Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जानने का अधिकार, जीने का अधिकार”
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

IS 8887 (2004): Bitumen Emulsion for Roads (Cationic Type)
[PCD 6: Bitumen Tar and their Products]
Indian Standard

BITUMEN EMULSION FOR ROADS (CATIONIC TYPE) — SPECIFICATION
(Second Revision)

ICS 75.140; 93.080.20

© BIS 2004

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

March 2004
FOREWORD

This Indian Standard (Second Revision) was adopted by the Bureau of Indian Standards, after the draft finalized by the Bitumen, Tar and Their Products Sectional Committee had been approved by the Petroleum, Coal and Related Products Division Council.

This standard was first published in 1978 and was subsequently revised in 1995. The first revision incorporated certain new tests and the deletion of obsolete ones. In this revision the following changes have been made:

a) Rapid setting (RS) grade emulsion has been divided into two different grades of emulsions. The nomenclature for the proposed emulsions has been indicated as RS-1 emulsion and RS-2 emulsion. Similarly, slow setting (SS) emulsion has also been divided as SS-1 and SS-2 emulsion.

b) Recommended use and requirements have been included for RS-1 and RS-2 grades. Requirements have been included for SS-1 and SS-2 grades also.

c) Method for determination of residue on sieving on 600-micron IS sieve (see Annex B) and coating ability and water resistance (see Annex F) have been updated.

d) The modifications given in Amendment No. 1 have been incorporated.

Cationic bitumen emulsion usage in India has increased substantially since the introduction of the revised specifications in 1995. The usage of emulsion as a percentage of total bitumen usage has gone up from 1 to 3 percent in the last five years. The international status for emulsion usage is 10 percent of total bitumen usage. The proposed revised Ministry of Surface Transport (MOST) specification for road works is expected to substantially widen the scope for emulsion usage in various road applications. Therefore, new types of emulsion grades have been incorporated in this revision.

Out of the present emulsion consumption, nearly 60-65 percent of emulsion is used in tack coat applications. Introduction of a grade similar to ASTM CRS 1 is being mooted to facilitate better spread of the emulsion within the recommended quantity especially for State Highways and low volume roads also where the spraying is done manually in most of the cases. The viscosity of this emulsion is suggested at a lower range between 20-100 SFS at 50°C for ease of application and good coverage on the existing surface (especially since the method of application is still manual in most cases). The storage stability has been suggested as 2.0 Max since it is revealed that there is a tendency for emulsions manufactured with lower binder content to have less storage stability but this does not seriously alter the life or the other characteristics of the emulsion. The aforesaid emulsion is called as RS-1 emulsion.

In several states, single coat/two coat surface dressing including synchronized surface dressing is being carried out to improve the road connectivity at low cost especially in rural areas. It has been proven that an emulsion with a higher viscosity range is ideally suited for such application. Considerable assistance has been derived from ASTM D 2397 in formulation of this standard. The suggested viscosity range for RS-2 is similar to ASTM CRS-2 from 100 to 300 SFS at 50°C. The recommended uses of five grades of emulsified bitumen of the cationic type prescribed in this standard are given in Annex A.

The composition of the Committee responsible for formulation of this standard is given in Annex K.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2:1960 ‘Rules for rounding off numerical values (revised)’. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
Indian Standard

BITUMEN EMULSION FOR ROADS (CATIONIC TYPE) — SPECIFICATION (Second Revision)

1 SCOPE
This standard covers the physical and chemical requirements of bitumen emulsion (cationic type) for road works.

2 REFERENCES
The following standards contain provisions, which through reference in the text, constitute provisions of this standard. At the time of publication the editions indicated were valid. All standards are subject to revision and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards listed below:

<table>
<thead>
<tr>
<th>IS No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>73:1992</td>
<td>Paving bitumen (second revision)</td>
</tr>
<tr>
<td>269:1989</td>
<td>Ordinary Portland cement 33 grade (fourth revision)</td>
</tr>
<tr>
<td>334:1982</td>
<td>Glossary of terms relating to bitumen and tar (second revision)</td>
</tr>
<tr>
<td>460 (Part 2): 1985</td>
<td>Test sieves: Part 2 Perforated plate test sieves (third revision)</td>
</tr>
<tr>
<td>1201:1978</td>
<td>Methods of testing tar and bituminous materials — Sampling (first revision)</td>
</tr>
<tr>
<td>1203:1978</td>
<td>Methods of testing tar and bituminous materials — Determination of penetration (first revision)</td>
</tr>
<tr>
<td>1208:1978</td>
<td>Methods of testing tar and bituminous materials — Determination of ductility (first revision)</td>
</tr>
<tr>
<td>1216:1978</td>
<td>Methods of testing tar and bituminous materials — Determination of solubility in trichloroethylene (first revision)</td>
</tr>
<tr>
<td>3117:2002</td>
<td>Specification for bitumen emulsion for roads (anionic type) (first revision)</td>
</tr>
</tbody>
</table>

3 TERMINOLOGY
For the purpose of this standard, the definition given in IS 334 and the following shall apply.

3.1 Cationic Emulsion
An emulsion in which the cation of the emulsifier is at the interface of the bitumen particle; an emulsion in which the particles are positively charged and the aqueous phase is acidic. Breaking of these emulsions occurs by neutralization of charge.

