLA

D000 81 99 STA ($99,X)
D002 F6 99 INC $99,X
D004 60 RTS
dekkkkkkkkkkhkkhhhkkkhhdkhkdokhkkk
D005 20 D1 C1 JSR $C1D1
D008 20 42 DO JSR $D042
DOOB 4C 94 C1 JMP $C194
Khkkkhkkhkhkkhhkhhkhkkkkkdkhdhkxkx
DOOE 20 OF F1 JSR SF10F
D011 A8 TAY

D012 B6 A7 LDX S$SA7,Y
D014 EO0 FF CPX #SFF
D016 48 PHA

D019 20 8E D2 JSR $D28E

153

Anatomy of the 1541 Disk Drive

greater than 15?2

then input buffer

check file type

rel-file or direct access?
data byte

write in buffer

direct access file?
write data byte in rel-file

write data byte in buffer
channel number
prepare next byte for output

channel 4

corresponding input buffer
set buffer pointer

40)

buffer end?

write data byte in buffer
end flag set?
yes

set command flag

write data byte in buffer
save data byte

get buffer number
associated.buffer?

61, 'file not open'
buffer number times 2

as index

data byte

write in buffer
increment buffer pointer

I-command, Initialize
find drive number
load BAM

prepare disk status

Anatomy of the 1541 Disk Drive

DOIC AA TAX

DO1D A9 70 LDA #$70
D021 20 48 E6 JSR $E648
D024 68 PLA

D025 A8 TAY

D026 8A TXA

D027 09 80 ORA #$80
D029 99 A7 00 STA SO00A7,Y -
D02C 8A TXA

D02D 29 OF AND #SOF
DO2F 85 F9 STA $F9
D031 A2 00 LDA #$00
D033 86 81 STX $81
D035 AE 85 FE LDX SFE85
D038 86 80 STX $80
DO3A 20 D3 D6 JSR $D6D3
DO3D A9 BO LDA #$BO
DO3F 4C 8C D5 JMP $D58C
khkhkhkkhkkhkhkhkhkhkhkkkhhkhkkkhkkkkk
D042 20 D1 FO JSR $FOD1
D045 20 13 D3 JSR $D313
D048 20 OE DO JSR $DOOE
D04B A6 TF LDX S7F
DO4D A9 00 ~ LDA #$00
DO4F 9D 51 02 STA $0251,X
D052 8A TXA

D053 OA ASL A

D054 AA TAX

D055 A5 16 LDA $16
D057 95 12 STA $12,X
D059 A4 17 LDA $17
DO5B 95 13 STA $13,X
DO5D 20 86 D5 JSR $D586
D060 A5 F9 LDA $F9
D062 0A ASL A

D063 AA TAX

D064 A9 02 LDA #$02
D066 95 99 STA $99,X
D068 Al 99 LDA ($99,X)
DO6A A6 TF LDX ST7F
DO6C 9D 01 01 STA $0101,X
DO6F A9 00 LDA #$00
D071 95 1C STA $1C,X
D073 95 FF STA $FF,X
hkhkhkhkkhkkkkkkkkkhkhkkkhkkkkhkkkkk
D075 20 3A EF JSR SEF3A
D078 A0 04 LDY #504
DO7A A9 00 LDA #5$00
DO7C AA TAX

DO7D 18 cLC

DO7E 71 6D ADC ($6D),Y
D080 90 01 BCC $D083
D082 E8 INX

154

70, ‘'no channel'

sector 0

18

track 18

transmit param to disk controller
command code 'read block header'
transmit to disk controller

load BAM
read block
drive number

reset flag for 'BAM changed'

save ID

- buffer number

buffer pointer to $200
get character from buffer
drive number

flag for write protect
flag for read error
calculate blocks free

buffer address to $6D/S6E
begin at position 4

add no. of free blocks per track

X as hi-byte

Anatomy of the 1541 Disk Drive

D083 cs INY

D084 c8 INY

D085 c8 INY

D086 cs8 INY

D087 COo 48 CPY #8548
D089 FO F8 BEQ $D083
DO8B Cco 90 CPY #890
DO8D DO EE BNE $DO7D
DO8F 48 PHA -
D090 8A TXA

D091 A6 TF LDX S7F
D093 9D FC 02 STA $02FC,X
D096 68 PLA

D097 9D FA 02 STA $02FA,X
DO9A 60 RTS
IkkkRkhkhkkhkhkkhkhhhkkhhhhrkhkhkkk
D09B 20 DO D6 JSR $D6D0
DOSE 20 C3 DO JSR $DOC3
DOAl 20 99 D5 JSR $D599
DOA4 20 37 D1 JSR $D137
DOA7 85 80 STA $80
DOA9 20 37 D1 JSR $D137
DOAC 85 81 STA $81
DOAE 60 RTS

DOAF 20 9B DO JSR $D09B
DOBR2 A5 80 LDA $80
DOR4 DO 01 BNE $DOB7
DOB6 60 RTS

DOB7 20 1E CF JSR SCFlE
DOBA 20 DO D6 JSR $D6D0
DOBD 20 C3 DO JSR $DOC3
DOCO 4C 1E CF JMP SCF1E
Kkkkkhhhhhkhhhhkhhhkhkhhkhhhhhhhkk
DOC3 A9 80 LDA #$80
DOC5 DO 02 BNE $D0OC9
Kkkhkhkhkhkhhhkhhkhhhkhhkhhdkhkk
DOC7 A9 90 LDA #$90
DOC9 8D 4D 02 STA $024D
DOCC 20 93 DF JSR SDF93
DOCF AA TAX

DODO 20 06 D5 JSR $D506
DOD3 8A TXA

DOD4 48 PHA

DOD5 0A ASL A
DODé AA TAX

DOD7 A9 00 LDA #$00
DOD9 95 99 STA $99,X
DODB 20 25 D1 JSR $D125
DODE C9 04 CMP #S04
DOEO BO 06 BCS SDOES8
DOE2 F6 BS INC S$B5,X

155

plus 4

track 18?

then skip

last track number?
no

lo-byte

hi-byte

drive number
hi-byte to $2FC
lo-byte

to $2FA

parameters to disk controller
read block

ok?

get byte from buffer

track

next byte from buffer

sector

track

change buffer

parameters to disk controller
read block

change buffer

read block
code for ‘read'

write block

code for 'write'
save

get buffer number

get track/sector, read/write blk

buffer pointer times 2

pointer in buffer to zero
get file type)
rel-file or direct access?
yes

Anatomy of the 1541 Disk Drive

DOE4 DO 02 BNE $DOE8
DOE6 F6 BB INC $BB,X
DOES8 68 PLA
DOE9 AA TAX
DOEA 60 RTS

dhkhkhkhhkhkkhhkhkhkkhkhhkhkhkhkhkhkdkkkkkkkk

DOEB A5 83 LDA $83
DOED c9 13 CMP #$13
DOEF 90 02 BCC $DOF3
DOF1 29 OF AND #$0F
DOF3 C9 OF CMP #SOF
DOF5 D0 02 BNE $DOF9
DOF7 A9 10 LDA #S10
DOF9 AA TAX

DOFA 38 SEC

DOFB BD 2B 02 LDA $022R,X
DOFE 30 06 BMI $D106
D100 29 OF AND #SOF
D102 85 82 STA $82
D104 AA TAX

D105 18 CLC

D106 60 RTS

Kk kRkhhhhhhhkhhkhkhhhkhhkhkkkhk
D107 A4 83 LDA $83
D109 c9 13 CMP #S13
D10B 90 02 BCC S$DI10OF
D10D 29 OF AND #SOF
D10F AA TAX

D110 BD 2B 02 LDA $022B,X
D113 A8 TAY

D114 0A ASL A
D115 90 0A BCC sD121
D117 30 0A BMI $D123
D119 98 TYA

D11A 29 OF AND #SOF
D1l1C 85 82 STA $82
D11E AA TAX

D11F 18 CLC

D120 60 RTS

D121 30 F6 BMI $D119
D123 38 SEC

D124 60 RTS

khkkkhkkkkhhkhkhkhhhkkhkhkkkhkhkkkkkkx

D125 A6 82 LDX $82
D127 B5 EC LDA SEC,X
n129 4A LSR A
D12A 29 07 AND #S07
Dl2C C9 04 CMP #504
D12E 60 RTS

kkkkhkkhkkkhkkhkhkkhkkkhkkhkkhkkhkkkkkkk

156

increment block counter

open channel for reading
secondary address

19

smaller?