4 MATERIALS
4.1 Any suitable grade of bitumen as given in IS 73 with or without addition of suitable flux, may be used.

4.2 Any emulsifying agent or any other ingredient, which either quality-wise or quantity-wise, is likely to affect or harden the residue bitumen beyond the limits specified in Sl No. (ix) of Table 1 shall not be used.

5 GRADES
Emulsified bitumen shall be of the following five grades:

<table>
<thead>
<tr>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Rapid Setting-1</td>
</tr>
<tr>
<td>b) Rapid Setting-2</td>
</tr>
<tr>
<td>c) Medium Setting</td>
</tr>
<tr>
<td>d) Slow Setting-1</td>
</tr>
<tr>
<td>e) Slow Setting-2</td>
</tr>
</tbody>
</table>

6 REQUIREMENTS
6.1 Bitumen emulsion shall be homogeneous. Within one year after manufacture date, it shall show no un-dispersed bitumen after thorough mixing.

6.2 The physical and chemical requirements of the five grades of emulsions shall comply with the requirements specified in Table 1.
Table 1 Physical and Chemical Requirements of Bitumen Emulsion (Cationic Type)

(Clauses 4.2 and 6.2)

<table>
<thead>
<tr>
<th>Sl No.</th>
<th>Characteristic</th>
<th>Grade of Emulsion</th>
<th>Method of Test, Ref to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RS-1</td>
<td>RS-2</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>i)</td>
<td>Residue on 600 micron IS Sieve, percent by mass, Max</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>ii)</td>
<td>Viscosity by saybolt furol viscometer, seconds:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1) At 25° C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) At 50° C</td>
<td>20-100</td>
<td>100-300</td>
</tr>
<tr>
<td>iii)</td>
<td>Coagulation of emulsion at low temperature<sup>11</sup></td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>iv)</td>
<td>Storage stability after 24 h, percent, Max</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>v)</td>
<td>Particle charge</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>vi)</td>
<td>Coating ability and water resistance:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1) Coating, dry aggregate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) Coating, after spraying</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Coating, wet aggregate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) Coating, after spraying</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vii)</td>
<td>Stability to mixing with cement (percentage coagulation), Max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>viii)</td>
<td>Miscibility with water</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Coagulation Coagulation Coagulation Coagulation Coagulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ix)</td>
<td>Tests on residue:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1) Residue by evaporation, percent, Min</td>
<td>60</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>2) Penetration25°C/100g/5 sec</td>
<td>80-150</td>
<td>80-150</td>
</tr>
<tr>
<td></td>
<td>3) Ductility 27° C/cm, Min</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>4) Solubility :</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>In trichloroethylene, percent by mass, Min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x)</td>
<td>Distillation in percent, by volume at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1) 190°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) 225°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) 260°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4) 315°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xi)</td>
<td>Water content, percent by mass, Max</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹¹ This requirement shall be applicable only under situations where the ambient temperature is below 15°C.
7 SAMPLING

7.1 For the purpose of testing, the size of the sample and the sampling procedure from drums, barrels or bulk supply shall be as described in IS 1201 subject to the following:

a) **From Drums or Barrels** — The content of drum or barrel from which the sample is to be taken shall be thoroughly mixed by rolling the container to and fro for a period of 2 to 3 min, successively in opposite direction, allowing at least five revolutions of the container in each direction and then up-ending the container through two revolutions first in one direction and then in the opposite direction.

b) **From Bulk** — Where practicable, bulk delivery of bitumen emulsion shall be agitated by forced circulation or air agitation, before sampling.

c) The sample of bitumen emulsion shall be drawn within 24 h after delivery and tested within 7 days from the date of drawing, unless otherwise specified.

7.1.1 Preparation of Samples

Before carrying out any of tests, the sample shall be mixed by gentle shaking to ensure uniformity.

7.2 If the single sample from a single run fails to fulfil the test requirements specified in 6, sample shall be drawn on the basis of 7.1 for testing in the same manner. If these samples conform to requirement of 6 the lot shall be accepted otherwise the lot shall be rejected.

8 MARKING

8.1 Each container shall be legibly and indelibly marked with the following:

a) Indication of the source of manufacture,

b) Month and year of manufacture,

c) Type/Grade,

d) Batch number, and

e) Date of expiry.

8.1.1 **BIS Certification Marking**

The container may also be marked with the Standard Mark.

8.1.1.1 The use of the Standard Mark is governed by the provisions of the **Bureau of Indian Standards Act**, 1986 and the Rules and Regulations made thereunder. The details of conditions under which the licence for the use of the Standard Mark may be granted to manufacturers or producers may be obtained from the Bureau of Indian Standards.
ANNEX A

(RECOMMENDED USE OF CATIONIC EMULSION)

A-1 The recommended uses of five types of emulsified bitumen of the cationic type suggested in this revision are given below:

<table>
<thead>
<tr>
<th>Type</th>
<th>Recommended Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-1</td>
<td>Rapid setting emulsion grade RS-1 is specially recommended for tack coat applications.</td>
</tr>
<tr>
<td>RS-2</td>
<td>Rapid setting emulsion grade RS-2 specially recommended for surface dressing work.</td>
</tr>
<tr>
<td>MS</td>
<td>A medium setting emulsion used for plant or road mixes with coarse aggregates minimum 80 percent, all of which is retained on 2.36 mm IS Sieve and practically none of which passes 180 micron IS Sieve, and also for surface dressing and penetration macadam.</td>
</tr>
<tr>
<td>SS-1</td>
<td>SS-1 is used for other applications such as fog seal, crack sealing, prime coat applications.</td>
</tr>
<tr>
<td>SS-2</td>
<td>A slow setting emulsion used for plant or road mixes with graded and fine aggregates, a substantial quantity of which passes a 2.36 mm IS Sieve, and a portion of which may pass a 75 micron IS Sieve. Examples of its uses are cold mixed MSS, SDBC and slurry seal.</td>
</tr>
</tbody>
</table>

ANNEX B

(METHOD FOR DETERMINATION OF RESIDUE BY SIEVING THROUGH 600-MICRON IS SIEVE)

B-1 APPARATUS

B-1.1 600 Micron IS Sieve — A circular sieve approximately 100 mm in diameter and 40 mm height.

B-1.2 Metal or Glass Dish — A small metal or glass dish about 110 mm in diameter (such as a clock glass).

B-1.3 Oven — A well ventilated oven thermostatically controlled to 100 to 110°C.

B-1.4 Balances — One of capacity 250 g and accuracy of 0.01 g and one of capacity 10 kg and accuracy of 1 g.

B-1.5 Container — A clean, weighed, 1.5-litre container.

B-2 MATERIALS

B-2.1 Solution — Distilled water

B-2.2 Solvents — Xylene and acetone.

B-3 PROCEDURE

Wash the sieve with xylene and then with acetone. Place it in the dish, dry in the oven at 100 to 110°C for 1h, cool and weigh, together with the dish, to the nearest 0.01 g (W_i). Remove the sieve from the dish and moisten with the solution. Remove uniformly the 4-litre sample by gentle agitation and strain immediately through the sieve into the clean, dry, weighed container (W_j). Sieve the low and high viscosity emulsion at room temperature and 50°C respectively. When whole of the emulsion has been passed through the sieve, remove the sieve and weigh the container to the nearest 1 g (W_k). Wash the sieve repeatedly with distilled water until the washings run clear. Place the sieve in the small dish to dry for 2 h in the oven at 105 ± 5°C. Cool and reweigh together to the nearest 0.01 g (W_i).

B-4 CALCULATIONS

Percentage retained = \[\frac{W_j - W_i}{W_j - W_k} \times 100 \]

where

W_i = mass, in g, of sieve and small dish;

W_j = mass, in g, of container and emulsion;

W_k = mass, in g, of sieve, small dish and residue; and

W_i = mass, in g, of container.
The percentage of mass retained as calculated under B-4 shall be reported.

The duplicate test results should not differ by more than the following:

<table>
<thead>
<tr>
<th>IS 8887:2004</th>
<th>Sieve Test</th>
<th>Repeatability</th>
<th>Reproducibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retained</td>
<td>Percent</td>
<td>Percent</td>
<td>Percent</td>
</tr>
<tr>
<td>0 to 0.05</td>
<td>0.02</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

ANNEX C

[Table 1, SI No. (iii)]

METHOD FOR DETERMINATION OF COAGULATION OF EMULSIONS AT LOW TEMPERATURE

C-1 APPARATUS

C-1.1 Glass Boiling Tube — 150 mm long and 25 mm in internal diameter, provide with a cork and central hole 13 mm in diameter.

C-1.2 Sieve — 600-micron IS Sieve.

C-1.3 Beaker — Two, 600-ml capacity.

C-1.4 Water-Bath — Thermostatically controlled.

C-2 MATERIALS

C-2.1 Solution

One percent solution of cetrimide (a mixture of alkyltrimethyl ammonium bromide) in N/10 hydrochloric acid.

C-2.2 Solvents

Xylene and acetone.