16

flag for ok

open channel for writing
secondary address

19

smaller?.

channel number

flag for ok

flag for channel allocated

check for file type 'REL'

'REL'?

get buffer and channel numbers

SDF93
A

$82

$D12F

Anatomy of the 1541 Disk Drive

$0244,Y

$D151

($99,X)

$99,X

$0244,Y

$D14D
#SFF
$99,X

$99,X

($99,X)

$99,Y

$D137
$D191
$85

$0244,Y

$D16A
#$80

$00F2,Y

$85

SCF1E
#5500
$D4C8
$D137
#s00
$D192
$80
$D137
$81
SCF1E
$D1D3
$D6D0
$DOC3
SCF1E
$85

$D137
$82

D12F 20 93 DF JSR
D132 0A ASL
D133 AA TAX
D134 A4 82 LDY
D136 60 RTS
Khkhhkkhkkhkkhkhhhkkkhhkhrkhhddkk
D137 20 2F D1 JSR
D13A B9 44 02 LDA
D13D FO 12 BEQ
D13F Al 99 LDA
D141 48 PHA
D142 B5 99 LDA
D144 D9 44 02 CMP
D147 DO 04 BNE
D149 A9 FF LDA
D14B 95 99 STA
D14D 68 PLA
D14E F6 99 INC
D150 60 RTS
D151 Al 99 LDA
D153 F6 99 INC
D155 60 RTS
Kkkhhkhhkkhhhhhhhkhkhhkkkhhkkhhd
D156 20 37 pl JSR
D159 DO 36 BNE
D15B 85 85 STA
D15D B9 44 02 LDA
D160 FO 08 BEQ
D162 A9 80 LDA
D164 99 F2 00 STA
D167 A5 85 LDA
D169 60 RTS
D16A 20 1E CF JSR
D16D A9 00 LDA
D16F 20 C8 D4 JSR
D172 20 37 D1 JSR
D175 Cc9 00 CMP
D177 FO 19 BEQ
D179 85 80 STA
D17B 20 37 D1 JSR
D17E 85 81 STA
D180 20 1E CF JSR
D183 20 D3 D1 JSR
D186 20 DO D6 JSR
D189 20 C3 DO JSR
D18C 20 1E CF JSR
D18F A5 85 LDA
D191 60 RTS
D192 20 37 D1 JSR
D195 | A4 82 LDY
D197 99 44 02 STA

$0244,Y

157

get buffer number

get a byte from buffer
get buffer and channel number
end pointer

get byte from buffer
buffer pointer

equal end pointer?

no

buffer pointer to -1
data byte

increment buffer pointer

get character from buffer

increment buffer pointer

get byte and read next block
get byte from buffer

not last character?

save data byte

end pointer

yes

READ-flag
data byte

change buffer and read next block

set buffer pointer to zero
get first byte from buffer
track number zero

yes, then last block

save last track number

get next byte

save as following track
change buffer and read next block
save drive number

param to disk controller
transmit read command

change buffer and read block
get data byte

get next byte from buffer

save as end pointer

Anatomy of the 1541 Disk Drive

D19A A5 85 LDA $85
D19C 60 RTS

e L T T T T R AL L
D19D 20 F1 CF JSR $CFF1l
D1AO FO 01 BEQ $D1A3
D1A2 60 RTS

D1A3 20 D3 D1 JSR $D1D3
D1A6 20 1E F1 JSR $F11E
D1A9 A9 00 LDA #S00
D1AB 20 C8 D4 JSR $D4CS8
D1AE A5 80 LDA $80
D1BO 20 F1 CF JSR $CFF1
D1B3 A5 81 LDA $81
D1B5 20 F1 CF JSR $CFFl
D1B8 20 C7 DO JSR $DOC7
D1BB 20 1E CF JSR SCFlE
D1BE 20 DO D6 JSR $D6D0
D1C1 A9 02 LDA #S02
D1C3 4C C8 D4 ~ JMP $DACS
Khkhkkhkhhkkhkkkkkkdhhhhhhhhhhhhkkkk
D1C6 85 6F STA $6F
D1c8 20 E8 D4 JSR $D4ES8
D1CB 18 CLC

D1cCC 65 6F ADC $6F
D1CE 95 99 STA $99,X
DiDO 85 94 STA $94
D1D2 60 RTS

khkkkkhkhkhkhkhkhkkkkkkkhhkhhkhhhkhkkk

D1D3 20 93 DF JSR $DF93
D1D6 AA TAX

D1D7 BD 5B 02 LDA $025B,X
D1DA 29 01 AND #$01
D1DC 85 7F STA S$7F
D1DE 60 RTS
kkdkkkkkhkk Rk hkhhhkkhhhhhhdhhhkhkx
D1DF 38 SEC

D1EO BO 01 BCS $D1E3
P T
D1E2 18 CLC

D1E3 08 PHP

D1E4 85 6F STA $6F
D1E6 20 27 D2 JSR $D227
D1E9 20 7F D3 JSR $D37F
D1EC 85 82 STA $82
D1EE A6 83 LDX $83
D1FO0 28 PLP

D1F1 90 02 BCC SD1F5
D1F3 09 80 ORA #$80
D1F5 9D 2B 02 STA $022B,X
D1F8 29 3F AND #S$3F

158

get data byte back
byte in buffer and write block

byte in buffer
buffer full?

get drive number

find free block in BAM
buffer pointer to zero

track number as first byte
sector number as second byte
write block

change buffer

param to disk controller
buffer pointer to 2

increment buffer pointer

get buffer pointer

and increment

get drive number
get drive number

isolate drive number
and save

find
flag

write channel and buffer
for writing

find
flag
save
buffer number

close channel
allocate free channel
channel number
secondary address

read channel and buffer
for reading

read channel?
flag for writing
set

Anatomy of the 1541 Disk Drive

D1FA A8 TAY

D1FB A9 FF LDA #SFF default value

DIFD 99 A7 00 STA $00A7,Y

D200 99 AE 00 STA SO00AE,Y write in associated table
D203 99 CD 00 STA $00CD,Y

D206 Cé6 6F DEC $6F decrement buffer number
D208 30 1cC BMI $D226 done already?

D20A 20 8E D2 JSR $D28E find buffer

D20D 10 08 BPL $D217 found?

D20F 20 5A D2 JSR $D25A erase flags in table
D212 A9 70 LDA #$70

D214 4C C8 C1 JMP $C1C8 70, 'no channel'

D217 99 A7 00 STA $00A7,Y buffer number in table
D21A C6 6F DEC $6F buffer number

D21C 30 08 BMI $D226 already done?

D21E 20 8E D2 JSR $D28E find buffer

D221 30 EC BMI $D20F not found?

D223 99 AE 00 STA $O00AE,Y buffer number in .table
D226 60 RTS

khkkkkhkhkhhhkkkkhkhhhhkhkhkkkhhkhhhk close channel

D227 - A5 83 LDA $83 secondary address

D229 C9 OF CMP #SOF 15?2

D22B DO 01 BNE $D22E no

D22D 60 RTS else done already

D22E A6 83 LDX $83

D230 BD 2B 02- LDA $022B,X channel number

D233 C9 FF CMP #SFF not associated?

D235 FO 22 BEQ $D259 then done

D237 29 3F " AND #S$3F

D239 85 82 STA $82 channel number

D23B A9 FF LDA #SFF

D23D 9D 2B 02 - STA $022B,X erase association in table
D240 A6 82 LDX $82

D242 A9 00 LDA #$00

D244 95 F2 STA $F2,X erase READ and WRITE flag
D246 20 5A D2 JSR $D25A free buffer

D249 A6 82 LDX $82 channel number

D24B ° A9 01 LDA #$01 set bit 0

D24D CA DEX

D24E 30 03 BMI $D253 shift to correct position
D250 0A ASL A

D251 DO FA BNE $D24D

D253 0D 56 02 ORA $0256 free 'in allocation register
D256 8D 56 02 STA $0256

D259 60 RTS

KhkkkKkkhhkkkkkkhkkkkkkkkkkkkk* froo puffer

D25A A6 82 LDX $82 channel number

D25C B5 A7 LDA $A7,X buffer number

D25E C9 FF CMP #SFF

D260 FO 09 BEQ SD26B not associated?