C-3 PROCEDURE

Wash 600-micron IS Sieve with xylene, acetone and distilled water. Moisten the clean sieve with cetrimide. Pass some of the emulsions through the sieve and introduce 20 ml of sieved emulsion into the boiling tube. Bring the emulsion by plunging the tube into the water at 30°C and stir gently with the thermometer until temperature of the emulsion is constant. Remove the tube from warm water and plunge into the beaker containing iced water at the bottom of which crushed ice is retained by piece of wire gauge. During the cooling process stir slowly. Lower the temperature of water by adding common salt, to -1 to -1.5°C so that the temperature of the emulsion is reduced to 0°C. At 0°C discontinue stirring and transfer the tube to another beaker with a freezing mixture at a temperature of -3 to -4°C and allow the emulsion to remain quiescent for 30 min. Remove the tube from the freezing mixture without disturbance and allow the temperature of the content to rise spontaneously to room temperature. Moisten the sieve with cetrimide and pass the emulsion through the sieve. Wash the tube free from emulsion and other residue with cetrimide and pass the washings through the sieve. The coagulated bitumen, if any, will be retained on the sieve.

C-4 REPORT

Report the emulsion as passed, if no coagulation takes place.

NOTE — If the emulsion is exposed to temperature below 4°C during storage/transportation the following additional criteria shall apply:

a) Subzero temperature –15°C;

b) Freezing and thawing cycle shall be repeated three times; and

c) After the third cycle, the emulsion shall be examined for homogeneity.

ANNEX D

[Table 1, SI No. (iv)]

METHOD OF DETERMINATION OF STORAGE STABILITY

D-1 APPARATUS

D-1.1 Cylinders — Two 500-ml glass cylinders, with pressed or moulded glass bases and cork or glass stoppers, having an outside diameter of 50 ± 5 mm and having 5 ml graduations.
D-1.2 Glass Pipette — A 60 ml siphon glass tube pipette.

D-1.3 Balance, capable of weighing 500 g within ± 0.1 g.

D-1.4 Glass Beakers — Three glass beakers of 600 or 1000-ml capacity, made of borosilicate glass.

D-1.5 Glass Rods, with flame polished ends, 6.5 ± 0.5 mm in diameter and 175 ± 5 mm in length.

D-1.6 Oven — Thermostatically controlled, capable of maintaining temperature of 163 ± 2.8 °C.

D-2 PROCEDURE

D-2.1 Bring the bitumen emulsion to room temperature (20 to 30°C). Place a 500 ml representative sample in each of the two glass cylinders. Stopper the cylinders and allow them to stand undisturbed, at laboratory air temperature (20 to 30°C), for 24 h. After standing for this period, remove approximately 55 ml from the top of the emulsion by means of the pipette or siphon without disturbing the rest. Thoroughly mix each portion.

D-2.2 Weigh 50 ± 0.1 g of each sample into separately weighed 600 or 1000 ml glass beakers, each beaker having previously been weighed with the glass rod (see D-1.5). Adjust the temperature of the oven to 163 ± 2.8°C. Then place the beakers containing the rods and sample in the oven for 2 h. At the end of this period remove each beaker and thoroughly stir the residue. Replace in the oven for 1 h, then remove the beakers from the oven, allow to cool to room temperature, and weigh, with the rods (see Note).

D-3 CALCULATION

Calculate the storage stability as the numerical difference between the average percentage of bituminous residue found in the two top samples and that found in the two bottom samples.

D-4 PRECISION

D-4.1 Duplicate determinations by the same operator shall not be considered suspect if the determined values do not differ by more than 0.5 percent.

D-4.2 Reproducibility

The values reported by each of the two laboratories representing the arithmetic average of duplicate determinations shall not be considered suspect values, if the reported values do not differ by more than 0.6 percent.

ANNEX E

[Table 1, Sl No. (v)]

METHOD FOR DETERMINATION OF PARTICLE CHARGE

E-1 APPARATUS

E-1.1 Current Source — A 12 V battery.

E-1.2 Rheostat, of 2000 Ohm capacity.

E-1.3 Ammeter, of 0.1 Ampere capacity.

E-1.4 Stainless Steel Plates — Two, 25 mm × 75 mm size.

E-1.5 Glass Container, of 500 ml capacity.

E-2 PROCEDURE

Take sufficient quantity of a representative sample of bitumen emulsion in the glass container. Immerse two stainless steel plates 25 mm × 75 mm which are connected to a 12 V battery circuit through a switch, a rheostat and an ammeter, to a depth of 25 mm and mark the +ve and –ve plates. Close the switch and adjust the rheostat so that the current in the circuit is more than 4 mA. Open the circuit after 30 min and remove the plates. Gently wash the plates, if necessary with distilled water to remove unbroken emulsion and then examine.

E-3 REPORTING

An appreciable layer (continuous opaque film) of deposited bitumen on the negative plate (cathode) with a relatively clean bitumen free positive plate (anode) indicates a cationic emulsion of positively charged particles.
ANNEX F
[Foreword and Table 1, Sl No. (vi)]

COATING ABILITY AND WATER RESISTANCE

F-1 APPARATUS

F-1.1 Mixing Pan — A whole enamelled kitchen pan with handle, of approximately 3-litre capacity.

F-1.2 Mixing Blade — A putty knife with a 30 mm × 90 mm steel blade with rounded corners. A 254 mm kitchen mixing spoon may be used as an alternative.