D262 48 PHA

D263 A9 FF LDA #SFF

159

Anatomy of the 1541 Disk Drive

D265 95 A7 STA S$A7,X
D267 68 PLA

D268 20 F3 D2 JSR $D2F3
D26B A6 82 LDX $82
D26D B5 AE LDA $AE,X
D26F C9 FF CMP #SFF
D271 FO 09 BEQ $D27C
D273 48 PHA

D274 A9 FF LDA #SFF
D276 95 AE STA S$SAE,X
D278 68 " PLA

D279 20 F3 D2 JSR $D2F3
D27C A6 82 LDX $82
D27E B5 CD LDA $CD,X
D280 C9 FF CMP #SFF
D282 FO 09 BEQ $D28D
D284 48 PHA

D285 A9 FF LDA #SFF
D287 95 CD STA $CD,X
D289 68 PLA

D28A 20 F3 D2 JSR $D2F3
D28D 60 RTS
kkkhkhkkkhkhkhhkhhhhhhrkhhkrkkkkkk
D28E 98 TYA

D28F 48 PHA

D290 A0 01 LDY #$01
D292 20 BA D2 JSR $D2BA
D295 10 0C BPL $D2A3
D297 88 DEY

D298 20 BA D2 JSR $D2BA
D29B 10 06 BPL $D2A3
D29D 20 39 D3 JSR $D339
D2A0 AA TAX

D2Al 30 13 BMI $D2B6
D2A3 B5 00 LDA $00,X
D2A5 30 FC BMI $D2A3
D2A7 A5 TF LDA S7F
D2A9 95 00 - STA $00,X
D2AB 9D 5B 02 STA $025B,X
D2AE . 8A TXA

D2AF 0A ASL A
D2B0 A8 TAY

D2B1 A9 02 LDA #S02
D2B3 99 99 00 STA $0099,Y
D2B6 68 PLA

D2B7 A8 TAY

D2B8 8A TXA

D2B9 60 RTS

D2BA A2 07 - LDX #807
D2BC B9 4F 02 LDA $024F,Y
D2BF 3D E9 EF AND SEFE9,Y
D2C2 FO 04 BEOQ $D2C8
D2C4 CA DEX

160

erase buffer association

erase buffer allocation rec¢ister
channel number

associated in second table?
no
erase association

erase buffer in allocation reg.
channel number

associated in 3rd table?
no

erase association

erase buffer in allocation reg

find buffer

erase bit

Anatomj of the 1541 Disk Drive

D2C5 10 F5 BPL $D2BC
D2C7 60 RTS

D2C8 B9 4F 02 LDA $024F,Y
D2CB 5D E9 EF EOR S$EFE9,X rotate bit
D2CE 99 4F 02 STA $024F,Y

D2D1 8A TXA buffer number

D2D2 88 DEY

D2D3 30 03 BMI SD2D8

D2D5 18 CLC

D2D6 69 08 ADC #$08

D2D8 AA TAX buffer number

D2D9 60 RTS

D2DA A6 82 LDX $82

D2DC B5 A7 LDA $A7,X

D2DE 30 09 BMI $D2E9

D2EO 8A TXA

D2E1l 18 CLC

D2E2 69 07 ADC #$07

D2E4 AA TAX

D2ES B5 A7) LDA $A7,X

D2E7 10 FO BPL $D2D9

D2E9 C9 FF CMP #SFF

D2EB F0 EC BEQ $D2D9

D2ED 48 PHA

D2EE A9 FF LDA #SFF

D2F0 95 A7 STA $A7,X

D2F2 68 PLA

D2F3 29 OF AND #SOF

D2F5 A8 TAY buffer number

D2F6 c8 INY

D2F7 A2 10 LDX #$10 16

D2F9 6E 50 02 ROR $0250

D2FC 6E 4F 02 ROR $024F rotate 16-bit allocation reg.
D2FF 88 DEY

D300 DO 01 BNE $D303

D302 18 CLC erase bit for buffer
D303 CA DEX

D304 10 F3 BPL $D2F9

D306 60 RTS
khkkhkkhkhkkkhhkhkhkhkhkkhkhkkkkkkkkhkkkk close all channels
D307 A9 OE LDA #SOE 14

D309 85 83 STA $83 secondary address
D30B 20 27 D2 JSR $D227 close channel

D30E Cé6 83 DEC $83 next secondary address
D310 DO F9 BNE $D30B

D312 60 RTS
kkkkkkkkkkkkkkkkkkkkkkkkkkkkk* c]ose channels of other drives
D313 A9 OE LDA #$0E 14

D315 85 83 STA $83 secondary address
D317 A6 83 LDX $83 L

D319 BD 2B 02 LDA $022B,X association tgble
D31C C9 FF CMP #S$FF channel associated?

161

Anatomy of the 1541 Disk Drive

$D334
#S3F
$82
$DF93

$0258B,

#$01
$TF
$D334
$D227
$83
$D317

S$6F

#$00
SFA,Y
SA7,X
$D348
#SFF
$D35E

#$07

$A7,X
$D355
#$FF

$D35E

#S05
$D33E
#SFF
$D37A
S6F
#$3F

$00,X
$D363
#802
$D373
S6F
#$07
$D348
$D355

S6F
#SFF

$00A7,

S6F

X

Y

D31E FO 14 BEQ
D320 29 3F AND
D322 85 82 STA
D324 20 93 DF JSR
D327 AA TAX
D328 BD 5B 02 LDA
D32B 29 01 AND
D32D Cc5 7F CMP
D32F D0 03 BNE
D331 20 27 D2 JSR
D334 Cé6 83 DEC
D336 10 DF BPL
D338 60 RTS
kkkhkhkhhkkkkhkhkhhhkkkkkkkhkkkhkkk
D339 A5 6F LDA
D33B - 48 PHA
D33C A0 00 LDY
D33E B6 FA LDX
D340 BS A7 LDA
D342 10 04 BPL
D344 C9 FF - CMP
D346 DO 16 BNE
‘D348 8A TXA
D349 18 CLC
D34A 69 07 ADC
D34C AA TAX
D34D B5 A7 LDA
D34F 10 04 BPL
D351 C9 FF CcMP
D353 DO 09 BNE
D355 c8 INY
D356 co 05 CPY
D358 90 E4 BCC
D35A A2 FF LDX
D35C DO 1C BNE
D35E 86 6F STX
D360 29 3F AND
D362 AA TAX
D363 BS 00 LDA
D365 30 FC BMI
D367 C9 02 CMP
D369 90 08 BCC
D36B A6 6F LDX
D36D EO0 07 CPX
D36F 90 D7 BCC
D371 B0 E2 BCS
D373 A4 6F LDY
D375 A9 FF LDA
D377 99 A7 00 STA
D37A 68 ' PLA
D37B 85 6F STA
D37D 8A TXA
D37E 60 RTS

162

no

channel number
get buffer number

drive number

isolate

equal to actual drive number
no

close channel

next channel

Anatomy of the 1541 Disk Drive

***********#****************** find channel and allocate

D37F A0 00 LDY #$00

D381 A9 01 LDA #$01 set bit 0

D383 2C 56 02 BIT $0256

D386 DO 09 BNE $D391 channel free?

D388 c8 INY

D389 0A ASL A rotate bit to left

D38A DO F7 BNE $D383 all channels checked?
D38C A9 70 LDA #$70

D38E 4C C8 C1 JMP $C1C8 70, 'no channel'

D391 49 FF EOR #S$FF rotate bit model

D393 2D 56 02 AND $0256 erase bit

D396 8D 56 02 STA $0256 allocate channel

D399 98 TYA

D39A 60 RTS

khkhkhkkhkhkkkkkhkhkkhhkhkkhkkhkkhkkkkkk get byte fOr output

D39B 20 EB DO JSR $DOEB open channel for reading
D39E 20 00 C1 JSR $C100 turn LED on

D3Al 20 AA D3 JSR $D3AA get byte in output register
D3A4 A6 82 LDX $82 channel number :
D3A6 BD 3E 02 LDA $023E,X get byte

D3A9 60 RTS

D3AA A6 82 LDX $82 channel number

D3AC 20 25 D1 JSR $D125 check file type

D3AF DO 03 BNE $D3B4 no rel-file?

D3B1 4C 20 El JMP $E120 get byte from rel-file
D3B4 A5 83 LDA $83 secondary address

D3B6 Cc9 OF CMP #$0F 15

D3B8 FO 5A BEQ $D414 yes, read error channel
D3BA B5 F2 LDA $F2,X

D3BC 29 08 AND #$08 end flag set?

D3BE DO 13 BNE $D3D3 no

D3CO 20 25 D1 JSR $D125 check file type

D3C3 c9 07 CMP #$07 direct access file?

D3C5 DO 07 BNE $D3CE no

D3C7 A9 89 LDA #$89 set READ and WRITE flag
D3C9 95 F2 STA $F2,X

D3CB 4C DE D3 JMP $D3DE

D3CE A9 00 LDA #$00

D3D0 95 F2 STA $F2,X erase READ and WRITE flag
D3D2 60 RTS

D3D3 A5 83 LDA $83 secondary address

D3D5 FO 32 BEQ $D409 zero, LOAD?

D3D7 20 25 D1 JSR $D125 check file type

D3DA C9 04 CMP #S04 rel-file or direct access?
D3DC 90 22 BCC $D400 no

D3DE 20 2F D1 JSR $D12F get buffer and channel number
D3E1l B5 99 LDA $99,X buffer pointer

163

Anatomy of the 1541 Disk Drive

D3E3 D9
D3E6 DO
D3E8 A9
D3EA 95
D3EC F6
D3EE Al
D3F0 99
D3F3 BS
D3F5 D9
D3F8 DO
D3FA A9
D3FC 99
D3FF 60
D400 20
D403 A6
D405 9D
D408 60
D409 AD
D40C FO
D4OE 20
D41l 4cC
p4l4 20
D417 C9
D419 DO
D41B A5
D41D C9
D41F DO
D421 A9
D423 85
D425 20
D428 A9
D42A 20
D42D Cé6
D42F A9
D431 DO
D433 20
D436 85
D438 DO
D432 A9
p43C 20
D43F A9
D44l 95
D443 A9
D445 85
D447 A5
D449 8D
D44C 60

khkkkkhkhkkhkhkkkkkkkhkkkkkkkkkkkkkk

56
82
3E

54
F2
67
03

E8
D4
18
95
02
12
oD
85
23
00
Cl
AS
80
12

37
85
09
D4
Cc8
02
9A
88
F7
85
43

02
02

00

D1
02

02

ED
D4

D4

Cl

E6

D1

D4

02

D44D 20 93 DF

D450 0A

(o124
BNE
LDA
STA
INC
LDA
STA
LDA
CMP
BNE
LDA
STA
RTS

JSR
LDX
STA
RTS

LDA
BEQ
JSR
JMP

JSR
CMP
BNE
LDA
CMP
BNE
LDA
STA
JSR
LDA
JSR
DEC
LDA
BNE

JSR
STA
BNE
LDA
JSR
LDA
STA
LDA
STA
LDA
STA
RTS

JSR
ASL

$0244,Y
$D3EC
#$00
$99,X
$99,X
($99,X)
$023E,Y
$99,X
$0244,Y
$D3FF
#$81
$00F2,Y

$D156
$82
$023E,X

$0254
$D400
SED67
$D403

$D4ES8
#SD4
SD433
$95
#502
$D433
#S0D
$85
$Cl123
#s00
SE6C1
SAS5
#$80
$D445

$D137
$85
$D443
#$D4
$D4C8
#$02
$9A,X
#588
$F7
$85
$0243

$DF93
A

164

equal end pointer?
no

buffer pointer to zero
increment buffer pointer
get byte from buffer
into output register
buffer pointer

equal end pointer?

no

set flags

get byte from buffer
channel number
byte in output register

flag for directory?
no
create directory line

set buffer pointer

CR
in output register
erase error flags

create 'ok' message
set buffer pointer back
set READ flag

get byte from buffer
into output register

set buf ptr in front of error ptr

hi-address
set READ flag

data byte
into output register

read next block
get buffer number
times 2

D451 AA TAX

D452 A9 00 LDA #$00
D454 95 99 STA $99,X
D456 Al 99 LDA ($99,X)
D458 FO0 05 BEQ $D4S5SF
D45A D6 99 DEC $99,X
D45C 4C 56 D1 JMP $D156
D45F 60 RTS

Kdkkkdkk kR kkkkhhkkkh Rk kkhhhkk
D460 A9 80 LDA #$80
D462 DO 02 BNE $D466
HAKKRRRKKKIK AR AR IR Ik khhhkhhhhd
D464 A9 90 LDA #$90
D466 05 7F ORA S$7F

D468 8D 4D 02 STA $024D
D46B A5 F9 LDA $F9

D46D 20 D3 D6 JSR $D6D3
D470 A6 F9 LDX $F9

D472 4C 93 D5 JMP $D593

khkkkkkhkhkhkhhhhkhkhhkkkkhkhhkhdkkhdkk

D475 A9 01 LDA #$01
D477 8D 4A 02 STA $024A
D47A A9 11 LDA #S11
D47C 85 83 STA $83
D47E 20 46 DC JSR $DC46
D481 A9 02 LDA #802
D483 4C C8 D4 JMP $D4C8
Kkkkkhkhhkkhhhhkkhkrkkhkhhhkhkhkdkk
D486 A9 12 LDA #812
D488 85 83 STA $83
D48A 4C DA DC JMP $DCDA

hkkhkkhkkkhkkhkkkhkhkhkkhkhhkkhkhkhhkkkkhdk

D48D 20 3B DE JSR $DE3B
D490 A9 01 LDA #S01
D492 85 6F STA S6F
D494 A5 69 LDA $69
D496 48 PHA

D497 A9 03 LDA #$03
D499 85 69 STA $69
D49B 20 2D F1 JSR $F12D
D49E 68 PLA

D49F 85 69 STA $69
D4Al A9 00 LDA #$00 -
D4A3 20 C8 D4 JSR $D4C8
D4A6 A5 80 LDA $80
D4A8 20 F1 CF JSR SCFF1
D4AB A5 81 LDA $81
D4AD 20 F1 CF JSR S$CFF1
D4B0 20 C7 DO JSR $D0OC7
D4B3 20 99 DS JSR $D599

165

Anatomy of the 1541 Disk Drive

buffer pointer to zero

get first byte from buffer
no block following?

buffer pointer to -1

read next block

read block
command code for reading

write block

command code for writing
drive number

save code

param to disk controller
execute command

allocate buffer and read block
file type to sequential
;Zcondary address

allocate buffer and read block
buffer pointer to 2

allocate new block

igcondary address

allocate new block

write directory block
get track and sector number

a block

save step width 10 for block
allocation

find free block in BAM

gét step width back

buffer pointer to zero

track number in buffer
sector number in buffer

write block to disk
and verify

Anatomy of the 1541 Disk Drive

D4B6 A9 00 LDA #$00

D4B8 20 C8 D4 JSR $D4C8 buffer pointer to zero
D4BB 20 F1 CF JSR $CFF1 fill buffer with zeroes
D4BE DO FB BNE $D4BB

D4CO 20 F1 CF JSR $CFF1 zero as following track
D4C3 A9 FF LDA #SFF

D4C5 4C F1 CF JMP SCFFl $FF as number of bytes
J % J d & K d Kk g K K & K % & d K Kk Kk Kk Kkkkkkkkkk set buffer pointer
D4C8 85 6F STA $6F save pointer

DACA 20 93 DF JSR $DF93 get buffer number

D4CD oA ASL A times 2

D4CE AA TAX

D4CF B5 9A LDA $9A,X buffer pointer hi

D4D1 85 95 STA $95

D4D3 A5 6F LDA $6F

D4D5 95 99 STA $99,X buffer pointer lo, new value
D4D7 85 94 STA $94 o
D4D9 60 RTS

kkdkkhkkkhkhkkhkhhhkkhkkhkhkhkhkhkhkhhkkk close internal channel
D4DA A9 11 LDA #$11 17