F-1.3 Sieve — Standard sieve of 19 mm and 4.75 mm conforming to IS 460 (Part 2).

F-1.4 Constant Head Water Spraying Apparatus — An apparatus for applying tap water in a spray under a constant head of 775 mm. The water shall issue from the apparatus in a low velocity spray.

F-1.5 Thermometer — It shall be of the mercury in-glass type nitrogen filled, with the stem made of lead glass or other suitable glass. It shall be engraved and enamelled at the back and provided with an expansion chamber and glass ring at the top. The bulb shall be cylindrical, made of suitable thermometric glass. The dimensions, tolerances and graduations of the thermometer shall be as follows:

<table>
<thead>
<tr>
<th>Range</th>
<th>–2 °C to 80 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduation at each</td>
<td>0.2 °C</td>
</tr>
<tr>
<td>Longer lines at each</td>
<td>1 °C</td>
</tr>
<tr>
<td>Figures at each</td>
<td>2 °C</td>
</tr>
<tr>
<td>Immersion, mm</td>
<td>Total</td>
</tr>
<tr>
<td>Overall length, mm</td>
<td>378-384</td>
</tr>
<tr>
<td>Length of graduated portion, mm</td>
<td>243-279</td>
</tr>
<tr>
<td>Length of bulb, mm</td>
<td>9-14</td>
</tr>
<tr>
<td>Bulb diameter</td>
<td>No larger than stem diameter</td>
</tr>
<tr>
<td>Stem diameter, mm</td>
<td>6.0-7.0</td>
</tr>
<tr>
<td>Distance from bottom of bulb to 0°C, mm</td>
<td>75-90</td>
</tr>
<tr>
<td>Scale error, Max</td>
<td>0.2°C</td>
</tr>
</tbody>
</table>

F-1.6 Balance, capable of weighing 1 000 g within ±0.1 g.

F-1.7 Pipette, of 10-ml capacity.

F-2 MATERIALS

F-2.1 Aggregate — Standard limestone aggregate shall be a laboratory washed and air cooled aggregate graded to pass 19 mm sieve and retained on 4.75 mm sieve.

F-2.2 Calcium Carbonate — Chemically pure precipitated (CaCO₃) shall be used as a dust to be mixed with the standard aggregate.

F-2.3 Water — Tap water of not over 250 ppm CaCO₃ hardness for spraying over the sample.

F-3 SAMPLE

The sample shall be representative of the bitumen emulsion to be tested.

F-4 PROCEDURE FOR TEST WITH WET AGGREGATE

F-4.1 Carry out the test at 24 ± 5.5°C.

F-4.2 Weigh 460 g of the air dried/graded limestone aggregates in the mixing pan.

F-4.3 Weigh 4 g of CaCO₃ dust in the mixing pan and mix with the 460 g of aggregate for approximately 1 min by means of a mixing blade to obtain uniform film of dust on the aggregate particles. The total weight of aggregate shall be 460 g.

F-4.4 Pipette 9.3 ml of water to the aggregate and CaCO₃ dust mixture into the mixing pan and mix thoroughly to obtain uniform wetting.

F-4.5 Weigh 35 g of bitumen emulsion into the aggregate in the pan and mix vigorously with the mixing blade for 5 min by a back and forth motion in an elliptical path of the mixing blade of spoon. At the end of the mixing period, tilt the pan and permit any excess emulsion not on the aggregate to drain into the pan.

F-4.6 Remove approximately one half of the mixture from the pan and place it on absorbent paper and evaluate the coating.

F-4.7 Immediately spray the mixture remaining in the pan with tap water from the constant head water spraying apparatus to cover the mixture. The distance from the spray head to the sample shall be (305 ± 75 mm). Then carefully pour off the water. Continue spraying and pouring off the water until the overflow water runs clear. Carefully drain off the water on the pan. Scoop the mixture from the mixing pan on to
absorbent paper for evaluation of coating retention in the washing test.

F-4.8 Evaluate the mixture immediately by visual estimation as to the total aggregates surface area that is coated with bitumen.

F-4.9 Report the evaluation by visual estimation of the coating of the aggregate surface area by bitumen after the mixture has been surface air dried in the laboratory at room temperature. A fan may be used for drying if desired.

F-5 REPORTING OF TEST RESULTS

F-5.1 Evaluate and report the following information for tests with both dry and wet aggregates.

F-5.2 At the end of the mixing period record the coating of the total aggregate surface area by the bitumen emulsion as good, fair or poor. Where a rating of good means fully coated by the bitumen emulsion is exclusive of pinholes and sharp edges of the aggregates; a rating of fair coating applies to the condition of an excess of coated area over uncoated area; and a rating of poor applies to the condition of an excess of uncoated area over coated area.

F-5.3 After spraying with water record the coating of the total aggregate surface area by the bitumen as good, fair or poor.

F-5.4 Comments about the results of the test may be included in the valuation.