D4DC 85 83 STA $83

D4DE 20 27 D2 JSR $D227 close channel

D4E1 A9 12 LDA #$12 18

D4E3 85 83 STA $83

D4ES 4C 27 D2 JMP $D227 close channel
khkkkhkkkhkkkhkhkhkhkkkhkhkhkhhkkkkkkkkkk set buffer pointer
D4E8 20 93 DF JSR $DF93 get buffer number

D4EB 0A ASL A

D4EC AA TAX

D4ED B5 9A LDA $9A,X buffer pointer hi

D4EF 85 95 STA $95

D4F1 B5 99 LDA $99,X buffer pointer lo

D4F3 85 94 STA $94

D4FS 60 RTS

khkkhkhkkkhkhkhkhkhkkkhkkkkkkkkkkkhkkd get byte from buffer
D4F6 85 71 STA $71 pointer lo

D4F8 20 93 DF JSR S$DF93 get buffer number

D4FB AA TAX

D4FC BD EO FE LDA SFEEO,X hi-byte buffer address
D4FF 85 72 STA $72 pointer hi

D501 A0 00 LDY #$00

D503 Bl 71 LDA (S$71),Y get byte from buffer
D505 60 RTS

hkhkkkhkhkkkkhkkhhkkkkkkkkkkkkkkkkkk check track and sector numbers
D506 BD 5B 02 LDA $025B,X command code for disk controller
D509 29 01 AND #$S01 drive number

D50B 0D 4D 02 ORA $024D plus command code

D50E A8 PHA save

D50F 86 F9 STX S$F9 buffer number

D511 8A TXA

166

Anatomy of the 1541 Disk Drive

D512 0A ASL A times 2

D513 AA TAX

D514 B5 07 LDA $07,X sector

D516 8D 4D 02 STA $024D save

D519 B5 06 LDA $06,X track

D51B FO 2D BEQ S$D54A 66, 'illegal track or sector'
D51D CD D7 FE CMP $FED7 36, highest track number + 1
D520 BO 28 BCS $D54A 66, 'illegal track or sector'
D522 AA TAX

D523 68 PLA command code

D524 48 PHA

D525 29 FO AND #S$FO

D527 C9 90 CMP #$90 code for writing?

D529 DO 4F BNE $D57A no

D52B 68 PLA

D52C 48 PHA

D52D 4A LSR A

D52E BO 05 BCS $D535

D530 AD 01 01 LDA $0101

D533 90 03 BCC $D538

D535 AD 02 01 LDA $0102

D538 FO 05 BEQ $D53F

D53A CD D5 FE CMP S$FED5 'A', format marker

D53D DO 33 BNE $D572 73, '‘cbm dos v2.6 1541°"

D53F 8A TXA track number

D540 20 4B F2 JSR $F24B get maximum sector number
D543 CD 4D 02 CMP $024D compare with sector number
D546 FO 02 BEQ $D54A equal, then error

D548 BO 30 BCS $D57A smaller?

D54A 20 52 D5 JSR $D552 get track and sector number
D54D A9 66 LDA #$66

D54F 4C 45 E6 JMP $E645 66, 'illegal track or sector'
khkhkkkkhhkhkkhhhhhhkhkhkhkhkkhhkhkhhhkhk get track and sector numbcr
D552 A5 F9 LDA $F9 buffer number

D554 0A ASL A *2

D555 AA TAX as index

D556 B5 06 LDA $06,X

D558 85 80 STA $80 : track

D55A B5 07 LDA $07,X

D55C 85 81 STA $81 sector

D55E 60 RTS

D55F A5 80 LDA $80 track

D561 FO EA BEQ $D54D zero, then error

D563 CD D7 FE CMP SFED7 36, maximum track number + 1
D566 BO E5 BCS $D54D 66, 'illegal track or sector’
D568 20 4B F2 JSR $F24B get maximum sector number
D568 C5 81 CMP $81 sector

D56D FO DE BEQ $D54D

D56F 90 DC BCC $D54D error

D571 60 RTS

D572 20 52 D5 JSR $D552 get track and sector numbe:
D575 . A9 73 LDA #$73

167

Anatomy of the 1541 Disk Drive

D577 - 4C 45 E6 JMP $E645 73, 'cbm dos v2.6 1541'
D57A A6 F9 LDX SF9 buffer number

D57C 68 PLA

D57D 8D 4D 02 STA $024D command code for disk controller
D580 95 00 STA $00,X in command register
D582 9D 5B 02 STA $025B,X and write in table
D585 60 RTS

khkkhkkkkkhkkkhkkkkkkkkkkkkkhkkkk read block

D586 A9 80 LDA #$80 code for read

D588 DO 02 BNE $D58C
khkkkhhkhkhkkhkhkhkhkkhkhkhkkkhkkhkkkkkkkkk write block

D58A A9 90 LDA #$90 code for write

D58C 05 7F ORA $7F drive number

DS8E A6 F9 LDX $F9 buffer number

D590 8D 4D 02 STA $024D

D593 AD 4D 02 LDA $024D command code

D596 20 OE D5 JSR $D50E check track and sector
khkhkkhkkhkkkkkhkhkkkhkhkkkkkkkkkkkkkk Verify execution

D599 20 A6 D5 JSR $D5A6 verify execution

D59C BO FB BCS $D599 wait for end

D59E 48 PHA

D59F A9 00 LDA #$00

D5A1 8D 98 02 STA $0298 erase error flag

D5A4 68 PLA

D5A5 60 RTS

D5A6 B5 00 LDA $00,X cmd code (bit 7) still in reg?
D5A8 30 1A BMI $D5C4 yes

DSAA c9 02 CMP #$02

D5AC 90 14 BCC $D5C2 error-free execution
DSAE Cc9 08 CMP #S08 8

D5BO FO 08 BEQ $DS5BA write protect

D5B2 c9 OB CMP #$0B 11

D5B4 FO 04 BEQ S$D5BA ID mismatch

D5B6 C9 OF CMP #$OF 15

D5B8 DO OC BNE $D5C6

D5BA 2C 98 02 BIT $0298

D5BD 30 03 BMI $D5C2

D5BF 4C 3F D6 JMP $D63F create error message
D5C2 18 CLC execution ended

D5C3 60 RTS

D5C4 38 SEC execution not yet ended
D5CS 60 RTS

D5C6 98 TYA

D5C7 48 PHA

D5C8 A5 7F LDA $7F drive number

D5CA 48 PHA

D5CB BD 5B 02 LDA $025B,X

168

Anatomy of the 1541 Disk Drive

D5CE 29 01 AND #$01 drive number
D5D0 85 7F STA $7F
D5D2 A8 TAY

D5D3 B9 CA FE LDA S$FECA,Y bit model for drive
D5D6 8D 6D 02 STA $026D

D5D9 20 A6 D6 JSR $D6A6 read attempt
D5DC c9 02 CMP #$02

DSDE BO 03 BCS $D5E3 not ok?

D5EO 4C 6D D6 JMP $D66D done

D5E3 BD 5B 02 LDA $025B,X command code
DSE6 29 FO AND #SFQ isolate

DSES8 48 PHA

D5E9 c9 90 CMP #$90 code for write
DSEB DO 07 BNE $DS5F4 no

D5ED A5 7F LDA $7F drive number
D5EF 09 B8 ORA #$B8

D5F1 9D 5B 02 STA $025B,X

D5F4 24 6A BIT $6A

D5F6 70 39 BVS $D631

D5F8 A9 00 LDA #$00

DS5FA 8D 99 02 STA $0299 cntr for searches next to track
D5FD 8D 9A 02 STA $029A

D600 AC 99 02 LDY $0299 counter

D603 AD 9A 02 LDA $029A

D606 38 SEC

D607 F9 DB FE SBC SFEDB,Y constants for read attempts
D60A 8D 9A 02 STA $029A
D60D B9 DB FE LDA S$FEDB,Y

D610 20 76 D6 JSR $D676 position head next to track
D613 EE 99 02 INC $0299 increment counter

D616 20 A6 D6 JSR $SD6A6 read atempt

D619 Cc9 02 CMP #$02 return message

D61B 90 08 BCC $D625 smaller than 2, ok?

D61D AC 99 02 LDY $0299 load counter

D620 B9 DB FE LDA S$FEDB,Y get constants

D623 DO DB BNE $D600 not yet zero (table end)?
D625 AD 9A 02 LDA $029A

D628 20 76 D6 JSR $D676 position head

D62B B5 00 LDA $00,X

D62D C9 02 CMP #S02 return message

D62F 90 2B BCC $D65C ok?

D631 24 6A BIT $6A

D633 10 OF BPL $D644

D635 68 PLA command code

D636 Cc9 90 CMP #$90 for writing?

D638 DO 05 BNE $D63F no

D63A 05 7F ORA $7F drive number

D63C 9D 5B 02 STA $025B,X command code in table
D63F B5 00 LDA $00,X return message

D641 20 0A E6 JSR SE60A set error message

D644 68 PLA

D645 2C 98 02 BIT $0298

D648 30 23 BMI $D66D

D64A 48 PHA

D64B A9 CO LDA #S$CO command code for head positioning

169

Anatomy of the 1541 Disk Drive

D64D 05 7F ORA S$7F
D64F 95 00 STA $00,X
D651 B5 00 LDA $00,X
D653 30 FC BMI $D651
D655 20 A6 D6 JSR $D6A6
D658 Cc9 02 CMP #$02
D65A BO D9 BCS $D635
D65C 68 PLA

D65D C9 90 CMP #S90
D65F DO OC BNE $D66D
D661 05 7F ORA $7F
D663 9D 5B 02 STA $025B,X
D666 20 A6 D6 JSR $D6A6
D669 Cc9 02 CMP #$02
D66B BO D2 BCS $D63F
D66D 68 PLA

D66E 85 7F STA $7F
D670 68 PLA

D671 A8 TAY

D672 B5 00 LDA $00,X
D674 18 CLC

D675 60 RTS

D676 Cc9 00 CMP #$S00
D678 FO 18 BEQ $D692
D67A 30 OC BMI $D688
D67C A0 01 LDY #$01
D67E 20 93 D6 JSR $D693
D681 38 SEC

D682 E9 01 SBC #S01
D684 DO F6 BNE SD67C
D686 FO 0A BEQ $D692
D688 A0 FF LDY #SFF
D68A 20 93 D6 JSR $D693
D68D 18 CLC

D68E 69 01 ADC #$01
D690 DO F6 BNE $D688
D692 60 RTS

D693 48 PHA

D694 98 TYA

D695 A4 TF LDY S7F
D697 99 FE 02 STA $02FE,Y
D69A D9 FE 02 CMP SO2FE,Y
D69D FO FB BEQ $D69A
D69F A9 00 LDA #S$00
D6Al 99 FE 02 STA $02FE,Y
D6A4 68 PLA

D6A5 60 RTS

D6A6 A5 6A LDA $6A
D6A8 29 3F AND #S$3F
D6AA A8 TAY

D6AB AD 6D 02 LDA $026D

170

drive number
in command register

wait for execution
attempt command execution again
return message
incorrect?

command code for writing
no

drive number

in table

attempt execution again
return message

error?

get drive number back

error code
end-of-execution flag

transmit data for head position

transmit data for head position

drive number
wait for return message from

disk controller

maximum number of repetitions

bit for LED

Anatomy of the 1541 Disk Drive

D6AE 4D 00 1C EOR $1C00
D6B1 8D 00 1C STA $1C00
D6B4 BD 5B 02 LDA $025B,X command

D6B7 95 00 STA $00,X transmit to disk controller
D6B9 B5 00 LDA $00,X and return message

D6BB 30 FC BMI $D6B9 wait

D6BD c9 02 CMP #$02 ok?

D6BF 90 03 BCC $D6C4 yes

D6C1 88 DEY decrement counter

D6C2 DO E7 BNE $D6AB attempt again

D6C4 48 PHA

D6C5 AD 6D 02 LDA $026D

D6C8 0D 00 1C ORA $1C00 LED off

D6CB 8D 00 1C STA $1C00

D6CE 68 PLA

D6CF 60 RTS

khkhkhkkhkkkkkhkhkkhkhkhkhkkhkhkhkkhkkhhkkkk transmit param to di.sk controller
D6DO 20 93 DF JSR $DF93 get buffer number

D6D3 0A ASL A

D6D4 A8 TAY

D6D5 A5 80 LDA $80 track number

D6D7 99 06 00 STA $0006,Y transmit

D6DA A5 81 .LDA $81 sector number

D6DC 99 07 00 STA $0007,Y transmit

D6DF A5 7F LDA $7F drive number

D6E1 (7. ASL times 2

D6E2 AA TAX .

D6E3 60 RTS

hhkhkkhkhhkhkhhkhkhkkhkhdhhkkhhdhkhhkkkkk enter flle in directory
D6E4 A5 83 LDA $83 secondary address

D6E6 48 PHA

D6E7 A5 82 LDA $82 channel number

D6E9 48 PHA

D6EA A5 81 LDA $81 sector number

D6EC 48 PHA

D6ED A5 80 LDA $80 track number

D6EF 48 PHA save

D6F0 A9 11 LDA #S11

D6F2 85 83 STA $83 secondary address 17
D6F4 20 3B DE JSR $DE3B get track and sector number
D6F7 AD 4A 02 LDA $S024A file type

D6FA 48 PHA save

D6FB A4 E2 LDA SE2 drive number

D6FD 29 01 AND #$01

D6FF 85 7F STA $7F set

D701 A6 F9 LDX SF9 buffer number

D703 5D 5B 02 EOR $025B,X

D706 4A LSR A

D707 90 0C BCC $D715 equal drive number?
D709 A2 01 LDX #$01

D70B 8E 92 02 STX $0292 pointer in directory
D70E 20 AC C5 JSR $C5AC load dir and find first entry
D711 FO 1D BEQ $D730 not found?

171

Anatomy of the 1541 Disk Drive

D713

D715
D718
D71A
D71C
D71E
D720
D723

D726
D728
D72B
D72E
D730
D733
D735
D738
D73A
D73D
D740
D743
D744
D747
D749
D74B
D74D
D750
D751
D754
D757
D758
D75B
D75E
D761
D762
D765
D766
D768
D76B
D76D
D76F
D771
D772
D774
D776
D779
D77B
D77D
D77F
D782
D784
D785
D788
D78A

DO

_AD

FO
C5
FO
85
20
[1e

A9
8D
20
DO
20
A5
8D
A9
8D
AD
20
68
8D
c9
DO
09
20
68
8D
20
68
8D
20
20
A8
AD
AA
A9
20
A0
A9
91
c8
co
90
AD
c9
DO
A0
AD
91
cs
AD
91
c8

28

91
ocC
81
1F
81
60
3D

01
92
17
0D
8D
81
91
02
92
92
cs

4A
04
02
80
Fl

80
Fl

85
Fl
93

1A

10
6E
10
00
94

1B
F9
4A
04
13
10
59
94

5A
94

02

D4
D7

02
cé
D4
02
02
02
D4

02

CF

02
CF

02
CF
DF
02

cé

02

02

02

BNE

LDA
BEQ
CMP
BEQ
STA
JSR
JMP

LDA
STA
JSR
BNE
JSR
LDA
STA
LDA
STA
LDA
JSR
PLA
STA
CMP
BNE
ORA
JSR
PLA
STA
JSR
PLA
STA
JSR
JSR
TAY
LDA
TAX
LDA
JSR
LDY
LDA
STA
INY
CPY
BCC
LDA
CMP
BNE
LDY
LDA
STA
INY
LDA
STA
INY

$D73D

$0291
$D726
$81

$D73D
$81

$D460
$D73D

#s01
$0292

$C617

$D73D
$D48D
$81
$0291
#s02
$0292
$0292
$D4C8

$024A
#504
$D74D
#$80
SCFF1

$0280
$CFF1

$0285
SCFF1
$SDF93

$027A

#$10
SC66E
#510
#$00 -

($94),Y

#$1B
SD76F
$024A
#$04
$D790
#$10
$0259

(s94),Y

$025A

($94),Y

172

found?

sector number in directory
equal zero

equal sector number?

yes

save sector number

read block

pointer to one

find next entry in directory
found?

write directory block

sector number

pointer to 2

set buffer pointer
file type

rel-file?