ANNEX G

[Table 1, Sl No. (vii)]

STABILITY TO MIXING WITH CEMENT

G-1 APPARATUS

G-1.1 Sieve — A 1.40 mm IS Sieve approximately 100 mm in diameter and 40 mm in height and 150 micron IS Sieve approximately 200 mm in diameter.

G-1.2 Metal Dish — A round-bottomed metal utensil of approximately 500-ml capacity.

G-1.3 Steel Rod — A steel rod with rounded ends 13 mm in diameter.

G-1.4 Balance — 250 g capacity accurate to 0.1 g.

G-1.5 Graduated Cylinder, of 100 ml capacity.

G-1.6 Shallow Pan, of 100-mm diameter and of about 50-ml capacity.

G-1.7 Oven — A well-ventilated oven controlled at 110°C.

G-2 MATERIAL

Ordinary Portland cement conforming to IS 269. It shall be kept in sealed container and not exposed to atmosphere before use.

G-3 PROCEDURE

Make up the water content of the emulsion to 50 percent by adding extra water, if necessary. Pass the cement through 150 micron IS Sieve and weigh 50 g into the metal dish. Weigh the 1.40 mm IS Sieve and shallow pan to nearest 0.1 (W$_1$). Add 100-ml of emulsion to the cement in the dish and stir the mixture at once with the steel rod with a circular motion making about 60 rev/min. At the end of 1 min mixing period add 150 ml freshly boiled distilled water at room temperature and continue stirring for 3 min. Maintain the ingredients at a temperature of approximately 25°C during mixing. Pour the mixture through the weighed 1.40 mm IS Sieve and rinse with distilled water. Place the sieve in weighed pan, heat in the oven at 110°C until dry and weigh to nearest 0.1 g (W$_2$).

G-4 CALCULATION

Coagulation value = $\frac{W_2 - W_1}{W_3} \times 100$

where W_1 = mass, in g, of weighed sieve and pan;

W_2 = mass, in g, of the sieve and pan and the material retained on them; and

W_3 = mass, in g, of binder in 100-ml of diluted emulsion determined according to Annex J.

G-5 REPORT

Report the coagulation value as percentage the nearest whole number.
G-6 PRECISION

The duplicate test results shall not differ by more than the following:

<table>
<thead>
<tr>
<th></th>
<th>Mass, Percent</th>
<th>Mass, Percent</th>
<th>Mass, Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 2</td>
<td>0.2</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

NOTE — Ordinary portland cement conforming to IS 269 shall be used.

ANNEX H

[Table 1, Sl No. (viii)]

METHOD FOR DETERMINATION OF MISCIBILITY WITH WATER

H-1 PROCEDURE

Gradually add 150 ml distilled water, with constant stirring to 50 ml of emulsion in a 400-ml beaker at a temperature of 20-30°C. Allow the mixture to stand for 2 h and examine it for any appreciable coagulation of the bitumen content of the emulsion.

ANNEX J

[Table 1, Sl No. (ix)(1)]

METHOD FOR DETERMINATION OF RESIDUE BY EVAPORATION

J-1 APPARATUS

J-1.1 Glass Beakers — Low form of 1 000-ml capacity made of borosilicate glass.

J-1.2 Glass Rods, with flame polished 6.5 ± 0.5 mm in diameter and 175 ± 0.5 mm in length.

J-1.3 Balance, of 500 g capacity and accurate to ± 0.1 g.

J-1.4 Oven — Thermostatically controlled at a temperature of 163 ± 2.8 °C.

J-2 PROCEDURE

Weigh 50 ± 0.1 g of thoroughly mixed emulsion into each of three beakers each of which has previously been weighed with the glass rod. Place the beaker along with the rod in the oven at 163 ± 2.8 °C for 2 h. At the end of this period remove each beaker and stir the residue thoroughly. Replace in the oven for another 1 h then remove and cool at room temperature, weigh the beakers along with the rods.

J-3 CALCULATION

J-3.1 Residue, percent = 2 \(\frac{A - B}{A} \) where

\[A = \text{mass of beaker, rod and residue, in g}; \]

\[B = \text{tare mass of beaker and rod, in g}. \]

J-3.2 Take the average of three values obtained for residue, percent.

J-4 TESTS ON RESIDUE

J-4.1 Penetration

Determine penetration on a sample of the residue in accordance with IS 1203.

J-4.2 Ductility

Determine the ductility on a representative portion of the residue in accordance with IS 1208.

J-4.3 Solubility in Trichloroethylene

Determine the solubility in trichloroethylene on a representative sample of the residue in accordance with IS 1216.
ANNEX K
(Foreword)

COMMITTEE COMPOSITION

Bitumen, Tar and Their Products Sectional Committee, PCD 6

<table>
<thead>
<tr>
<th>Organization</th>
<th>Representative(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Road Research Institute, New Delhi</td>
<td>PROF P. K. SKIDAR (Chairman)</td>
</tr>
<tr>
<td></td>
<td>SIRI SUNIL BOSE (Alternate I)</td>
</tr>
<tr>
<td></td>
<td>DR P. K. JAIN (Alternate II)</td>
</tr>
<tr>
<td>Bharat Petroleum Corporation Limited, Mumbai</td>
<td>SIRI J. A. JANAI</td>
</tr>
<tr>
<td></td>
<td>SIRI ABHIT UPADHYE (Alternate)</td>
</tr>
<tr>
<td>Building Materials and Technology Promotion Council, New Delhi</td>
<td>SIRI R. K. CELLY</td>
</tr>
<tr>
<td></td>
<td>SIRI B. ANIL KUMAR (Alternate)</td>
</tr>
<tr>
<td>Central Public Works Department, New Delhi</td>
<td>SIRI S. B. JHANBI</td>
</tr>
<tr>
<td></td>
<td>SIRI V. K. SHARMA</td>
</tr>
<tr>
<td>Central Fuel Research Institute, Dhanbad</td>
<td>DR (SIRIMATS) A. BHATTACHARYA</td>
</tr>
<tr>
<td></td>
<td>SIRI U. BHATTACHARYA (Alternate)</td>
</tr>
<tr>
<td>Cochin Refineries Limited, Cochin</td>
<td>SIRI C. I. ROY</td>
</tr>
<tr>
<td></td>
<td>SIRI V. PAULY (Alternate)</td>
</tr>
<tr>
<td>Dr Uppal's Testing and Analytical Laboratory, Ghaziabad</td>
<td>SIRI R. S. SHUKLA</td>
</tr>
<tr>
<td>Durgapur Projects Limited, Durgapur</td>
<td>DR H. S. SARKAR</td>
</tr>
<tr>
<td></td>
<td>SIRI ULLASH GHOSH (Alternate)</td>
</tr>
<tr>
<td>Directorate General of Supplies and Disposals, New Delhi</td>
<td>SIRI N. K. KAUSHAL</td>
</tr>
<tr>
<td>Directorate General Border Roads, New Delhi</td>
<td>SIRI K. K. Y. MAHINDRKR</td>
</tr>
<tr>
<td></td>
<td>SIRI A. K. GUPTA (Alternate)</td>
</tr>
<tr>
<td>Engineer-in-Chief's Army Headquarters, New Delhi</td>
<td>COL V. K. P. SINGH</td>
</tr>
<tr>
<td></td>
<td>LT COL R. S. BHANWARLAL (Alternate)</td>
</tr>
<tr>
<td>Highway Research Station, Chennai</td>
<td>SIRI S. SARAVANAVEL</td>
</tr>
<tr>
<td></td>
<td>DR D. THIRUNAKKARASU (Alternate)</td>
</tr>
<tr>
<td>Hindustan Petroleum Corporation Limited, Mumbai</td>
<td>SIRI VIJAY K. BHATNAGAR (Alternate)</td>
</tr>
<tr>
<td></td>
<td>SIRI A. S. PRABHAKAR (Alternate)</td>
</tr>
<tr>
<td>Hindustan Colas Limited, Mumbai</td>
<td>SIRI P. RAJENDRA</td>
</tr>
<tr>
<td></td>
<td>SIRI H. PADMANABHAN (Alternate)</td>
</tr>
<tr>
<td>Indian Institute of Petroleum, Dehra Dun</td>
<td>SIRI U. C. GUPTA</td>
</tr>
<tr>
<td></td>
<td>SIRI MOHD ANWAR (Alternate)</td>
</tr>
<tr>
<td>Indian Oil Corporation Limited (Marketing Division), Mumbai</td>
<td>SIRI MANOJ MATHUR</td>
</tr>
<tr>
<td></td>
<td>SIRI PREM KUMAR (Alternate)</td>
</tr>
<tr>
<td>Indian Oil Corporation Limited [(R&D) Centre], Faridabad</td>
<td>SIRI B. R. TYAGI</td>
</tr>
<tr>
<td></td>
<td>SIRI M. P. KALA (Alternate)</td>
</tr>
<tr>
<td>Indian Oil Corporation (R&D), New Delhi</td>
<td>SIRI U. K. BASU</td>
</tr>
<tr>
<td></td>
<td>SIRI S. K. PRASAD (Alternate)</td>
</tr>
<tr>
<td>Indian Roads Congress, New Delhi</td>
<td>SIRI A. V. SINHA</td>
</tr>
<tr>
<td></td>
<td>SIRI SANJAY NIRMAL (Alternate)</td>
</tr>
<tr>
<td>Lloyd Insulations (India) Limited, New Delhi</td>
<td>SIRI ALAY SINGH</td>
</tr>
<tr>
<td></td>
<td>SIRI A. K. RASTOGI (Alternate)</td>
</tr>
<tr>
<td>Ministry of Surface Transport (Department of Surface Transport), New Delhi</td>
<td>SIRI S. K. PURI</td>
</tr>
<tr>
<td></td>
<td>SIRI M. P. SHARMA (Alternate)</td>
</tr>
<tr>
<td>Ministry of Defence (DGQA), New Delhi</td>
<td>SIRI K. H. GAMDI</td>
</tr>
<tr>
<td></td>
<td>SIRI A. K. SINHA (Alternate)</td>
</tr>
</tbody>
</table>