no

set bit 7

and write in buffer

following track

in buffer

following sector
in buffer
get buffer number

pointer to drive number
16, length of filename
write filename in buffer
fill with zeroes at pos 16
position 27 already?

no

file type

rel-file

no

track

and sector
the side-sectors in dir entry

Anatomy of the 1541 Disk Drive

$0258
($94),Y
$SD464

$82

$83
$0291
$D8
$0260,X
$0292
SDD
$0266,X
$024A
SE7

STF

$E2

$83
$024C
$C283
$022A
$0200
s$024cC
SD7F3
#82A
SD7F3
S7E
$D81C
$80
S026E
$TF
SE2
#502
SE7
$026F
$81
$C100
$DC46
#$04
$7F
$82
S00EC,Y
$C194

#$24

$D815
$024C
SD7FF
$DA55

D78B AD 58 02 LDA
D78E 91 94 STA
D790 20 64 D4 JSR
D793 68 PLA
D794 85 82 STA
D796 AA TAX
D797 68 PLA
D798 85 83 STA
D79A AD 91 02 LDA
D79D 85 D8 STA
D79F 9D 60 02 STA
D7A2 AD 92 02 LDA
D7A5 85 DD STA
D7A7 9D 66 02 STA
D7AA AD 4A 02 LDA
D7AD 85 E7 STA
D7AF A5 7F LDA
D7B1 85 E2 STA
D7B3 60 RTS
kkkkkhhkhkhkhhhhkhkhkhkkhkkhkdkk
D7B4 A5 83 LDA
D7B6 8D 4C 02 STA
D7B9 20 B3 C2 JSR
D7BC 8E 2A 02 STX
D7BF AE 00 02 LDX
D7C2 AD 4C 02 LDA
D7C5 DO 2C BNE
D7C7 E0 2A CPX
D7C9 DO 28 BNE
D7CB A5 7E LDA
D7CD FO 4D BEO
D7CF 85 80 STA
D7D1 AD 6E 02 LDA
D7D4 85 7F STA
D7D6 85 E2 STA
D7D8 A9 02 LDA
D7DA 85 E7 STA
D7DC AD 6F 02 LDA
D7DF 85 81 STA
D7El 20 00 C1 JSR
D7E4 20 46 DC JSR
D7E7 A9 04 LDA
D7E9 05 7F ORA
D7EB A6 82 LDX
D7ED 99 EC 00 STA
D7F0 4C 94 C1 JMP
D7F3 EO 24 CPX
D7F5 DO 1E BNE
D7F7 AD 4C 02 LDA
D7FA DO 03 BNE
D7FC 4C 55 DA JMP
D7FF 20 D1 C1 JSR

$C1D1

173

record length
in directory
write block

channel number

secondary address

file type

drive number

OPEN command, secondary adr <> 15
secondary address

get line length, erase flags

first character from buffer
secondary address
not equal 0 (LOAD)?

Tk .

last track number

track number
last drive number
drive number

set data type to program
last sector number

sector ‘

turn. LED on

allocate buffer, read block
file type

drive number

channel number

set flag

done

lsl

no

secondary address
not equal to zero?
OPEN $

analyze line to end

Anatomy of the 1541 Disk Drive

D802 AD 85 FE LDA $FES85
p805 85 80 STA $80
D807 A9 00 LDA #S00
D809 85 81 STA $81
D8OB 20 46 DC JSR $DC46
D8OE A5 7F LDA $7F
p8lo0 09 02 ORA #$02
D812 4C EB D7 JMP $D7EB
D815 E0 23 CPX #$23
D817 DO 12 BNE $D82R
D819 4C 84 CB JMP $CB84
p81C A9 02 LDA #$02
DS81E 8D 96 02 STA $0296
D821 A9 00 LDA #$00
pg823 85 7TF STA S$7F
D825 8D 8E 02 STA $028E
D828 20 42 DO JSR $D042
D8 2B 20 E5 Cl JSR SC1ES
D82E DO 04 BNE $D834
D830 A2 00 LDX #$00
D832 FO0 OC BEQ $D840
D834 8A - TXA

D835 FO 05 BEQ $D83C
D837 A9 30 LDA #$30
D839 4C C8 Cl1 JMP s$clc8
p83C 88 DEY

p83D FO0 01 BEQ $D840
D8 3F 88 DEY

D840 8C 7A 02 -STY $027A
D843 A9 8D LDA #$8D
D845 20 68 €2 JSR $C268
D848 ES INX

D849 8E 78 02 STX $0278
D84C 20 12 C3 JSR $C312
D84F 20 CA C3 JSR S$SC3CA
D852 20 9D C4 JSR $C49D
D855 A2 00 - LDX #S$00
D857 8E 58 02 STX $0258
D85A 8E 97 02 STX $0297
D85D. 8E 4A 02 STX $024A
D860 E8 INX

D861 EC 77 02 CPX $0277
D864 BO 10 BCS $D876
D866 20 09 DA JSR $DA09
D869 E8 INX

D86A EC 77 02 CPX $0277
D86D BO 07 BCS $D876
D86F CO 04 CPY #$04
D871 FO 3E REQ SD8B1
D873 20 09 DA JSR $DA09
D876 AE 4C 02 LDX $024C
D879 86 83 STX $83

174

18, directory track
track

sector 0
allocate buffer,
drive number

read block

continue as above
I#l

open direct access file

file type program
drive 0

load BAM
analyze line
colon found?

comma found?
no

30, 'syntax error'

pointer to drive number
shift CR
analyze line to end

comma counter

get drive number

check drive number

find file entry in directory
default values

record length

file type

comma before equal sign?

;gt file type and control mode
additional comma?

no

get file type and control method

secondary address

D87B
D87D
D87F
D882
D884
D887
D88A
D88C
D88E
D891
D894
D896
D898
D89A
D89D
D8AOQ
D8A2
D8A4
D8A7
DBAA
DBAC
D8AE

D8B1
D8B4
D8B7
D8BA
D8BD
D8BF
D8C1
D8C4

D8C6
D8C8
D8CA
D8CB
D8CD
D8CF
D8D1
D8D3
D8D6

D8D9
D8DC
D8DE
D8E1
D8E4
DBE6
D8E8
D8E9
D8EB
D8ED
D8FO0
D8F2

EO
BO
8E
A9
8D
AD
DO
A9
8D
AD
DO
A5
29
8D
AD
DO
A9
8D
AD
c9
FO
4C

BC
B9
8D
AD
DO
A9
8D
DO

A5
29
AA
DO
A9
24
FO
20
4C

A9
DO
4C
AD
c9
FO
8A
DO
A9
4ac
A9
4C

02
12
97
40
F9
4A
1B
02
4A
4A
11
E7
07
4A
80
05
01
4A
97
0l
18
40

7A
00
5B
80
B7
01
97
BO

E7
80

14
20
E7
06
B6
E3

80
03
E3
00
40
0D

05
63
c8
33
C8

02
02
02

02
02

02
02

02
02
D9
02
02

02
02

02

c8
D9

02

D9
02

Cl
Cl

CPX
BCS
STX
LDA
STA
LDA
BNE
LDA
STA
LDA
BNE
LDA
AND
STA
LDA
BNE
LDA
STA
LDA
CMP
BEOD
JMP

LDY
LDA
STA
LDA
BNE
LDA
STA
BNE

LDA
AND
TAX
BNE
LDA
BIT
BEQ
JSR
JMP

LDA
BNE
JMP
LDA
CMP
BEQ
TXA
BNE
LDA
JMP
LDA
JMP

#S02
$D891
$0297
$#$40
$02F9
$024A
$D8A7
#$02
$024A
$024A
$D8A7
$SE7
#$07
$024A
$0280
$D8A7
#501
$024A
$0297
#501
$D8C6
$D940

Anatomy of the 1541 Disk Drive

$027A,X
$0200,Y

$025B
$0280
$D876
#S01

$0297
$D876

SE7
#$80

$DSE1
#$20
$E7
$D8D9
$C8B6
$D9E3

$0280
$SD8E1
SD9E3
$0200
#$40

$SD8F5

SD8F0
#$63
s$Clcs
#$33
$ClcC8

175

greater than 2?
yes
0 or 1 (LOAD or SAVE)

file type
not deleted
PRG

as file type

get file type and command line

track number
not equal zero?

file type sequential
control method

lwl

yes

pointer behind second comma
get value

record length

track number

le

as control mwethod

file type

isolate wildcard flag
wildcard in name

was file closed?

yes
byte 0 in buffer and write block

track number of the first block
already existing

fifst character from input buffer
ygs'

wildcard set?