(Continued on page 11)
(Continued from page 10)

Organization

Chennai Petroleum Corporation Ltd, Chennai
National Test House, Kolkata
National Building Organization, New Delhi
Public Works Department, Government of West Bengal, Kolkata
Public Works Department, Mumbai
Public Works Department, Uttar Pradesh
Public Works Department, Tamil Nadu
Regional Research Laboratory, Jorhat
STP Limited, Kolkata
University of Roorkee, Roorkee
BIS Directorate General

Representative(s)

SHRI M. S. SHAYAM SUNDER
SHRI B. SAIRAM (Alternate)
SHRI A. K. CHAKRABARTY
SHRI S. K. AGARWAL (Alternate)
SHRI A. K. LAL
SHRI A. G. DHONGADE (Alternate)
SHRI AMITAVA CHATTERJEE
SHRI RABINDRA NATH Basu (Alternate)
SHRI V. B. BORGE
SHRI V. P. BANSAL
DR G. P. S. CHAUHAN (Alternate)
SHRI N. DAYANANDAN
SHRI P. JAYARAMAN (Alternate)
DR R. C. BARIAN
SHRI T. K. ROY
SHRI G. GRAMSHAM DAS (Alternate)
PROF H. C. MEHENDERATTA
SHRI ANUJ KAR, Director & Head (PCD) [Representing Director General (Ex-officio)]

Member Secretary

DR (SHRIAMATI) VIJAY MALIK
DIRECTOR (PCD), BIS

Methods of Test for Bitumen Tar and Their Products Subcommittee, PCD 6:1

Central Road Research Institute, New Delhi
Bharat Petroleum Corporation Limited., Mumbai
Bhilai Chemical Private Limited, Ranchi
Cochin Refineries Limited, Cochin
Durgapur Projects Limited, Durgapur
Highway Research Station, Chennai
Hindustan Colas Limited, Mumbai
Indian Institute of Petroleum, Dehra Dun
Indian Oil Corporation Limited (Marketing Division), Mumbai
Lloyd Insulations (India) Limited, New Delhi
Madras Refinery Limited, Chennai
Neyveli Lignite Corporation Limited, Neyveli
National Test House, Kolkata
Steel Authority of India, New Delhi
Hindustan Petroleum Corporation Limited, Mumbai

SHRI SUNIL BOSE (Convener)

DR P. K. JAIN (Alternate)
SHRI J. A. JAIN
DR NOBLE GEORGE (Alternate)
SHRI O. P. NANGALLIA
SHRI V. PALY
SHRI R. VENUGOPAL (Alternate)
DR H. S. SARKAR
DIRECTOR
DEPUTY DIRECTOR (Alternate)
SHRI H. PADMANABHAN
SHRI VIJAY K. BHATNAGAR (Alternate)
SHRI MOHD ANWAR
SHRI U. C. GUPTA (Alternate)
SHRI R. S. SUDRA
SHRI V. P. GUPTA (Alternate)
SHRI MEHTA KHANNA
SHRI K. K. MITRA (Alternate)
SHRI M. S. SHAYAM SUNDER
SHRI B. SAIRAM (Alternate)
DR S. SANMANAM
SHRI A. BALASUBRAMANIAN (Alternate)
SHRI P. K. CHAKRABARTY
SHRI S. K. AGARWAL (Alternate)
SHRI S. K. JAIN
SHRI S. C. DAS GOEL (Alternate)
SHRI A. S. PRABHAKAR
SHRI S. K. BHATNAGAR (Alternate)
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards: Monthly Additions’.

This Indian Standard has been developed from Doc: No. PCD 6 (1964).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110 002
Telephones: 2323 0131, 2323 33 75, 2323 9402

Telegrams: Manaksanstha
(Common to all offices)

Regional Offices:

Central: Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110 002
Telephones: 2323 7617, 2323 3841

Eastern: 1/14 C.I.T. Scheme VII M, V. I. P. Road, Kankurgachi
KOLKATA 700 054
Telephones: 2337 8499, 2337 8561, 2337 8626, 2337 9120

Northern: SCO 335-336, Sector 34-A, CHANDIGARH 160 022
Telephones: 60 3843, 60 9285

Southern: C.I.T. Campus, IV Cross Road, CHENNAI 600 113
Telephones: 2254 1216, 2254 1442, 2254 2519, 2254 2315

Western: Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400 093
Telephones: 2832 9295, 2832 7858, 2832 7891, 2832 7892

Branches: AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE. FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR. NALAGARH. PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM. VISAKHAPATNAM.

Printed at Prabhat Offset Press, New Delhi-2