63, 'file exists'

33, 'syntax error'

Anatomy of the 1541 Disk Drive

khkkkkhkkhkhkhhhkkhhhkkhkhkkkkhkhkkhkhkkk

D8F5
D8F7
D8F9
D8FC
D8FE
D900
D902
D905
D907
D90A
D90C
D911
D914
D917
D919
D91B
D91D
D91F
D921
D923
D925
D926
D928
D92A
D92D
D92F
D932
D934
D937
D93A
D93D

D940
D943
D945
D947
D94A
D94D
D94F
D951
D953
D955
DY57
D959
D95C
D95E
D960
D963
D965
D967
D96A
D96C
D96F
D972

A5
29
(e35)
DO
c9
FO
20
AS
8D
A9
20
AD
20
A0
Bl
09
91
A0
A5
91
cs
A5
91
AE
A5
9D
AS
9D
20
20
4C

AD
DO
A9
4C
AD
co
FO
A9
24
FO
A9
4C
A5
29
CD
FO
A9
4C
A0
8C
AE
EO

E7
07
4A
67
04
63
DA
82
70
11
EB
94
c8
00
94
20
94
1A
80
94

81
94
70
D8
60
DD
66
3B
64
EF

80
05
62
c8
97
03
0B
20
E7
05
60
C8
E7
07
4A
05
64
c8
00
79
97
02

02

DC
02
DO

02
D4

02
02
02
DE
D4
D9
02

(o311
02

Cl

02

Cl

02
02

LDA
AND
CMP
BNE
CMP
BEOQ
JSR
LDA
STA
LDA
JSR
LDA
JSR
LDY
LDA
ORA
STA
LDY
LDA
STA
INY
LDA
STA
LDX
LDA
STA
LDA
STA
JSR
JSR

JMP

LDA
BNE
LDA
JMP
LDA
CMP
BEO
LDA
BIT
BEQ
LDA
JMP
LDA
AND
CMP
BEOQ
LDA
JMP
LDY
STY
LDX
CPX

SE7
#$07
$024A
$D965
$$04
$D965
$DCDA
$82
$0270
#S11
$SDOEB
$0294
$D4C8
#$00
($94),
#$20
($94),
#$S1A
$80
($94),

$81
($94),
$0270
$D8
$0260,
$DD
$0266,
SDE3B
$D464
$D9EF

$0280
$D94A
#562
$C1C8
$0297
#$03
$D95C
#520
SE7
$D95C
#$60
#sclcs
SE7
#$07
$024A
$SD96A
#S64
$Cl1cs
#S00
$0279
$0297
#$02

Y

Y

Y

Y

X

X

176

open a file with overwriting
file type
isolate

file type different?

rel-file?

64, 'file type mismatch'

save channel number

open read channel

set buffer pointer for directory
file type

set bit 5, open file

track

and sector
for open with at-sign
channel number

pointer to directory block

get track and sector number
write block
prepare trk, sector, and drive #

first track number
file not erased?

62, 'file not found'

control mode

IMI

yes,then no test of unclosed file
bit 5

test in file type

not set, ok

60, 'write file open"

isolate file type

64, 'file type mismatch'

control mode
'A', append

D974
D976
D978
D97a
D97C
D97E
D980
D982
D983
D985
D987
D98A
D98D
D98E
D990
D993
D996
D998
D99A
D99D

D9AO
D9A2
D9A4
D9A7
D9A8
D9AA
D9AD
D9AE
D9B0
D9B3
D9B6
D9B7
D9B9
D9BC
DI9BE
D9co
D9C3
D9C6
D9C9
D9CB
D9CE
D9DO
D9D3
D9DS
D9D8
D9DA
D9DD
D9DF
D9E2

D9E3
D9ES5
D9ET7
D9E9

DO
c9
FO
Bl
29
91
A5
48
A9
85
20
20
68
85
20
AD
c9
DO
20
4C

A0
Bl
8D
c8
Bl
8D
c8
Bl
AE
8D
8A
FO
CD
FO
A9
20
AE
BD
85
BD
85
20
A4
AE
B5
99
BS
99
60

A5

85
20

1A
04
EB
94
4F
94
83

11
83
3B
64

83
A0
97
02
55
2A
94

13
94
59

94
5A

94
58
58

0A
58

50
c8
79
80
80
85
81
46
82
79
D8
60
DD
66

E2
01
7F
DA

DE
D4

D9
02

DA
Cl

02

02

02
02

02

Cl
02
02

DC .

02
02
02

DC

BNE
CMP
BEQ
LDA
AND
STA
LDA
PHA
LDA
STA
JSR
JSR
PLA
STA
JSR
LDA
CMP
BNE
JSR
JMP

LDA
LDA
STA
INY
LDA
STA
INY
LDA
LDX
STA
TXA
BEQ
CMP
BEO
LDA
JSR
LDX
LDA
STA
LDA
STA
JSR
LDY
LDX
LDA
STA
LDA
STA
RTS

LDA
AND
STA
JSR

$D990
#504
$D965
($94),
#S4F
($94),
$83

#$11
$83
SDE3B
$D464

$83
$D9A0
$0297
#$02
$D9EF
$DA2A
$C194

#$13
($94),
$0259

($94),
$025A

(s94),
$0258
$0258

$DI9C3
#80258
$D9C3
#850
$Clcs
$0279

Anatomy of the 1541 Disk Drive

Y

Y

Y

Y

Y

$0280,X

$80

$0285,X

$81
$DC46
$82
$0279
$D8,X

$0260,Y

$DD, X
$0266,

SE2
#s01
STF
$DCDA

Y

177

no
rel-file?

channel 17
get track and sector number
write block

get channel # back
control mode

done

track

record length
last record len

50, 'record not present'

track

sector

drive #

Anatomy of the 1541 Disk Drive

D9EC 20 E4 D6 JSR $SD6E4

D9EF A5 83 LDA $83 channel #
D9F1 c9 02 CMP #$02

DI9F3 BO 11 BCS S$DA06

D9F5 20 3E DE JSR $DE3E

DI9F8 A5 80 LDA $80

D9FA 85 7E STA $7E

DI9FC A5 7F LDA $7F

DI9FE 8D 6E 02 STA $026E

DAO1 A5 81 LDA $81

DAO3 8D 6F 02 STA $026F
DA06 4C 99 C1 JMP $C199

kkkkkkkhkhkkkkkkkkkkkkkkkkkkkkkk check file type and control mode
DAO9 BC 7A 02 LDY $027A,X pointer in command line

DAOC B9 00 02 LDA $0200,Y ~ get characters from line

DAOF A0 04 LDY #$04

DAll 88 DEY

DAl2 30 08 BMI $DAlC

DAl4 D9 B2 FE CMP SFEB2,Y control modes ‘R', 'W', 'A', 'M'
DAl7 DO F8 BNE S$DAll

DA19 8C 97 02 STY $0297 save
DAlC A0 05 LDY #$05

DAlE 88 DEY

DAl1F 30 08 BMI $DA29

DA21 D9 B6 FE CMP SFEB6,Y file types 'D','s','P','U','L’
DA24 DO F8 BNE SDALE

DA26 8C 4A 02 STY $024A save

DA29 60 RTS

***************************#** preparation for Append
DA2A 20 39 CA JSR $CA39 open channel to read, get byte
DA2D A9 80 LDA #$80

DA2F 20 A6 DD JSR $DDA6 last byte?

DA32 FO F6 BEQ $DA 2A no

DA34 20 95 DE JSR SDE95 get track and sector number
DA37 A6 81 LDX $81 sector number

DA39 E8 INX)

DA3A 8A TXA

DA3B DO 05 BNE $DA42 not S$FF?

DA3D 20 A3 D1 JSR $D1A3 close buffer, write block
DA40 A9 02 LDA #$02 '

DA42 20 C8 D4 JSR $D4C8 buffer pointer to 2

DA45 A6 82 LDX $82 channel number

DA47